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ABSTRACT

In order to study multi-dimensional unstable detonation waves, we have developed a high

order numerical scheme suitable for calculating the detailed transverse wave structures of

multidimensional detonation waves. The numerical algorithm uses a multi-domain approach

so different numerical techniques can be applied for different components of detonation waves.

The detonation waves are assumed to undergo an irreversible, unimolecular reaction A -_

B. Several cases of unstable two dimensional detonation waves are simulated and detailed

transverse wave interactions are documented. The numerical results show the importance of

resolving the detonation front without excessive numerical viscosity in order to obtain the

correct cellular patterns.

1This work has been sponsored by NSF grant ASC-9113895 and is partially supported by the National
Aeronautics and Space Administration under NASA contract NAS l-19480 while the auther was in residence
at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research

Center, tlamption, VA 23681-0001. The computing facility was provided by a supercomputing grant from
the North Carolina Supercomputer Center.





Introduction

Detonation waves are intrinsically multi-dimensional unstable phenomenon as demon-

strated evidently by the experiments of Oppenheim [1] and White [2]. Since then, the simple

steady Chapman-Jouquet theory [3], [4] has been re-examined for its limited explaination

of most of the multi-dimensional features seen in real world detonation waves. The unique

characteristic of multi-dimensional detonation waves are their cellular patterns which are

the trajectories recorded on the wall by the transverse waves structures. Those traflsverse

wave structures consist of so-called "triple points" which are of three shock configurations

(an incident shock, a reflected shock and a Mach stem plus a contact discontinuity) [5]. The

formation of those transverse wave structures moving along the main precursor detonation

front attracted much attention. These phenomena raised the interest of experimentalists

trying to measure the cell size of the cellular pattern [6].

There are many aspects in the investigations of detonation waves. Most important is

the formation of a compressible detonation wave from laminar deflagration waves [7],[8]

- a process called the DDT (Deflagration to Detonation Transition) process. In a DDT

process, turbulent boundary layers are recognized as playing an important role in flame

acceleration and the buildup of compressible pressure waves in front of flame fronts. The

latter eventually will cause 'explosions in explosions' in the reacting flows and generate

detonation waves. Applied mathematicians have made different attempts to identify the

mechanism in the formation of triple points in the context of simplified mathematical models.

In [9]-[11] Erpenbeck first used normal mode analysis on the linearized Euler system to study

the stability of multi-dimensional detonation waves. Later, in [12], Strehlow introduced the

concept of acoustic ray trapping to study the formation of Mach stems; this idea has been

generalized by Majda [13] using high frequency asymptotics. With the rapid advent of

modern computing capability, another available avenue in studying detonation phenomenon

is by direct numerical simulations.

In this paper, we will present a high order hybrid method in order to study two dinaen-



sionaldetonation waves,whichwill beable to resolvethe detailed transversewavestructures

of multi-dimensional detonation waves.Tile numerical simulationsdonein the paperare for

an idealizedmodel of chemicalreaction in which the reactant speciesis in an irreversible,

unimolecular reaction A --, B with finite Arrhenius reaction rate. It is evident that this

model can not represent all the effects of realistic chemical kinetics on the cellular structures

observed in lab experiments. However, an accurate numerical solution of this simplified

model will provide a better understanding of the physics involved in the onset and evolution

of detonation waves and a verification of current mathematical theories on detonation waves.

There are three basic characteristics of detonation waves: (1) a strong precursor detona-

tion front; (2) Mach stem configuration of the "triple points" and transverse wave structures;

(3) stiff chemical reactions. The flow field can be divided into regions of highly irregular and

steep gradients near the detonation front and regions of strong but smooth pressure waves.

Near the shock fronts, strong vorticity fields are expected from the roll-up of slip lines. The

temporal changes of thermodynamic and chemical compositions also vary dramatically from

region to region. We will construct our numerical schemes according to these characteris-

tics of multi-dimensional detonation waves, therefore, it is not surprising that the resulting

numerical scheme is of a hybrid type.

The reaction rate depends on the flow temperature exponentially through the Arrhenius

relation. Accurate computations of the flow field are extremely important in producing the

correct c!aemical reactions and thus the correct cellular structures. Traditional shock captur-

ing schemes, designed to smooth shock and contact discontinuities, introduce a considerable

amount of numerical viscosity near those discontinuities. They have been shown to have

a tendency to distort the real chemical reaction processes. In [14], the widely used P.P.M.

high-order Godunov scheme was found to produce nonphysical weak detonations. Also in

[15], the ENO finite difference scheme was shown to yield wrong detonation speeds in one

dimensional ZND simulations. All these facts point out the importance of designing numer-

ical methods without excessive numerical viscosity. Among the attemts of simulating two

2



dimensionaldetonation wavesnumerically, Oran et al hasdonea seriesof simulations with

FCT schemesand a phenomenologicalchemistrymodel wasusedto solvethe stiffnessin the

system,seefor instance [16]. Another early result wasobtained by Taki and Fujiwara [17]

where a quasi first order numerical schemewasused with a two front model suggestedin

[18] to model the chemistry. Most recently, an improved versionof P.P.M., which usesthe

location of the detonation in evaluating the numerical fluxes,gaveimproved results in one-

and two-dimensionaldetonation simulations [19].

The work reported in this paper is part of a larger researchproject which intends to

understanddifferent aspectsof detonation waves,including the DDT processand the effects

of turbulenceand the detonability and detonationfailures. In Section1, wewill introduce the

governingequationsfor reactingflowsand its formulation in generalcurvilinear coordinates.

In Section2, we discussthe hybrid numerical schemeusing multi-domain approaches,and

the ENO finite differencemethods and Chebyshevcollocation methods and shock tracking

methods will be introduced. These numerical techniqueswill be used in the framework

of multi-domain to fit the properties of 2-D detonation waves. In Section 3, we consider

the treatment of interface conditions betweendifferent numerical schemesand boundary

conditions and the smoothing techniquesfor the detonation front. In Section4, wevalidate

the hybrid numericalschemeand test the effectsof smoothingof the detonation front on the

cellular pattern of detonation waves.Then, we present the main results of this paper, the

simulations of severalcasesof two dimensionaldetonation waves. Detailed analysisof the

resultswill be discussed.Finally, in Section 5 wegive a conclusionand the plan for future

works.



1 Governing Equations

Consider two dimensional detonation waves in an infinite channel moving from left to right

into unreacted gas mixtures and the channel is denoted by fl,

n = (-_,_)x[ w w2' _1 (1)

where W is the channel width.

The governing equations for reacting detonation waves with s species and p reaction steps

are the following Euler equations,

0u

OT

where

Of(u) Og(u)
-- _ ¢(u) (2)

--+ Oz + Oy

u = (p, pu, pv, pe, pl,...,ps) T

T

,In): , su)
g(u):( v, vo,,v2+ ,,.v)T
¢(u) = (o,o,o,o,_,,...,_8) _

where (u, v), p, p, e are velocity vector, density, pressure, and total specific internal energy, p;

P _ here Mi is tile molecular weightis tlle mass density of the ith species, wi = pMi _i=, vii at

of species -i and v0 is the stolchionaetric coefficient for the j-species in the i-th reaction

step, and _ denotes the change rate of the ith reaction progress variable which is assumed

to obey Arrhenius' rule. In the case of one-step A _ B irreversible reaction, i.e. s = p = 1

an d

E +

w = -KpA exp(---_--) (3)

where A = el. is the mass fraction of reactant. If we assume exthermoic reaction, tlle specific
P

internal energy

p ?22 71- U 2

e- + + _Q (4)
(7- 1)p 2
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whereQ is the specific heat formation and 7 = 1.2 is the ratio of specific heats.

All quantities above have been non-dimensionalized by the initial states in the unreacted

gas mixture in front of the detonation fronts. They are given as follows ("_" indicates

nondimensionalization and "0" subscript denotes states of unreacted gas )

p 4._ 2..
P0

p _ 2_
P0
U

U

E + _--

t _ t_

X (-- t--i"

Wheret*= t" g.:_"_0 ' = x±2 is the half reaction distance which a mass particle will travel from

the detonation front before half-depletion of the reactant occurs.

Consider a general curvilinear coordinates (_,r],t),_ = _(x,y,T),rl = q(z,y,T),t =

t(x, y,T), the governing equation (2) becomes

0u + 0F(U_____A)+ 0G(U) _ ¢(U) (5)
at 0_ 07

where U = v_u,

u' _p u_vqp
U1 x/gP u + YnP U2 v/gP u - Y¢P

U _v_pV - x,_p U2x/_pv + x_p

F(U)= U_v@_+(Y,,u-z,,v)P G(U)= U_v_P_+(-Y_u+_)P
U_x/gPl U2x/Ypl

tI/(V) = (0, 0, 0, 0, v'g_)l,. '', v/'gods) T

(6)

where _ = xcy n - x,_y¢ is the Jacobian of the mesh transformation, U 1 = (t + u_ +

v_y, and U 2 = qt + ur/_ + vqy. The spatial discretization is done in the (_,r/) space for

equation (5) and the range for _,r/are both [-1,1].

In most of the numerical simulations done in the paper, for initial conditions we use

the C,hapman-Jouguet ZND steady solution which can be obtained by solving the Rankine-



Hugoit equation betweenthe state in front of detonation front and all states behind the

detonation front[5].

2 Hybrid Numerical Algorithm with Domain Decom-

position Technique

In this section we describe the hybrid numerical scheme for detonation waves. The compu-

tational region is composed of the detonation front moving to the right and the rear piston

boundary and upper and lower solid walls. It will be subdivided using nmlti-domain tech-

nique with the detonation front as the right most boundary (see Figure 1). Three different

numerical techniques will be applied in different parts of tile computational region. They

are

• Shock tracking algorithm for the detonation front;

• High Order ENO finite difference scheme in the subdomain which contains the reflected

shocks and contact discontinuities along the detonation front;

• Chebyshev collocation methods for the strong vorticity and pressure fields from the

interaction of transverse waves along the detonation front.

We give a brief descriptions of each of the three numerical techniques.

2.1 Chebyshev collocation methods

In the computation domain (_¢,r/) E [-1, 1]X[-1, 1], to approximate any quantity f(_¢, r/), we

consider its Chebyshev collocation interpolant INf(_, 77) which is defined as (assuming that

polynomials are of the same order N in both the { and 7? directions):

INf(_,_)= _ f(_i, rlj)¢i(_)¢j(_) (7)
O<_i,j<N

(-l)J+l (1-_21T_/(_)
where Cj(_) = ejN2(e-e,) , _ = C'N : 2 and ej = 1, for 1 _< j _< N - 1. Here _j = cos j'N

are the Chebyshev-Gauss-Labotto points, and TN(_) = cos(gcos-_(_))is the Chebyshev

polynomial of the first kind.



Tile derivativesof f(_, rl) can be approximated by those of INf(_,rl), i.e.

f_(_k,r/t) " ([Nf)_(_h, rll) = _ f(,_i,r/._)Cb_(,_k)q_j(r/t) (8)
O<_i,j<N

O<_j<N O<i<_N

where tile inner summation in the square bracket can be evaluated either by matrix-vector-

multiplication on a vectorized machine or by Fast Fourier Transformation. The latter method

only involves O(N 2 log N) operations for tile computation of all f_(_k, r/t). Similar procedures

can be obtained for/,(_k, _t).

2.2 High Order ENO Finite Difference Methods

To apply tile ENO finite difference method to (5), the spatial derivative is discretized by

conservative numerical flux differences:

ag_,____+ F,+_,_- P,-½,j + c,,j+_ - O,,j-_ = ¢(u,,j) (0)
ot A_ A_

where U_,_is the numerical approximation of (5) using the method of lines. In order to com-

pute the numerical fluxes P_+½,_,_,j+½, first the primitive functions for F, G are approx-

imated by piecewise polynomials using the ENO adaptive stencil idea of Harten [20],and

then the derivatives of those polynomials are evaluated at the edge-centered mesh points

(_+_, _j), (_, rlS+½)to produce the numerical fluxes. For technique details on the construc-

tion of ENO fluxes to the system of equations (5), we refer the reader to [20],[21].

0F B "- 0GWe need the eigenvalues and eigenvector on the Jacobian of fluxes A = 0-13', b-U

D
for the characteristic decompositions in order to define ENO numerical fluxes. If _ =

+ u_ + v _ denote the material derivative, then we have the following eigenvalues andOt O_t

eigenvectors,



Eigenvalues

of A

Eigenvalues

of B

Left Eigenvector

of A

1,T

Right Eigenvector

of B

T-Irl

D__ D_a 12T T-' r2Dt Dt

DA _ IzT T-' r3Dt Dt

D__ Dn ]4T ±_-'r4Dt Dt

D_ADt+ V_(_ + _)a D,_Dt"{-V/_(_I_+ 71_)a 14T T-'r4

and

11= (1,-nxpa,-nupa, O,O ) r,=

12 = (0, -ny, nx, 0, 0) r2 =

lz= (1,0,0, -a2,0) rz=

14= (0, 0, 0, 0, 1) r4=

Is= (1,n_pa,nupa, O,O) rs=

'I-_-_ ' O)v2( ' pa ' pa ' a''_

(0, -n_, n_, 0, 0) 7
(0,0,0, ' O)v
(0,0,0,0, 1) r

1, v_' p_,' :_'

(_o)

- for A and n_ -where a = is the sound speed and n_ = v_"_-_ nu - _ _ -
_x n Ov

_,n u = _ and the transform matrix T = -- with v = (p, u, v, p, A) being the
V 'ix -,-,ty V .x _- ,ly OU

primitive variable,

T __

+

P

_E
P

1
A
P

"(7-1)u -(7 l)v (7-1) -(7-1)Q
: O 0 0

' 0 0 J0 _ 0 0

0 0 0 p

2.3 Tracking Algorithm for Precursor Detonation Front

The detonation front will be represented by a continuous curve

x = z(y,t), -w < y < w-5-- _ y,t>_o

(11)

(12)
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and the normal of the front denotedby n = (n., ny) points to the unreacted gas, which can

be computed by

1
n_, - (13)

_/1 + (xv) 2

_/1 + (xv) 2"

By the Hygen's principal, tile detonation front will propagate in its normal direction with

speed

D, = x, (14)

+ ix#
Following the procedure proposed in [23] [22], we can write the Rankine-Hognoit condition

across the shock front as follows

po(u,_,o - D,,) =

po(u,_,o - D,_) 2 + Po =
1__x_zo_+ 7(u,,, o _ O,_)2 + AoQ =

_'--1 P0 p0/_0(Un,0 -- D,_) =

pl(Un,1 -- D,_)

pa(u,_,a - D,_) 2 + Pl
1

_a__ + 7(u, m _ D.)2 + _O-)'-1 p]

pl_l(u,,,1 - D,,)

(15)

where "0" denotes the state in front of detonation front and "1" the states behind the front.

And u,_ = (u,v) o n is the normal velocity on the front. Equation (15) relates the states

in front of the shock and behind the shock. To close the system, we need to impose the

continuity of tangential velocity, i.e.

U,t, 0 = Ut, 1. (16)

where ut = (-n v, n_) o (u, v) is the tangential velocity.

From (15) (16), we can solve the quantities (p_, pl, u,,a, uta, _) behind the shock in terms

of those in front of the shock (po, Po, u,,,o, u,,0, A0). Using the notation in [9], we have the

(7 + 1) _2

= P°(7_:2 + 1)(1-w)

(7_: 2 + 1)(1 + wT)
= Po

7+1

following

(17)

t91

Pl

/Zn,l = u,_.0 - (u,_,o - D,_)(1 - po)
,ol

9



,,=-I and _ = [Dn-un.o] is the Mach number of the shock front relative to thewhere w - -y,_=+l co

unreacted gas and co = , _ = v'5 is the sound speed ill the unreacted mixture.
V o0

In order to derive a time evolution equation for the shock front, we define the time

d 0
differentiation along the shock front d-7= O5 + xt(y, t) ° for any fixed y e [-W/2, W/2]. By

d
applying a7 on both sides of (17) and separating the terms which involves xu(y, t), we obtain

tile following

dpl
- clxtt + dl

dt

dp_
-- C2Xtt + d2

dt

dul

dt - e3,uxtt -t- d3,u (18)

dvl

dt - c3,,,xtt + d3,,,

dAl
-- c4xtt + d4

dt

where

4pOT
C1

(1 + 3')(1 + (xy)2)

dpo 27,'c 2 + 1 - 7 2p0
dl --

dt 1 + 7 (1 + 7)(1 + (xy) 2)

4(7 + 1)_ 2

Pl dpo 2(3' + 1)pore 2 [2Nt Std2
po dt +[(-7--1)_ 2+2] 2 r S ]

C3, n -}- XyC3, _
C3, u --

1 + (xy) 2

da,,, = da,,, + x_d3,t
1 + (xy):

-- X, yC3,n "JV C3,t
C3, v

1 + (xu) 2

d3,v = -xyda,n + da,t
1 + (xy) u

[2r Nt + n2 St]

i

10



2 1
C3, n -- -_o,+ i(: + 1,

(7 - 1)_= - 2
d3,n -- xyt vl -[-

(7 + 1)a_
dAo

]'4 = O, g4- dt

c3,t : 0

2 St
Nt , g3,t = Tt - xytul

and S = (1 + vrxyj_2_c2j0, N Uo xyVo, T xyuo + vo and Nt = -_,dNTt = dT St dS= -- = -_7' =-£i"

Using dv_ _ a____vdu___._ TdU___requation (18) can be rewritten for conservative variable u,dt _ On dt _-- dt _

T dul = Tcxtt + Td (19)
dt

where c = (Cl,C2,C3,u, c3,v, c4)T,d = (d,,d2,d3,,_,da,,_,d4) T

Now on a fixed point on the shock front we consider the characteristic component of

equation (2) in the normal direction n = (_,_),1 -_

Ou o__t o.
O--T + On + o-tg = _" (20)

where t is the tangential direction along the shock front, f = n,f + nvg, _ = -nyf + n_g.

The eigenvalues and eigenvector of Jacobian matrix A ot= _-5 are

u,-c,u,_,u,_,u,,u,_ A-c (21)

liT, 12T, • • •, lsT (22)

1 = -_ and u,_ = nxu+nyv.
where 1_, i = 1,..., 5 are given in (10) with nz = _/_+(_)2, ny _/_+(_)2

Along the normal direction of the shock front, the (u= + c)-characteristic field approaches

the shock front from behind, therefore a compatibility condition can be obtained by consid-

ering the characteristic combination of equation (19)

lsT-_tl = lsTcxtt + lsTd, (23)

thus yielding the following ODE for the shock speed

xtt = H(ul, Uo, xy, xt, xty) (24)

11



where

and

, _rdu__ 15Td
H -- 15_ dt

lsTc

du, d 1 10U1

d-'T = U1 d--t_ + _ 0--_

+ _(U) is the residual computed in (_, r/) space behind the shockand
0t = - a_ -

front.

3 Interface Conditions and smoothing of Detonation

Front

3.1 Interfacial Conditions between Subdomains and Boundary
Conditions ....

We first discuss the issue of interface and boundary conditions for the hybrid numerical

scheme. A correct interface coupling between the ENO finite difference method and spec-

tral method is crucial for the global Stability and accuracy of the schenae. The basic idea

behind the treatment of interface and boundary condition is the propagation of information

along characteristics of the hyperbolic systems [24]. We will consider the following situation

separately.

Case 1. Interface between subdomains

On a typical interface between two subdomains, say F between f_t and _r in Figure la,
f : :

there are two types of points, i.e. interior point I and cross point T.

(a) Interior points I ......

Let v = (P, u, v, p, A) T be the primitive flow variable, v t, v r denote the solutions com-

puted for the time step t '_+1 in 9tt, _r. Sr,l denotes the normal speed of the interface at point

I with the normal direction n = (n_, nu). The eigenva]ues and eigenvectors of the Jacoblan

matrix A. are given in (10) and (22), and the corresponding characteristic variables are

Wl = p -- apu,_

12

(25)



w2 = ut (26)

w3 = p-_2p (27)

w4 = (2S)

ws = p "4-_jSu,_ (29)

where "-" denotes an average state between v t and v r, for instance the Roe-average [28].

In order to update v at point I for the time step t TM, we make the following correction

on wi, 1 < i < 5 based on the sign of the difference between the eigenvalues and the normal

speed of the interface St,t, i.e.

corrected
Wi {w_ if Ai- Sr,1 < 0 (30)

= wit if )_; - Sr,1 >_ 0.

Finally, we set v r = v I = v c°rrected = T-lw c°rrected.

Remark. In the case that the interface is the shock front, v I should be computed by the

Rankine-Hogoniot conditions (17).

(b) Cross points between the wall boundary and interior interface - "T" points

In order to update the solution for point "T" in Figure la we have to consider the

information which comes from both subdomains f_l and ftr and also the role of the wall.

Characteristic surfaces approaching tile point "T" from several direction can be used to

form a closed system to determine this solution [25] [26]. Thus, such an approach is not

unique and based largely o11 the experience.

First let us consider tile characteristic surface which is tangential to the interface F with

normal n = (n_,nv) = (1,0). The corrected characteristic quantities wl,w4, ws can be

obtained as follows, assuming ,_1, _4, )_s all positive (otherwise, replace subscript 'T' by "r"

for each negative values of hi -,-qr,T, i = 1,4,5),

_ correaed pt -- _t_Ut (31)Wl "-" W 1 "-

x corrected __ /_lw 4 = w4 - (32)

W5_ = W5 corrected ._ pt + ?t_ul,,. (33)

13



where subscript "x" indicates the normal direction of the characteristic surface and u,_ = uon.

Oil the other hand, we know that the entropy s remains constant along the characteristic

direction corresponding to the eigenvalue u,, = u o n, we can correct the entropy s as follows

P' if u,_ -- SF,T > 0
s coTTec_d = (p_ (34)otherwise

(p.)_

Next, we consider the characteristic surface approaching the wall at point "T" with

normal n = (nx, ny) = (0,1) - (top wall) or (0,-1) - (lower wall). On the top wall, u,, =

v = 0, so At = u,_ - a = -a and we have the first characteristic field approaching the wall

from the computational domain. Therefore, we can correct the first characteristic variable

w_ using the results from either f_t or f_T, ile. :_
:2

if u,_ - ,S'r,T > 0
otherwise (35)

Finally, we solve for all four primitive quantities of the flow as follows

|

v = 0

)_ -- W4

p = (w_ + w_ +2w_)/4

p_
p = (_),.

The treatment of the cross point on the lower wall can be done similarly.

Case 2. Wall Boundary Conditions

(36)

(37)

(38)

(39)

For a point on the wall which only belongs to one subdomain such as point "B" in Figure

la, n = (nx, nu) = (0,1) or (0,-1) for top and lower walls, respectively. So u,_ = u o n =

v = 0, therefore the wall itself is a characteristic surface on which no normal flow condition

is enforced, i.e. v = 0. Additionally, for the top wall (lower wall is treated similarly) we have

the following compatibility equation according to its corresponding outflow characteristic

field,

w_ = -nyu (40)

14



w3 = p-a2p (41)

W 4 : /_ (42)

ws = p+apu,,. (43)

So, the solution at point "B" can be obtained as follows,

v = O, u = ----, p = ws, A = w4, p = ( -- w3 ?t2.
ny

(44)

3.2 Smoothing Technique of Detonation Front

In order to evolve the detonation front, we need to compute the time derivative of its normal

speed D,_, which depends on xtt in (24). Thus, the accuracy of the detonation front depends

on the residual of numerical solution at the detonation front. Numerical experiments show

that the front will develop high frequency numerical instability if no smoothing is applied on

the detonation front. In this paper, we test three types of smoothing on the detonation front

and compare the effects of different smoothing on the cellular pattern of detonation waves.

Because detonation waves are unstable in most case in the high frequency range, this is a

dilemma for our numerical simulation. On one hand, we try to admit as many frequencies in

the numerical solution as possible in order to obtain enough nonlinear interaction between

different unstable frequencies; on the other hand, to maintain numerical stability some cut-

off in high frequencies is needed for long time integration. So, the best that we can hope for

is to obtain as fine a resolution as possible in our numerical simulations while maintaining

the numerical stability.

Smoothing Technique One - Averaging Solution on the Detonation Front

The simplest way to eliminate high frequency on the shock front is to smooth the solution

ul in H(ul, u0, zu, x_, xty) on the right hand side of (24).

Smoothing I. In equation (24) replacing ul,j by the simple average of neighboring solutions,

15



which of coursewill reducethe accuracyof the solution on the detonation front,

ul,j-i + 2ul,j + Ul,j+ 1
u15 _ (45)4

It can be seen that this averaging procedure will reduce the accuracy of the shock front to

only first order, and have a larger dissipation than the other smoothing techniques suggested

below:

Smoothing II - Derivative Smoothing

One of the most used r_ethods in shock capturing scheme to control oscillations derivative

limiting. The idea was first introduced in [27] to construct monotonicity preserving cubic

spline.

Let (xi,y_),i = 1,--.,n be n- discrete data points and xl < x2" ' < x,,. The Cubic spline

1-13(x) is a piecew]se Cubic polynomial which has a continuous derivative at nodes xi and

satisfies the following conditions,

1 < i < n. (46) :

and

where si =

mi-18i + mi-18i-1
' 2<i<n-I

Y_ = Ai_l + Axi

,x_, , Axi = xi+x -- x_. The derivative at the end points is given by

t

Yn ----

(2A1 + A2)sl - Als2

Axl + Ax2

(2A,,_1 + A,,-2)s,,-i - A,,-ls,,-2

Axn_l + Axn-2

However, the cubic spline defined as above is usually oscillatory and the monotonicity

of the original data set will be lost. It is suggested in [27] that the monotonicity can be

preserved except at a local extrema point by limiting the derivatives y_'s,

, , f min(max(O,y_),3min(s,_l,.S,)) if y_ > 0

Yi e--- Ym,_,_ = _ max(min(O,y_),-3min(.s,_l,si)) if y_ _< 0.
(47)

So we suggest the following smoothing procedure for the detonation front,
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SMOOTHING II. In equation (24) changex'u in H as follows,

I

(x'u) i 4----- (Xu)Um,i , 1 < i < n. (48)

i

Smoothing Technique III - High Frequency Spectral Space Smoothing

The third smoothing technique tested in this paper applies high frequency cut-off func-

tions in the Fourier transform space of the detonation front. Assume that the discrete data

xi, 1 _< i _< n are equally distributed and data (xi, yi) has been decomposed into Fourier

modes,

where Ok = ! _]i_1 Yi e-ik_'"
n

Yi = Y_ Oke ik_' 1 < i < n (49)

k=-

We multiply the Fourier coefficient Yk by a decreasing factor o'k so that the high frequen-

cies will be decreased. The modified yi is given by

yi _ (yi) liu_*ca =: _ _rkyk"eik*' 1 < i < n. (50)

k=-_

Here we chose _rk so that it decays exponentially in terms of the wave number,

_rk = e -u(_)_t for lk[ _< 2' (51)

where the constant # is chosen so that o',_ is the machine zero and 2g is called the order of

the exponential filtering.

4 Cellular Structures of Two Dimensional Detonation

Waves

4.1 Linear Stability Analysis and 2 D Detonation Waves

In [9]-[11] Erpenbeck first used linearized normal mode analysis to study the stability of two

dimensional detonation wave. With complex analysis technique, he analyzed the unstable

modes of linearized Euler equations with respect to the steady state solution of plane ZND
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detonation waves.The stability of the detonation front _b(y,z, t), thus the whole flow field,

is determined by the existence of poles of its time Laplace transformation r/(r, e) for any

transverse frequency _ = or2+/3 _. It is found that, for large wave numbers (high frequencies),

the stability of ZND detonation waves depends on the quantity C_o(X) - u_(x) where x is the

distance measured away from the ZND steady shock front and co(x) is the frozen sound

speed at location x and u(x) is the flow velocity there. Detonation waves with an one step

irreversible A _ B reaction have been categorized I1 l] in terms of their short wave stabilities:

Type D c_(x) - u2(x) is decreasing as x moves away from the detonation front;

Type I c_(x)- uS(z) is increasing as x moves away from the detonation front;

Type M C2o(X)-U2(X) achieves a maximum at some points x* between x = 0 and x = -_.

Type D has been shown to be stable for high frequencies, while Type I and M will be

.. n,_ and Wunstable for bands of large wavenumbers, *i,, < e < ei,_,i = 1,2, • where e = W

is the channel width. The latter case means difficulty in attempting to simulate detonation

waves through numerical calculations as it will never be possible to resolve all the unstable

modes in the system with finite a number of mesh points.

4.2 Validation of Numerical Scheme

Computational Mesh Set-up and Initial Conditions

The following notation will be used in all the computations: ndm - the number of sub-

domains in the subdivision of the computation domains; W - channel width; Isk - number

of marker points on the shock front; (n, m) - size of mesh in a subdomain. In all the com-

putations presented here, we take ndm = 9 and the total length of the channel to be 150_*

with the detonation front as the right boundary of the solution domain. As the detonation

propagates and curves, the interfaces between subdomains will also travel at a speed which

is taken to be the averaged speed of the curved detonation front.

In the first subdomain, we use third order ENO-LF schemes[21] in order to resolve the
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reflected shocks and contact discontinuities. A stretching function will be used in the x-

direction so that the mesh will be clustered toward the detonation front. The stretching

function is given by

2 sin-' c_(_ + 1) _.
C-¢(g)--l+-sin -1<_, <1

OL 2 -- --

where _* is tile stretched mesh and the parameter a determines the amount of stretching,

we take a = 0.995.

The right hand side of the first subdomain, being the detonation front, will be tracked by

the track algorithm in Section 2.3. Appropriate smoothing will be applied on the detonation

front for about every 20 iterations; the exact frequency depends on the strength of the deto-

nation waves. Chebyshev collocation methods will be used in the remaining subdomains. In

order to ease the CFL restriction from the nonuniform distribution of Chebyshev collocation

points, another stretching function ¢(x, a) is used to produce a more uniformly distributed

mesh in the Chebyshev collocation subdomains. We take

sin -_ a_

_" = ¢(_) - sin -a a

where again _* is the stretched mesh and _ = 0.999 so that Chebyshev-Gauss-Labotto points

in _ space will be mapped to _* space with more uniform distribution.

Finer meshes will be used for those subdomains closer to the denotation front. A typical

mesh set-up is given in Figure lb (only the first seven subdomains are shown).

The computation starts with the ZND steady state solution of plane detonation wave.

To induce the transverse waves, we introduce perturbations either in the detonation front or

in the flow variables themselves, or both. The type of perturbations used will be sine-like

wave

x(y, o) =: x(v, o) + -w/2<v<W/2 (52)

or random perturbations (cranfO).

Reflective solid boundary condition will be used in all computations.
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Effect of Smoothing of the Detonation Front on the Cellular Patterns

The procedure of smoothing on the detonation front basically introduces extra numerical

viscosity in the whole scheme, therefore the smaller this extra viscosity is, the more reliable

the numerical simulations should be. This argument can be extended to any numerical

simulation of detonation waves. To evaluate the effects of smoothing of the detonation front

on the cellular structure, we consider the ZND detonation wave with heat formation Q = 50,

activation energy E = 50, and the overdrive f = 1.6. The channel width is taken to be

W - 20g*. As we are not.interested in the detailed structure of the flow field, we take a less

fine mesh- 2i_,(n, m) = (50,50)+(24,50)+(20, 50)+(20,50)+(20, 40)+(10,20)+(10, 10)+

(10, 10) + (10, 10). The number of marker points on the detonation front is Isk = 160. The

initial size of the subdomains will be 5g* x W, 5g* x W, 5g* x W, 5g* x W, 10g* x W, 15g* x W,

25g* x W, 40g* x W, 40g* x W. Three tests are done to see the effects of smoothing on the

cellular pattern. In all the numerical results reported in this paper, the detonation front has

traveled at least 20 channel width for the cellular patterns reported.

Test One Smooth I, II, and III

In the first test we activate all three types of smoothing on the detonation front. Thus,

strong numerical viscosity will be produced to stabiize the front• But, keep in mind, even in

this situation, we still track the detonation front and no difference across the front is used

in the scheme. In Figure 2a, we record the pressure on the detonation front for time t =

10t* - 20t*. A very regular and symmetric two cell structure is produced by the interaction

of four different triple points. This correspond to a cell width 10g* - half the channel width.

Test Two. Smooth II and III

In the second test, we deactivated Smooth I which produces the largest nmnerical viscosity

among all three types of smoothingl In this case, only one cell is present in the cellular pattern

(Fig 2b) which corresponds to a cell width 20g*.

Test Three Smooth III only
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In the third test, we useonly Smoothing III which useshigh frequency attenuation in

the Fourier transformation space for the shock front. The order of exponential cut-off in

(51) is 12, thus yielding very slight numerical viscosity on the detonation front. The cellular

pattern of the detonation front (Fig 2c) consists of two quite irregular cells, a larger cell

and a smaller cell. Two major triple points dominate the cellular structure along with two

secondary triple points. A close-up picture of the cell pattern is given in Fig 6a where we

will further examine this case in more detail.

These tests show us the sensitivity of the cellular patterns of the detonation waves to the

amount of numerical viscosity in the scheme. Consequently, we have to be very careful in

applying the right kind of algorithm for the simulations if we want to compare the numerical

results with either theoretical predictions or experiment results. Presumably, less numerical

viscosity will produce more reliable cellular patterns. From this point on, all numerical results

presented will use only the Smooth III procedure (about every 20 iterations), which has the

smallest amount numerical viscosity, in order to stabilize the evolution of the detonation

front. There have been several situations which demonstrate that such smoothing is necessary

or the computation will abort prematurely.

Accuracy of Time Integration and Mesh Convergence Studies

1) Comparison of Time Discretizations

The stiffness in a chemically reacting system poses a lot of difficulty for numerical sim-

ulations. There are basically two issues to be considered when choosing a time integrator ,

one is accuracy and another is CPU time efficiency. For the one reaction system tested here,

we could us either a time splitting method as in [19] [16] or just an explicit Runge-Kutta

type method. For the splitting method, the evolution of the solution can be split into two

steps, the first step being an Euler step where the governing equation is solved without the

chemical reaction production terms; the second step involves only the reaction term with

the temperature field frozen at the value of the previous Euler step. The second step can be
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explicitly solvedherebecauseonly onereaction is considered.However,if morecomplicated

chemistry is involved, suchsplitting will not avoid the stiffnessproblem in the simulation.

We comparethe results of the splitting method (which is at most secondorder) and the

third order Runge-kutta method with the sameresolution and spatial discretizationsin the

spatial directions. The detonation parametersare Q = 50, E = 50, f = 3; the mesh sizes

are E_=_(n, m) = (100, 100) + (34, 70)+ (20, 40) + (20, 40) + (20,30) + (10,20) + (10, 10) +

(10, 10) + (10, 10); and the channel width W = 10g*. The initial size of the subdomains will

be 5g* x W, 5g* x W, 5g* x W, 5g* x W, 10g* x W, 15g* x W, 25g* x W, 40g* x W, 40g* x W. In

Figure 3, we plot the pressure along the center of the channel at time T = 34t*. The solid

line is the result obtained by the third order Runge-Kutta method while the dots (o) are

the results by the splitting method. We can see both results agree fairly well in most parts

of the domain except that the splitting method fails to resolve the dip in the pressure. In

the numerical tests given later, the third order Runge-Kutta method will be used in all the

computations.

2) Mesh Convergence Studies

We use the same detonation parameter as above but with three different meshes in the

spatial direction, the third order Runge-Kutta method is used in both cases. Mesh A

is 9_]_=a(n, m) = (100,100) + (34,70) + (20,40) + (20,40) + (20,30) + (10,20) + (10,10) +

_=l(n,m) (120,150)+(34, 70)+(20,40)+(20,40)+(20,30)+(10, 10)+(10, 10). Mesh B is 9 =

(10,20)+(10, 10)+(10, 10)+(10, 10). Mesh B is

(20, 40) + (20,30) + (10,20)+ (10, 10)+ (10, 10)

will be 8g* x W, 5g* x W, 5/* × W, 5g* × W, 10P

So in the first subdomain, mesh A is about 10

per g* and Mesh C is about 20 points per/*.

9_i=a(n,m) = (160,200)+(34, 70)+(20, 40)+

+ (10, 10). The initial size of the subdomains

× W, 12/* × W, 25/* × W, 40g* × W, 40g* × W.

points per g* and mesh B is about 15 points

In Figure 4, we plot the pressure along the

center of the channel ((-) Mesh C, (o) Mesh B, (+) Mesh A). Close agreement can be seen

among the results for all meshes. In the rest of the computation, we will use at least the

resolution of Mesh B, which is about 15 points per half reaction distance.
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4.3 Numerical Simulation of 2-D detonation Waves

We present four cases of detonation waves using our high order hybrid scheme, each belonging

to one of the three types of detonations in terms of the short wave instability.

CASE I Q = 10, E = 50, f = 1.2, channel width W = 10g* - One cell pattern

This is a case of Type M detonation which is unstable for high frequencies. The mesh

9 n 140) (20,40) (20,40) (20,30) (20,30)used in this case is Ei=,(,m) = (110, + + + + -I-

(10,20) + (10, 10) + (10, 10) + (10, 10). The number of "Marker Points" on the shock front

is Isk = 300. The initial size of the subdomains will be M* x W, 5g* x W, 5_* x W, 5_* x W,

10g* x W, 15g* x IV, 25g* x W, 40g* x W, 40g* x W. This mesh gives a resolution of 14

points per half reaction distance in the ENO domain. As a result of the high accuracy of

the Chebyshev collocation method, we find that very good resolution of the flow field can be

obtained with far less points. We start the computation with the ZND steady state solution

with a sine-like perturbation (52) on the shock front with e = 0.15.

In Figure 5a, we record the pressure along the shock front for time t = 10t* - 20t*. Only

one cell is produced in this run which corresponds to two triple points along the detonation

front. In Figure 5b, we contour five snapshots of the pressure, temperature, vorticity and

mass fraction at time T = 30.5t*, 31.5t*,32.5t*, 33.5t*, 34.5t*. In Figure 5c, we sketch the

interaction of the triple points which will be typical for all the other later cases. We can

see the evolution of the reflected shock from the pressure field; the contact discontinuity

can be best seen from the vorticity field. Because the contour lines hardly distinguish the

exact position of contact lines, we can use the temperature field to locate the position of

the curving contact lines. In the first time snapshot (T = 30.5t*) of both Figure 5b and 5c,

we see two reflected shocks (RS) A, B waves moving toward the center of the channel and

to collide. Following RS - A, B are two contact discontinuities C_-,C + respectively, where

tile signs indicate opposite circulation of these two contact lines which produce opposite

vorticities. In snapshot two (T = 31.5t*), reflected shock A, B have emerged from the

interaction,exchanged directions, and are moving away from each other. Notice that in
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the field of massfraction, the layer of unreactedgas is much thicker behind the incident

shock than the one behind tile Mach Stem. The cimmical reaction in the layer behind the

incident shock waves provide the energy for further development of reflected shocks A, B.

The contact discontinuities C_-, C + are now detached from their triple point configurations,

moving downstream, and their tips are rolled up. At the same time a new pair of contact

lines C +, C_- emerge behind the reflected shock waves B, A respectively. In snapshot three

(T = 32.5t*), RS - B, A are moving toward upper and lower wall respectively and are ready

to be reflected away from the wall with the contact lines C +, C_- following them. In snapshot

three (T = 33.5t*), RS B, A have been reflected away from the walls and the contact lines

C +, C_- detached from the triple point configuration while an another new pair of contact

lines C_-,C + are created behind B and A respectively. In the last snapshot (T = 34.5t*),

RS - B, A are ready to collide again which finishes one cycle of the interaction of these two

triple points.

Case II Q = 50, E = 50, f = 1.6, channel width W = 20/*. Two cells pattern

This is a type M detonation wave which is unstable for high frequencies, and we use the

Iilesh 9_],=,(n,m) = (50,2,50) + (34, 70) + (20, 40) + (20,30) + (20,30) + (10,20) + (10, 10) +

(10, 10) + (10, 10). The number of 'Marker Points' on the shock front is Isk = 300. Fig-

ure 6a shows a two cell pattern produced by the trajectories of four triple points. There

is a larger cell with width approximately 10t* (half the channel width) and a smaller

one with width 5/*. Figure 6b containssix snapshots of the detonation at time T =

20.25t*, 21.5t*,22t*,22.5t*, 23t*,23.5t*. The times were chosen so that the interaction of

the triple points can be shown clearly in the contour plots. A random perturbation with

magnitude e = 0.3 is used to perturb the shock front at T = 0. Four triple points are pro-

duced (two major ones and two secondary ones) and the cell pattern is given in Figure 6a.

Referring to the six arrows and depicted shock fronts in the sketch Figure 6c which corre-

sponds roughly the six time snapshots in Figure 6b . In the first time snapshot T = 20.25t*,

in the lower middle part of the channel, two triple points C, D are moving away from each
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other just after collision and A has been reflected from the upper wall and is about to collide

with triple point B. In snapshot two (T = 21.5t*), in the upper part of the channel, two

smaller triple points A, B collide and separate and, in the middle part of the channel triple

point C is moving upward to collide with triple point A. Near the lower wall, triple point

D is reflecting away from the lower wall. In snapshot three (T = 22t*), triple point B is

approaching the upper wall, triple points A and C collide, and triple point D keeps moving

up away from the lower wall. In snapshot four (T = 22.5t*), triple point B reflects away

from the upper wall and is about to collide with triple point C, while triple points A and

D are about to collide with each otl_er. In snapshot five (T = 23t*), in the upper part of

the channel, triple points B and C collide and triple points A and D approach each other.

Finally, in snapshot six (T = 23.5t*), triple points B and C finish the collision and exchange

directions while triple points A and D collide.

Also notice that in Snapshots 4 and 5, the two pressure waves from the reflected shocks

intersect with each other before the collision of the triple points happens along the detonation

front (Snapshot 6). Such interaction will cause sudden reaction of any unreacted gas in the

interior region and produce so-called "explosions in explosions'.

Case III Q = 50, E = 50, f = 3, channel width W = 10P. One cell pattern and chaotic

flow fields.

This case represents strong heat release, large overdrive, and belongs to type I which is

9 nagain unstable for a range of high frequencies. We use a mesh _i=1(,m) = (120,150)+

(34, 7o)+ (2o, 40)+ (20, 30)+ (20, 30)+ (10, 20)+ (10,10) + (10,10) + (10, 10); and the number

of 'Marker points' on the shock front is lsk = 300. The initial size of the subdomains will be

5g* x W, 5g* x W, 8g* x W, 5g* x W, 10g* x W, 12g* x W, 25g* x W, 40g* x W, 40_* x W. Only two

triple points are produced in this case; an one cell pattern of the detonation front is given

in Figure 7(@ In Figure 7(b), we have six time snapshots of the pressure, temperature,

vorticity and mass fraction. Large vorticities are generated behind the detonation front and

the flow field becomes quite chaotic. There are only two triple points along the detonation
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front which produce a one cell pattern for the cellular structure with cell size W = lOg* (see

Figure 7a).

5 Conclusion

We have developed a high order numerical scheme which is suitable for computing detailed

transverse wave structures of two dimensional detonation waves. The numerical algorithm

uses a multi-domain approach so that different numerical techniques can be applied for

different components of detonation waves. The propagation of waves across the interfaces of

subdomains have been very smooth and the order of accuracy of the whole numerical scheme

is only limited by the accuracy of the time integrator. Tracking of the detonation front avoids

differences across the detonation front, thus avoiding excessive numerical viscosity in shock

capturing schemes. The high resolution of the Chebyshev collocation method enables us to

use far less grid points in most of the solution domain and yields great savings in the total

CPU cost. The potential for using higher ENO finite difference schemes ill the subdomain

which contains the reflected shocks and contact discontinuities can be further exploited.

We have shown that the cellular pattern of the detonation waves is affected by the

accuracy of the detonation front and the amount of numerical viscosity, especially the amount

of viscosity involved in the time evolution of the detonation front by the numerical scheme.

We believe that this point should be well taken in the further investigation of detonation

waves in order to have meaningful comparisons with experiment results.
r

We have studied several cases of detonation waves with specific ratio 7 = 1.2, from small

heat release (Case I) to large release (Case Ii and IiI) and small overdrives (Case I) to

large overdrives (Case II, III). The numerical results successfully reproduced the onset and

evolution of the transverse wave structures. The contact lines within triple points create

large vorticity fields behind the detonation front which Will distort and interact with the

detonation front. The contact discontinuities from the triple points after their collisions

convect downstream and generate vorticity downstream. Further work will be done by using
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more realistic chemistry models so that comparison with experiment results will be possible.
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Figure 1 (a) Multidomain set-up for the hybrid numerical scheme for detonation waves; (b)

Mesh structures for 2-D detonation waves
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(a)

(b)

(c)

Figure 2 Cellular pattern for Q = 50, E = 50, f = 1.6 with different smoothings on the

detonation front (a) Smoothing I, II and III, (b) Smoothing II, III; (c) Smoothing III only.
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Figure 3 Pressuresalong the center of channel obtained by time splitting (0) and third

order Runge-kutta (-).

Q.

115

, ==i i

3_ 3_ _ 3_5 3_ 397
cttannel cantK

Figure 4 Mesh convergence studies: Pressure along the center of channel with three meshes

(-) 20 points per g*, (o) 15 points per g*, (+) 10 points per g'.
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Figure 5 Case I, Q = 10, E = 50, f = 1.2, W = 10 (a) one ceil pattern, (b) five snapsimts

of pressure, temperature, vorticity, mass fraction of reactant (from top to bottom) at T =

30.5t*, 31.5t*, 32.5t*, 33.5t*, 34.5t*, (c) sketch of the interaction of the triple points.
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Figure 6 Case II, Q = 50, E = 50, f = 1.6, W = 20 (a) two cell pattern, (b) six snapshots

of pressure, temperature, vorticity, mass fraction of reactant (from top to bottom) at T =

20.25t*, 21.5t*, 22t*, 22.5t*, 23t*, 23.5t*. (c) Tracks of the triple points.
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Figure 6b
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Figure 6c _
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Figure 7 Case III, Q = 50, E = 50, f = 3, W = 10 (a) one cell pattern, (b) six snapshots

of pressure, temperature, vorticity, mass fraction of reactant (from top to bottom) at T =

33t*, 33.5t*, 34t*, 34.5t*, 35t*, 35.5t'.
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