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Abstract

A combination of analytic modeling and sys-
tem identification methods have been used to de-

velop an improved dynamic model describing the

response of articulated rotor helicopters to control

inputs. A high-order linearized model of coupled

rotcx/body dynamics including flap and lag degrees

of freedom and inflow dynamics with literal coeffi-
cients is compared to flight test datafxom single ro-

tor helicopters in the near hover trim condition.

The identification problem was formulated using
the maximum likelihood function in the time do-

main. The dynamic model with literal coefficients

was used to generate the model states, and the mod-

el was parametrized in terms of physical constants

of the aircraft rather than the stability derivatives,

resulting in a significant reduction in the number of

quantities to be identified. The likelihood function

was optimized using the genetic algorithm ap-

proach. This method proved highly effective in

producing an estimated model f_om flight test data
which included coupled fuselage/rotor dynamics.

Using this approach it has been shown that blade

flexibility is a significant contributing factor to the

discrepancies between theory and experiment

shown in previousstudies. Addition of flexible

modes, properly incorporating the constraint due m
the lag dampers, results in excellent agreement be-

tweenflight test and theory, especially in the high

frequency range.

Presented at Piloting Vertical Flight Air.raft: A

Conference On Flying Qualities and Human Fac-
tors, San Francisco, California, 1993.

Introduction

The investigation of rotomraft dynamics, and

specifically the coupled fuselage/rotor dynamics, is

motivated by increasing sophistication in rotorcraft

stabilityanalysesand by theemergence of high-

performance flight conuol system design require-

merits. The past few years have seen aconcentrated

effort directed toward providing an analytic simula-

tion model of coupled fuselage/rotor dynamicsand

model validation against flight test data.

Helicopterdynamics include the rigid-body

responses demonstrated by fixed-wing aircraft,

plus higher-fi_luency modes generated by the in-

mractions of the rotor system with the fuselage. For
earlier flight control system designs with lower

bandwidth requirements, it was satisfactory to use
low-order analytic models which did not accurate-

ly model the laigh-freqnency rotor dynamics; with

the recent introduction of hlgh-performance, high-

bandwidthcontrolsystemspecifications,ithasbe-

come increasinglynecessarytocormcdymodelthe

coupledf_selage/rotordynamicmodes.Ithaslong

beenknown thatflapdynamicsintroducesignifi-

canttimedelaysintotherotorsystem,andmorere-

cently,Curtisshasshown thatinclusionofthelag

dynamicsisimportantinthedesignofhighperfor-

mance controlsystems(Curtiss,1986).Recent

studieshave explored the possibilityofusingrotor

statefeedbackdesignstodamp blademotion(Ham,

1983).An accurateunderstandingofthecoupled

fuselage/rotordynamicsisthereforeimportantin

rotorc_aftconurolsystemdesignandstabilityanaly-
se.s.

Recent flight test experiments have shown

that existing simulation models do not accurately
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predictthesehigh-frequencymodes (BaUin et. al,

1991, Kaplita et. al, 1989, and Kim et. al, 1990).

These studies show significant differences between

theory and experiment associated with the coupled

rotor/body dynamics, especially in the frequency

region dominated by the rotor lag motion. This 1,c-

search is thexefore directed toward providing an im-

proved understandingof the ae,roclasticand

aeromc_anicalphenomena which determinetlm

coupledrotor/bodydynamicsathover.

In order to gain physical insight into helicop-
ter dynamics, development of linear models incor-

Ix)rating coupled rotor/fuselage dynamics has long

been a research objective. Past approaches to linear

model development have included direct numerical

perturbation of nonlinear simulations (Diftler,

1988), identification of sUm-space stability and

control matrix elements (TLschler, 1987), and ana-

lyric derivation of linear equations of motion (Zhao

and Curtiss, 1988). This study uniquely combines

system identification methods with analytic model-

ing techniques in order to investigate helicopter

hover dynamics and to arrive at an improved linear

model. The emphasis is on the high-frequency dy-
namics of the coupled rotor/body motion.

The identification study is carried out on

flight test data from a Sikorsky H-53E helicopter at

hover,usingpreviously published data(KaplitaeL

al, 1987, and Mayo eL al, 1990).

ResearchObjectives

This paper describes an investigation into the

resIxa_e of articulated rotor helicopters to control

inputs in hover. The goal is an improved under-

standing of the coupled rotor/fuselage dynamics in

hover directed toward a validated analytic simula-

tion model inchding high-frequency rotor/Rtse-

lage dynamics for use in stability analyses and
high-performance control system design studies.

Identification of linear, time-invariant state-

spacemodelsrepresentinghigh-order helicopter

dynamicsincludingmainrotorde_ offreedom

has long been an objective of engineers involved in

rotorcraft simulation and control system design.
The state and control matrix elements in an identi-

fied state-space model can provide physical insight

into system dynamics and can be used in combina-

tion with mathematical modeling techniques to

analyze differences between theory and experi-
ment.

State-space identification techniques have

been applied to conventional freed-wing aircraft
with useful results. Since identification of state-

spacemodels using directly parametrized stateand

controlmatrixelementsrequirestheestimationof

a large numberofparameters,a reduced order mod-

elis oftenused, assuming six degree-of-freedom

rigid body dynamicsand decoupling between the
longitudinal and lateral axes.

Identificationof reducedorderstate-space

modelsforrotorcrafthave generallyproduced un-

satisfactoryresults.Tim presence of the rotor pro-

duces significant rotor/body coupling, requiring

additional states to describe the high-frequency dy-
namics, and also introduces significant interaxis

coupling. The complete rotorcraft identification

problem is therefore requited to use a high-order,

multi-input, multi-output model with as many as
18 or more states.

In order to avoid the inevitableproblemof

overparametrization whichresultswhen attempt-

ingto identify a directly parametrized high-order
helicoptermodel,thisstudyuses an analyticmodel

to generatestatetimehistories.The modelusedin

thisstudyhasbeendevelop_atPrincetonusingthe

Lagrangianformulation.It includesthecoupledfu-
selage/rotor dynamics, main rotor inflow, taft rotor

thrust, and provides for tail rotor inflow dynamics.

It was analytically linearized about hover. This

model provides a stare-space description of the he-

licopter at hover which is completely analytic and

dependent only on an input set of physical parame-

ters. A subset of these inputs are considered urce.r-

tain, and are to be estimated from flight test data.

The flight-test derived parameter estimates can be
used in combination with the mathematical for-

mulation to trace various physical asp_ts of

coupled rotor/Ixxiy dynamics and the_by obtain
physical insight. The completehigh-ordermodel

including rotor dynamics can be reasonably para-

mctrize,d by 15 or fewer physically meaningful in-

put cuefficients, resultingina substantial reduction
in the number of parameters to be estimated.
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The frameworkof the identificafi_ ap-

proach is the time-domain maximum likelihood

methodology. The likelihood function is formu-

lated assuming the presence of Gaussian measure-

merit and process noise. The process noise may be

nonwhite. The noise covariances as well as process

noise dynamics may be parametrized. With Gaus-

sian noise assumptions, the likelihood function be-
comes the weighted least-square of the residual

errors. The Kalman filter is the natural way to pro-

duce these residuals for state-space dynamic sys-
tems.

The maximum likelihood estimate is ob-

tained byfindingtheglobalmaximum ofthelikeli-

hood function.The parametersarenonlinearly

relatedtothecostfimctionandtheresultingparam-

eterspaceis highly multimodal. Traditional func-

tion optimization techniques based on gradient

methods generally become trapped in local optima.

The genetic algorithm is an alternative func-

tion optimization approach which does not rely on

the use of local gradient information. The genetic

algorithm is an adaptive scheme, based on the anal-

ogy with natural evolution, which efficiently

searches a large parameter space for the 'fittest'

solution to a given objective, This method has been

demonstrated to be highly effective in obtaining the

global maximum in a multimodal parameter space.

The formulation of the system identification

problem in the maximum likelihood framework
leads to estimates of physical coefficients which

have attractive statistical optimality properties and

represent the best possible combination of physical

coefficients necessary to mar2a the given test data
set.

This identification methodology allows an

assessment of model assumptions inherent in the

mathematical model used to generate the state time
histories. In this study, emphasis is placed on the

frequency region associated with coupled rotor/fu-

selage dynamics. In the frequency domain, the

dominant feature in the rotor magnitude re_ is

a notch characteristic produced by the presence of

the in-plane blade degree of freedom. Using rotor

blade constants derived through the identification

procedure, rotor blade modeling assumptions may
be examined, resulting in analytic model improve-

merits. This study examines in detail the blade

structural modeling assumption and investigates

the effect of accounting for blade flexibility effects

generated by the presence of a large mechanical

damper at the blade hinge.

Analytic Model Description

ResearchatPrincetonhasresultedinthede-

velopmentofalinearizedrotor/bodyhelicopterdy-

namic model. The dynamic equations are

formulated using a Lagrangian approach in order to

capture all the important inertial coupling terms.

The model includes rigid-body translation and

rotation (pitch, roll, and yaw rates, longitudinal and

lateral velocities), rigid blade lag and flap multimo-

dalcoordinates,andmain rotor cyclic dynamicin-

flow.The controlsaremainrotorcyclicandpedals.

Theversionofthemodelusedinthisstudywas ana-

lyrically linearized about the hover trim condition

and does not include the collective degree of free-
dom.

Rotorcraft dynamics includes coupling be-
tween themotion of the fuselage whichisinrota-

tionaland translational motion relative to inertial

space, and the motion of individual rotor blades.

The final set of equations of moticaa arc referenced

to the body-fixedaxissystemwhichhas its origin

at the fuselage center of gravity. In the Newtonian

approach to modelingcoupledrotor/fnselage equa-
tions of motion, blade acceleration termsarefirst

written referenc_ to the hub axis which is rotating

at ccmtant velocity; coordinate transformations are

then used to obtain acceleration terms in the body-

fixed frame. The complexity of the resulting accel-
eration terms, combined with the number of

degrees of freedom necessary to model rotor dy-

namics properly, has led to the use of Lagrange's

equations for the derivatio_a of the coupled rotor/
body model.

The development of Lagrange's equations
proceeds firom the evaluation of the Lagrangian,

which requires onlyposition andvelocitytermsin

order to relate the system generalized forces to

changes in the system kinetic and potential ener-

gies. The generalized coordinates in Lagrange's

approach represent the degrees of freedom in the

system and are chosen to correspond to the system
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states. The kinetic energy term includes the motion

of the fuselage and rotor blades, and the potential

energy includes the gravitational potential energy

of the fuselage and stored energy in the mechanical

springs in the rotor system. Mechanical dampers

are accounted for by use of the dissipation function.

The generalized forces include aerodynamic forces

due to fuselage and blade aerodynamics. Evalua-

tion of the time and partial derivatives in the La-

grangian can be time consuming for a high-order

model and can be assigned to a symbolic manipula-
tion program such as MACSYMA.

Identification Methodology

This paper describes an approach for identifi-

cation of a coupled fuselage/rotor model for rotor-

craft hover dynamics from flight test

measurements. The identified model includes flap
and lag degrees of freedom, main rotor inflow, and

process and measurement noise disturbances. The

process noise may be colored. The approach uses

an analytically derived, linear time-invariant

state-space model with literal coefficients which is

parametrized in terms of aeromechanical input co-

efficients. The model order and structure may

therefore be assumed to be determined by this ap-
proach, and the system parameters are to be esti-

mated from observations. The parameter

estimation problem is formulated using the statisti-

cal framework of maximum likelihood (ML) es-

timation theory, thereby benefitting from known

optimality properties of ML estimators. This dis-

cussiou fast presents the parametrized dynamic

model to be used in the identification methodology.

and then describes the application of the maximum

likelihood estimation approach to dynamic sys-
te..ms.

Model Parametrization

The helicopter is modeled as a coutinuous-

time dynamic system whose measurements are dis-

cretely sampled as sensor outputs. Thus the
identification algorithm is required to estimate con-

tinuous-time model parameters from discrete sen-
sor me,asan_ments. This continuous/discrete

formulation is well known and is discussed by

Ljtmg (1987). The linear time-invariant state

equations are derived using the Lagrangian ap-

proach, and are given by

_t) = Ac(O)x(t) + Bc(O)u(t) + F_(O)w(t) (1)

The model form _ts for the presence of pro-
cess noise, where w(t) is assumed to be zero-mean

white noise with unity spectral density. The contin-

uous-time matrices, A_(O), Be(O), and F_(O). axe

parametrized by a vector of parameters, 0, which
are to be estimated from observations.

The observations are sampled at discrete
time intervals, where

y(la3 = C(O_la3 + G(O)vr(la3

tfkT, k=0,1,2 .... (2)

and vr(kT) are the disturbance effects at the

sampled time intervals.

For digital implementation of the icientifica-

tion algorithm, the continuous-time state equation
given in Equation (1) is discretizod using zero-or-

der hold. The input is assumed to be held constant

over the sampling time interval, and the continu-

ons-time state equation can then be integrated ana-

lyrically over the interval in order to obtain the
discrete-time state equation. The zero-order hold

discretizatiou introduces a phase lag equivalent to

one-half sample interval, which is taken into ac-

count by advancing the control input by the corre-
stxmding one-half time interval.

Eliminating time subscripts for simplicity,

the discrete-time state-space equations are given

by

x(t + 1) = A(O)x(t) + B(O)u(t) + F(O)w(t)

y(t) -- C(O)x(t) + G(O)v(t) (3)

This equation is now understood to be a discrete-

time equation. Here. w(t) and v(t) are sequences

ofindependentrandomvariableswithzeromean

andunitcovariance.

Maximum Likelihood Formulation

Let yNbe a vector of observations which are

supposed to be realizations of stochastic variables,
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and lety(t)be a multi--dimensionalobservation

takenattimet:
and :(t, 0) is generated using Equation (3) with the
discrete-time Kalman filter formulation.

yN ___[y(1),y(2),...y(N)]

The observations, yN depend on a vector of param-
eters, O, which are also considered to be random

variables. The conditional probability density

function for 0, given the observations, Y_ is then

given by

p(_W) = p(Y_0) • p(0) (4)
p(Y_

where p(O) is the prior distribution of the random
parameter vector. A reasonable estimate for 0 can

then be obtained by finding the value of 0 which

maximizes the conditional density function given

by Equation (4). With no prior knowledge of the
distribution of 0, p(O) may be assumed to be uni-

form. The best estimate for 0 is then obtained by

maximizing the likelihood of obtaining the ob-
servations. This leads to the ML, or maximum li-

kelihoed, estimator, given by

_,,L= _rg ,,_ p(:1o) C5)
0

For parametrized dynamical systems, with
Gaussian noise assumptions, the maximum likeli-
hood estimator has the form

Ouz = arg max p(YtqO)
0

N

argmax - l _'_) er(t,O)A-l(O)E(t,O) -
0 t'l

N logH(O)l - --_log2._ (6)

where

m = number of measurements

_(r.O)= It)- _(r.O)

A(O) = E_(o)er(o)

The Genetic Algorithm

The evaluation of the likelilaood function as

presented in Equation (6) requires a search for the

global maximum of the likelihood function over a

multimodal parameter space whose contours are

not known. Specifically, the identification method-

ology has led to a function optimization problem

where the performance measure is a highly nonlin-
ear fimction of many parameters. The principal

challenge facing the identification problem is the

very large set of possible solutions and the presence

of many local optima. Hill--climbing methods for

fimction optimization based on finding local gradi-
ents become trapped in local optima and ate inade-

quate for this problem. Genetic algorithms

overcome these diff'_ulties by efficiently searching

the parameter spw.e while preserving and incorpo-

rating the best characteristics as the search prog-

resses.

The problem of function optimization can be

addressed using the paradigm of adaptive systems.

where some objective performance measure (the
cost function) is to be maximized (i.e., adaptation

occurs) in a partially known and perhaps changing

ealvironmenL The idea of artificial adaptive plans,

based on an analogy with genetic evolution, was

formally described by John Holland in the seventies

and have recendy become an important tool in

function optimization and machine learning (Hol-
land. 1975, and Goldberg. 1989). Holland's artifi-

cial adaptive plans have come to be known in recent

literature as genetic algorithms.

Genetic algorithms are based on ideas under-

lying the process of evolution; i.e., natural selection

and survival of the fittest. Using biological evolu-

tion as an analogy, genetic algorithms maintain a

population of candidate solutions, or 'individuals,'

whose characteaistics evolve according to specific

genetic operations in order to solve a given task in
an optimal way.

As a general overview, genetic algorithms

have the following attributes which distinguish

them from traditional hill--climbingoptimization

methods (Goldberg, 1989):
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I. Genetic OperatorsGA's work with a representation of the pa-

rameter values rather than with the param-
eters themselves.

2. GA's search from a poptdation of points,

not from a single poinL

3. GA's use objective function information,

not gradient infcxmation.

4. GA's use probabilistic transition rules, not
deterministic ones.

The genetic algorithm maintains a popula-

tion of 'individuals'; i.e., possible solutions to the

function optimization problem. In the context of
the identification problem, each individual corre-

sponds to a vector of parameters. The population
of individuals'evolves' according to the rules of re-

production and mutation aaalogous to those fotmd
in natural evolutionary processes, with the result

that the population preserves those characteristics

favoring the best solution to the cost function.

The following steps were described by Hol-
land (Holland, 1975) and contain the essentials

properties of the the basic genetic algorithm.

. Select one individual from the inidal pop-

ulation probabilistically, after assigning

each individual a probability proportional

to its observedperformance.

. Copy the selected individual, then apply

genetic operators to the copy to produce a
new individual.

° Select a second individual from the popu-

lation at random (all elements equally

likely) and replace it by the new individual
produced in step 2.

4. Observe and record the performance of the
new slnactttre.

5. Reann to step 1.

This deceptively simple set of instructions

contains the ability to test large numbers of new
combinations of individual characteristics and the

ability to progressively exploit the best observed

characteristics. It does so through the use of genetic

operators.

Parent selection based on fitness, and the

subsequent application of genetic operators to pro-

ducenew individualsarethestepsby whichtheal-

gorithm modifies the initial population and

continuallytestsnew combinationswhilemain-

raining those parameter sets which give high fit-
hess.Each of these operations are performed

probabilistically.

The initial population of individuals is se-
lected randomly with a uniform distribution over

the defined parameter space. After one generation,

parent individuals are selected randomly, with a

probability which is proportional to the fitness as-

signed to that individual. The selection procedure

resembles spinning a roulette wheel whose circum-

ference isdividedintoasmany segmentsasthere

areindividuals.The arclengthofeachsegmentis

made proportionaltothefimessvalueofthecorm-

spondingindividual.Thus.thechanceofchoosing

agivenindividualisuniformlyrandomandyetpro-

portional to its fitness.

The genetic operations of crossover and

mutation are then applied to the selected parent in-
dividuals in order to introduce new characteristics

into timpopulation, enabling an efficient search for

the optimal combination of parameters.

The crossover operation involves a recom-

bination of two selected individuals at a randomly

selected poinL Thus the crossover operation pro-
duces two new individuals, each of whom inherit

characteristics from both parents.

The mutationoperationinvolvesa random

alternationofan individual'scharacteristicwitha

very lowprobability.Thisservesto introducenew

information into the pool of structures and serves to

guard against the possibility of becoming trapped in

localoptima.

Genetic Coding

Each individual is a candidate parameter set
and is represented as a concatenation of individual

parameters:
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0 _ [01 0 2 ..... ON] T_ genetic algorithm is illustrated in Figure
.

In a digital implementation, each parameter

0i is encoded using a binary alphabet, and the indi-

vidual is thus represented by a binary-valued
string. The following specific coding scheme was

suggested by Starer (Starer. 1990).

Let each parameter 01be bounded by 01.._

and 0;_. If each parameter is ceded in binary with

word length of l, then the interval [0,.= ,0,._.1 isa

discretized by 2t values. A representation of the pa-

rameter 0_ can be obtained from the l-bit binary
coding of

To illustrate, let an individual represent a
candidate parametrization where

o = [o, o_] = [3 4.51

andboundsaregiven as

0 1

1 0

1 1

0 1

0 0
1 0

0 0
1 0
1 1

0 1

0 0

0 i

i i
0 0 initial population

1 1
i 1

parent selection

based on fitness

randomly selected

crossover point

1 1

1 crossover

0 0
i, 0
1 i random mutation

0 O*
1 0
1 i

1 1
0 0
0 0

i i new population

0 i
i 0
i 1

1 <01 <4, 2<02<7, I=6

Figure I The Genetic Algorithm

The binary-valued string representing this candi-
date vector is then

Obi_,y= [101010 011111]

Implicit Parallelism

Genetic algorithms efficiently conduct a

searchovera definedparameterspace,converging
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toa near-optimal solution. The basic unit of pro-
cessed information in this genetic search is the

schema, defa_d by Holland (1975). In the context

of a digital implementation of genetic algorithms,

a schema is a template specifying similarities at

certain string positions.

Thus, an individtud is a suing of binary dig-

its, and the alphabet is composed of {0,1, #},
where # denotes 'don't care' (i.e., the value at this

position has no effect on the performance measure-

me,n0. As an example, an individual may be repre-
sented as

_011101100010]

A schema is a similarity template within this
individtud; so that this individual contains the sche-

mata givenby

[00##101100010]

Given I positions, a single individual is an
instance of 2t distinct combinations, and an

instance of 3t distinct schemata. Further. a popula-
tion of size N contains between 3 t and N3 t distinct

schemata.HoLland has shown that each schemata

are evaluated and processed independently of the

others,providinga tremendouscomputationalle-

verageon the number of function evaluations.
Thexefore, the use of genetic operators in the repro-

ductive plan provides i) intrinsic parallelism in the

testing and use of many schemata, and ii) compact

storage and use of large amounts of information re-

sulting from prior observations of schemata.

The concept of implicit parallelism is funda-

mental to the efficiency of genetic algorithms.

Each schemata is processed and evaluated indepen-

dently of other schema in the population; this pro-

vides a tremendous computational leverage. A
very weak lower bound states that for a population

of (n) individuals, more than o(n3) useful 'pieces'

of information is processed in each iteration (Gold-

berg, 1989).

An Example

As an illustration of the genetic algorithm,

consider the following example.

f(x,y) ---

3(1 - y)Ze-F-(*+ °2 -

/0(Y _ yZ _ xS)e-,2-*: _ Je-C*+,)z-* 2

The function surface is shown in Figure 2,

along with the contour lines. This multimodal

function has a global maximum at
(1.5814, - 0.0093).

A genetic algorithm was run on this function

with a population size of 20. The initial guesses
were chosen randomly, and were bounded as

-3<x<3. -3<y<3. A binary code

with wordlength of 8 was used, which means that

both x and y were discretizod by 256 points. An ex-

haustive grid search under these conditions would

involve evaluating 65536 possible points to fred the

global maximum.

Snapshots of the population distribution up to

7 generations are shown in Figure 2. The snapsh_Xs

show the population converging upon the global
maximum; by the 7 th generation, most of the indi-

viduals have converged on the maximum. The ge-

netic algorithm in this case converges on

(1.5412, - 0.0353) as the global optimum.

This convergence has occurred after 7 gen-
erations. With a population size of 20 individuals,

this is 140 function evaluations as compared to the

65536 necessary for the grid search

This relatively simple example serves to il-
lustrate the ability of the genetic algorithm to fred

the optimam of a given function, using no gradient
information.

Analytic Model Validation

The mathematical model is correlated with

flight test data using nominal values for input coef-
ficients. The correlation plots in Figure 3 show

transfer function comparisons for pitch and roll

axes. The data represent separate flights. In each
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Generation 1 Generation 3
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X X

Generation 5 Generation 7

Figure 2 Genetic Algorithm Example
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case, the comparison is between the flight test rate

gyro output and the model state. The comparison
is made between 0.5 Hz (3.14 rad/sec) and 6 I-Iz

(37.7 rad/sec) since the input signal was designed

to cover this frequency range. The fuselage struc-

tural bending modes are lightly damped and domi-
nate the frequency above ~20 rad/sec. Therefore

the identification procedure uses a ban@ass filter
with the upper eutofffrequency at 15.7 rad/sec. The

frequency range of interest is therefore between 0.5
Hz to 2.5 Hz (3.14 rad/sec to 15.7 rad/sec).

The choice of physical coefficients used to

parametrized dynamic model must allow adjust-
meats to account for differences between test and

theoretical responses using nominal physical input

values. The gain differences at low frequencies,

implying a mismatch in rigid body response, re-

quires parametrization of the rigid body accelera-
tion. The coupled fuselage/lagwise modes are a

lightly damped pole-zero pair and create a notch-

filter effect in the frequency restxmse between 10

- 15 rad/sec. This frequency is near the - 180 degree
crossover, and a mismatch in this region adversely

impacts the gain and phase margin calculations.

Modeling the dynamics of this mode is imlxr, aat
for conlxol system design and stability analysis and

will be the primary focus of modeling in this study.

Validation Of Identification Procedure Using
Simulated Data

The maximum likelihood identification

methodology for parametrized dynamic systems is

validated first on a simulation with known parame-

tea's. These results demonstrate the feasibility of us-

ing genetic algorithms to estimate physical
coefficients from noisy data, and establish the pop.
ulation size and crossover and mutation rates for

this application.

The simulation model is driven by flight test

control inputs from the hovering condition. Main

rotor pitch and roll cyclic and tail rotor pedals are

all active, with primary excitation into roLl cyclic.

The output states used to form the cost function are

pitch, roLl,and yaw rates, and pitch and roll atti-

tudes. No velocity information is necessary.

Simulation Model Paramelrization

The model slructure and parametrization was

presented in Equations (1) through (3). The contin-

uous-time state space model is analytically derived

using the Lagrangian approach and using a vector

of physical input coefficients. 0. For the purposes
of this simulation study, the model structure has

been augmented to include a first order time

constant on process noise. The process noise dy-

namics are to be parametrized and estimated from

output data.

The simulation model was parametrized as
follows:

aerodynamic coefficients:

lift curve slope, a

inflow equivalent cylinder height, hhnd

inflow wake rigidityfactor, wrf

hover trim values:

trim flap angle, to

trimmain rotor pitch angle, to

trim inflow velocity, vo

main rotor blade constants:

lag damper constant, _"_

spri constant,r,
flap spring constant,/_'_

inertias:

fuselage cross-moment, lxz

tail rotor:

tail rotor thrust scale factor, Kr_

noise parameters:

no_se covariance ratio, NR

process noise time constant, r

Kalman filter theory allows optimal state estimates

to be obtained in the presence of state and measure-

meat noise, where the Katmaa gain is uulquely de-
termined up to the ratio of process to measurement
noise. The noise covariance estimate is therefore

parametrized by the ratio of process to measure-
meat noise.

Genetic Algorithm Procedure

The genetic algorithm was implemented us-

iag a population size of 500 individuals; a crossover
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rate of 2/3; and a mutation rate of 1/1000. The pa-

rameters were allowed to vary within 50 percent of
the known simulation values.

...... | , , , •

_l¢l|mmwumg

Iteration

Figure 4 Best Likelihood Values

The semifivity of the cost function to the pa-
rameter values vary widely. Therefore, as parame-

tea's begia to show convergence, the range of
allowable values is progressively narrowed in order

to demonstrate convergence for all parameters.

The identification proceeds by running

10-12 separate genetic algorithms simultaneously,
where each algorithm begins with a new random

number generator seed to select the initial guesses.
Each set of rtms therefore produces a scatter band

of near optimal guesses for each parameter. The pa-
rameters which influence the cost function most am

identified most tightly.

Figure 4 shows the progression of the best fit-

aess values out of the population at each genera-

tion. The results am shown in Figure 5. The solid
line in each figure denotes the true value.

The noise covaxiance ratio parameter con-

pies only very weakly to the cost function and dis-

plays an almost random distribution until the

physical coefficient estimates sufficiently con-

verge. Therefore a two-step estimation procedure
is required, where the noise ratio is allowed to re-

main free until physical coefficients have con-

verged. The physical coefficients am then fixed
while the noise ratio is estimated.

This methodology clearly demonstrates con-

vergence. Twenty iterations of the genetic algo-

rithm were run. Table 1 tabulates the parameter
estimates.

Table 1 Estimated Parameters, Simulation Study

Parameters
^

Oo Oo std

lift curve slope, a
inflow equivalent cylinder height, hhnd

inflow wake rigidity factor, wrf

trim angle.
trim main rotor pitch angle, to

trim inflow velocity, Vo

lag damper constant, C;

lag spring constant, g_

flap spring constant, g'#

fuselage cross-moment of inertia, Ixz

tail rotor thrust factor, KTR

covariance ratio, process/measurement, NR

process noise time constant, r

5.73
0.46

2.0

0.02

0.05

0.02

5.0

75.0

45.0

30,000

1.0
1.0

-1.0

5.72
0.46

2.0

0.02

0.0497

0.0196

4.978

75.0

44.92

30.035
0.99

0.97

-0.99

3.98e-4
2.23e-4

1.34e--4

4.99e-7

9.75e-6

2.61e-6

7.7e -3

7.06e-2

6.3e-3

4.98
9.35e-4

0.i1

1.8e-3
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FlightTestIdentificationResults

Dataconsistency checks ensure that errors in
data collection do not interfere with the estimation

procedure. The requirements for this step were

minimal in this study, since this estimation method-

ology requires only rate and attitude information.

Consistency was checked by integrating accelera-

tions and rates, and ensuring that sensor attitudes

and rates match the integrated rates and attitudes.

The flight test data was processed by 1) ap-
plying a bandpass filter, and 2) decimating the data

from 80 Hz to 8 Hz. The filter passband was from

0.5 to2.5 Hz (3.1416 to 15.708 rad/sec). The lower

bound corresponds to the beginning frequency of

thefrequency sweep input used to drive the system,

and the upper bound is imposed to exclude the fast
fuselage bending mode at 3.4 Hz.

The flight test identification parametrization
was modified to reflect information available from

comparison between test and theoretical responses

generated from the analytic model using nominal

parameter values. The parameter list used in flight
test identification nms is shown in Table 2. The

modifications are explained below.

The parametdzation of body inertias ac-

counts for significant differences between theory
and test in rigid body response, especially in the roll

axis. Further,due to signif_ant differences in

cross-axis predictions, the roll and yaw rigid body

responses could not be simultaneously satisfied.

Therefore, yaw axis parameters were eliminated,

and the identification scheme therefore attempts to

fit pitch and roll resvmses only. This is permissible

since for small motions about hover, yaw rate does

not couple with main rotor cyclic multiblade co(_-

dinates and has no effect on pitch and roll resp(mses

in the rotor/body frequency region.

The inflow equivalent cylinder height (hhnd)

is related to the main rotor dynamic inflow time

constant. This parameter had no effect on the cost

function in the bandpass frequency region used in

this study. The_ore a quasistatic main rotor in-

flow formulation was used and this parameter was

dropped.

The process noise dymamics, parametrized
by a first order time constant, was also eliminated.

This parameter is uniquely identifiable apart from

the noise power ratio only if the time constant falls

withinthe ban@ass frequency range, and was
found to have no effect on the cost function.

The identification run was carried out using
flight test data from hover, with primary excitation

into roll cyclic. The analytic model, parametrized

as given in Table 2, was driven by main rotor pitch

and roll cyclic and taft rotor pedal. The likelihood

fimcfion was formed using pitch and roll rates only.

Table 2 Estimated Parameters, Flight Test

Parameters

scale factor, fuselageroll moment of inertia, Ix

scale factor, fuselage pitch mement of inertia, ly
lift curve slope, a
inflow wake rigidity factor, wrf

trim flap angle, t3o

trimmainrotorpitchangle,to
trim inflowvelocity, Vo

lag damper constant, C_

lagspringconstant, K_

flap springconstant,e',
noise covariance ratio, NR

^

Oo std bounds nominal

0.44 0.011 0.35-1.0 1.0

1.15 0.033 0.7-1.3 1.0

8.4 0.066 5-10 5.73
8.0 0.23 2- i 1 2.0

0.162 0.0013 0.05-0.25 0.0848

0.0172 0.00016 0.005-0.15 0.1304

0.048 0.0007 0.01-0. I 0.0613

5.5 0.10 4-10 9.5

85.0 0.735 0-100 0

16 1.34 0-20 0

- - 0.001-0.1 -
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The initial choice of boundary limits on each

parameter defines the parameter space to be
searched in the identification algorithm. The

bounds applied to each parameter ate shown in
Table 2; in each case, the bounds are chosen to in-
clude the nominal value.

Table 2 shows the identification results for

flight test data. It was found that the noise ratio pa-
rameter did not converge while the remaining

physical coefficients did, indicating that relative to

the aeromechanical coefficients, noise powers af-

fect the cost function only very weakly.

The correlation with flight test datausing the

identified parameters is shown in Figure 6, where

the roll axis response is correlated with tim data set

used in the identification, and the pitch axis re-

sponse is an independent check. The roll axis cor-

relation shows clear improvement in model
correlation using identified coefficients. Tim low

frequency gain prediction has been corrected

through the inertia adjustment, and the notch in

gain response due to the coupledlag/body response
been corrected.

The differences between identified and nom-

inal parameters can provide physical insight into

rotor phenomena when analytic explanations can

be found for parameter differences. Tim identified

parameters for lift curve slope, a, and wake rigidity

factor, wrf, have produced significant improvement

in model response, indicating a possible require-
ment for refinement of the aerodynamic theory

used in the model. The identified parameters for

main rotor spring and damping constantsindicate

necessary refinements in the prediction of frequen-
cy and damping of blade motion. A model im-

provement for blade in-plane dynamics is now

presented.

Modeling Blade Elasticity

The identification procedure has resulted in

estimated values for rotor blade spring and damp-

ing parameters which are different from nominal

values. The nominal mechanical damper value

may be assumed to be known since it can be inde-
pendendy verified through available data.

A procedure for modeling blade elasticity is

presented which accurately accounts for differ-
ences betweennominal and estimated values for in-

plane motion frequency and damping. The method
of assumed modes is used to model the case of a

flexible beam with damper and spring constraints.

This procedure is first demonstrated on a nonrotat-

ing beam, for which an exact solution can be ob-
tained. The method of assumed modes will be

shown to be a good approximation of the exact solu-

tion. This approximate solution canthenbeused in

the flexible beam analysis in the analytic hover he-

licopter model. The beam formulations for both ro-

tating and nonrotating blades with both spring and

damper constraints at the root is given in detail in

Appendices A and B.

Approximate solution methods such as the

method of assumed modes display convergence to-
ward the analytic solution as more assumed mode

shapes are added to the set of basis functions. The

first approach to tim lagwise bending problem was

to use increasing numbers of mode shapes that ful-

filled the boundary conditions for a hinged beam.

However, withthisapproach,convergence was not

achieved after even after using 5 assumed modes.

In order to avoid using an unacceptably large num-

ber of basis polynomials in the model, an altema-

five approach using a combination of modes that

satisfy hinged and cantilever boundary conditions
was used.

c

Figure 7 illustrates the assumed modes solu-

tion method using both the nonrotating and rotating

beam formulations. For a nonrotating beam with

spring and damper constraints, an exact expression

for the beam eigenvalues is available and is given

in detail in AppendixB. The analytic eigenvalue
equation is solved numerically. In this case,the

root finding problem was converted into a function

optimization problem and solved using the genetic

algorithm. This solution to the exact formulation is

shown against approximam solutions in Figure 7.

Tim approximam soludon using the Lagrangian ap-
proach, when using only basis functions which ful-

fallhinged beam boundary conditions, approach the

exact solution slowly. With 4 hinged basis polyno-

mials, the solution has not yet converged. Howev-

er, the assumed modes approach with only one

hingedplusone cantilevermode shapesmatches
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the analytic solution exactly. Convergence is dem-

onstrated by the fact that addition of either hinged

or cantilever mode shapes do not further change the

eigenvalue solution.

Figure 7 then shows the convergence of the

approximate solution fff the rotating beam, for
which there exists no known exact solution. Here,

the sum of 2 hinged plus 2 cantilever modes is near

convergence. The addition of either one more

hinged or one more cantilever mode does not

change the solution appreciably. The combination
of 2 hinged plus 2 cantilever modes is chosen for

model development as a good compromise between

model order and accuracy of solution.

!

Ill

U

ko
t2

Rigid, Identified k m

Elastic _

Rigid, Nominal _ o

G

t2

Figure 8 Rotating Frame Lag Roots

Figure 8 shows the location of the rotating

frame lag mode eigonvalues. The elastic blade

model using two hinged and two cantilever mode
shapes is used to show the progression of the root

location as damper value is increased from zero to

the nominal value. The predicted root location for

the elastic model with the nominal damper constant

agrees reasonably well with the predicted location

for the rigid blade model using a fictitious spring

and using identified spring and damper constants.

The rigid blade model using nominal damper

constant only (no spring) predicts a much higher

dampingandlowerfrequency than is indicatedby
testdata.

Conclusions

An analytically derived linear model of

coupled rotor/body dynamics at hover has been val-

idatedagainst flight test data.

The analytic model withliteral coefficients

hasbeenparametrizedusing11 physicallymean-

ingful coefficients,including noise covariances.
This model has been used to formulate a multi-in-

put, multi-output likelihood function in the time

domain. The analytic model is used to generate the

state time histories. Only body rates are necessary
in the cost flmctio_.

The likelihood function is globally maxi-

mized using the genetic algorithm approach, result-

hag in statistically optimal maximum likelihood

parameter estimates.

The estimated parameters indicate that lag
mode damping in flight is approximately one-half

of the value expected from rigid blades.

The correct analytic prediction for lagwise
motion is obtained using an elastic blade formula-
tion. The flexible blade model was formulated us-

ing a normal mode approach and checked using the

closed form solution for a nonrotating beam. The

convergeaceresults using assumed mode shapesin-

eric,am that the correct lagwise bending mode

shapesareobtainedusing acombinationofcantile-

verand hinged assumed modes.
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Appendix A. Modeling Blade Elasticity

Equation (A.I)gives the in-plaue bending

equation for a rotating beam. The derivation canbe
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found in Bramwell (1976), and in Johnson (1980).

This partial differential equation relates the mo-

ments due to the inertial, centrifugal, and aerody-

namic forces to the moment expression from

engineering beam theory.

02 32Y 3 r 0Y

[32r ]mL 3t 2 _ Q2y -_ 0
(A.I)

All quantifies are understood to refer to lagwise

bending motion. Here, G(r) is the centrifugal ten-

sion force at a point at a distance • from the hub cen-

ter, E is the modulus of elasticity, I is the lagwise

area moment, and/2 is the rotor rotational velocity.

The boundary conditions for a hinged blade

At the hinge:

Y(e) = 0

32y
El _-_r2 = moment -- 0

At the tip:

32y

EIT_r2-- 0

33----Y-Y= shear force = 0
3r 3

There is no known analytic solution for

Equation (A.I) due to the presence of the centrifu-

gal term. A solution based on the method of as-

sumed modes is presented.

Let the lagwise displacement be of the form

Y(x,t) --"R E ¢.(x)q.(t) (A2)
It

where R = blade length, This solution method fol-

lows the method of separation of variables. $,(x)

are a sequence of functions, not necessarily ortho-

gonal, which approximate the expected blade shape

and which satisfy the blade boundary conditions.

Substituting into Equation (A.1),

_-_ EI L q,-_-'_dP, - R2"f'jxG E q,
It rl

Z(#. - a2q.)Cd¢'m = o (AJ)

Multiply Equation (A.3) by q_= and integrate from

e_ < x < R, or _- < x < 1 where g is understood
R
to be a nondimensional offset value.

This gives

1 1

z,.I" z l¢=-_x2EI¢.dx - R2 q. _O=_xG_O'.dx
R

_t _t

1

+ R" E(_I, - a2q,) f rr_=cp_x = 0 (A.4)
n

Integrating each term by parts, the first term gives

/ ]n_ 32 ,.

1 I

1

M n
l

(AS)

Equation (A.4) was obtained using the boundary

conditions for the hinged blade, along with the end

constraint imposed by the damper, which is given

by

E132Y = _ n 32Y =
3r2 I,., _ at°rl,.,

/-., 3x 3t I •
n ix_

wlmm D = damping constant.

Similarly, the secondterm gives

I

F
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I

(a.6)

UsingEquations(A.4)through(A.6).

!

1

+ g27. q. f
n

g

1

g

To evaluate this, nondimensionalize by m.QZR4 and

collect terms, which results in

A._. + D._. + B..:/. -- 0

where

I

R4m dx

I

D_ =

B_ = ¢,4,,, +
J

Basis Functions For Assumed Mode Shapes

Polynomials are used as the basis functions.

¢,(x). Two sets of polynomials, meeting the neces-

sary boundary conditions for hinged-flee and can-

tilever-free beams, were used in this study. They
are"

hinged-free:

¢(x) ffi x

¢(x) = : - 2J - _x_ + _-x _ + x

cantilever-flee:

¢,Oc)= x_- 4xa + 6x2

¢,(x) = xs - 10x3+ 20x2

Since these polynomials meet boundary
conditions at x=O and at x=l, and the blade f_-

mulation is integrated from x = _ to x= l, the basis

polynomials are transformed to new coordinates,
where

x"--(1 - t,)x + e.

With this coordinate transfo_qnation, the new set of

polynomials, which now fulfill the necessary

boundary conditions at the hinge offset and at the

blade tip. are now

hinged-free:

¢,(x) = x -

¢(x) = 1.48.¢s - 3.33x5 - 0.12.P + 4.2x3 -

0.79x2 + li2x - 0.07

cantilever-free:

¢,(x) ffi 1.3xa - 5.2x3 + 7.8x2 - 0.92x + 0.03

¢(x) = 1.39xs - 0.44x4 - 12.11x_ +

25.10x2 - 3.03x + 0.09

Appendix B. Exact Equations Of Motion For

A Nonrotating Beam

The modal analysis assumes that the beam

displacement is written as a sum of modal displace-
merits:

YOc,t) ffi R Z cp.(x)q.(t)
i
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To find the exact analytic solution in the case

of root constraint with both spring and damper, note

that the boundary conditions are given by

¢(0)= 0

.DR

0"(1) = o

,f"(1) = o

where K and D are spring and damperconstants and

all quantities are understood to refer to lagwise mo-
tion and are defined as in Appendix A.

These boundary conditions are satisfied by
writing the mode summation equation as

iZDRI¢_0) ..

where q_(x) and _c(X) refer to hinged and cantile-

ver mode shapes.

The hinged end mode shape solutiens are

given by

¢,F(0)

¢,_0)

¢;(0)

¢,_I)

¢_'(1)

= cos(A) sinh(Ax) + cosh(A) sin(Ax)

=0

= A [cos(A) + cosh(A)]

=0

= A 2 [cos(A)sinh(A) - cosh(A)sin(A)]

= A _ [cosfA)cosh(A) - cosh(A)cos(A)]]

The cantilever mode shape solutions ale giv-
en by

_Pc(X) = (sin(A) - sinh(A))(sin(Ax) - sinh(Ax)) +

(ms(A) + cosh(A))(eos(ax) - cosh(Ax))

¢c(0) = 0

¢c(0) = 0

dd_O) = - 2A 2 [cos(A) + cosh(A)]

¢k_1) = - A 2 [1 + cosh(A)cos(A)]

_c"(1) = AS[(sin(A) - sinh(A))(- cos(A) - coslKA))

(cos(A) + cosh(A))(sin(A) - sinh(a)) ]

Now use these known solutions for hinged

and cantilever mode shapes in the combined solu-

tion given above:

¢(0) = 0

¢'(0) = ¢,k(o)

¢"(o) = [K + _B][ - A]¢e(0)

¢"(I) = _(1) + [h"+ btD][- _A]¢_(1)

4f'(1) = A 1 [ cos(A)sinh(A) - cosh(A)sin(A) +

+ '-"=('+cosh(A) cos(A)]]

¢,"'(1) = 0

where

and

The boundary conditien at the tip gives the

eigenvalue equation:

¢"(1) = 0

o_

A2 [cos(A)sinh(A) - cosh(A) sin(A)] +

A [g + ial_[ I + cosh(A)cos(A)] = 0
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