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PROJECT SUMMARY

This volume, prepared by Technology Group, contains the final report on

the satellite-based mobile communications project. The research effort was

based on the comprehensive study of a class of continuous-phase modulated

(CPM) signals used in conjunction with trellis-coded modulation (TCM),

interleaving/interlacing, and coherent/differential/noncoherent detection.

The general framework of our tasks was to provide a detailed analysis of

a bandwidth-efficient coding and modulation, and select a candidate system

which will be capable of transmitting 4800 bits/s over a channel with a 5-

KHz bandwidth subject to Rician fading. In particular, we were expected

to provide:

• A detailed analysis and design of a trellis-coded CPM transmission

scheme with suboptimum detection, which could offer implementa-

tional simplicity and the provision for interleaving/deinterleaving to

combat the fading effects.

• Development of software for the computation of power spectrum.

• Design and development of a Doppler frequency shift compensator.

• Design and development of a symbol timing recovery circuit.

• Extensive simulations to be used for system parameter optimization.

• Breadboard implementation of the transmission system.

As outlined in our initial Quarterly Report, the project was organized

into a set of tasks and subtasks based on which, a comprehensive exami-

nation of all the issues was carried out. Accordingly, the following tasks

were completed: extensive analysis and substantial simulations of partial

response and full response CPM signals, generalized precoding, trellis codes,

interleaving and interlacing, suboptimum detection schemes, theoretical

performance bounds, and filters; development of a class of Doppler estima-

tors; design of symbol synchronizer; extensive examinations the spectrum

of the various CPM signals ; and, a comprehensive system optimization.

Additionally, the hardware implementation of the final candidate system
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has been undertaken 1. In an effort to provide a detailed description of

our work, a set of comprehensive and illustrative Quarterly Reports was

produced end submitted.

Our study has demonstrated that the synergy between TCM, which im-

proves error probability, end CPM signals, which provide constant envelope

and low spectral occupancy, provides a satisfactory solution to the problem

of transmitting on mobile satellite channels.

In principle, two implementations of this idea are feasible. The first one

takes advantage of both the bandwidth efficiency and the power efficiency of

CPM codes, by using a receiver which combines the trellis structure of TCM

and that of CPM. In this situation, the complexity can grow very large end

become quickly unmanageable, so that a suboptimum solution should be

devised. Moreover, the introduction of an interleaver/deinterleaver pair,

which is known to be beneficial fro transmission on fading channels, would

not be allowed. To obviate the associated problems, we avoided maximum-

likelihood decoding of the CPM signals, and instead, differentially demod-

ulated the signals symbol-by-symbol. By doing this, the power efficiency

of CPM is not exploited, however, its spectral properties are retained, end

interleaving/deinterleaving is made possible.

This transmission scheme was extensively simulated under several con-

dltions; full response end partial response formats, several frequency pulse

shapes, with and without precoding, detection points, receiver filter shapes,

TCM schemes, interleaving/deinterleaving sizes and depths, and various

fading channel parameters were considered.

The results of our studies show that, after a careful selection of the

system parameters, on fadin9 channels differentiall_t-deteeted CPM offers

an error performance which is essentially the same as differentially coherent

PSK. Now, since PSK does not use the bandwidth in a very efficient way;

it has to be bend-pass filtered to meet the requirements of closely-spaced

mobile-radio channels. As a result, its envelope is no longer constant, and

its performance would be degraded by power amplifiers operated at or near

saturation for better power efficiency. On the other hand, CPM with the

parameters chosen is bandwidth efficient, so that it does not require narrow

filtering and consequently offers constant or near-constent envelope. Hence,

IAdditional effort is required to finalize the hardware.
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under the same mobile system configurations, the trellis coded CPM appears

to offer a better performance than the filtered trellis coded 8DPSK.
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1 Introduction and motivation of the work

In this Report we consider a sateUite-based mobile communication scheme

based on continuous-phase modulated (CPM) signals used in conjunction

with trellis-coded modulation (TCM).

In satellite-based land mobile communication systems both bandwidth

and power axe Limited resources. In fact, these systems employ frequency-

division multiple access (FDbIA) with a given channel spacing (say, 5 Ktiz),

and the fraction of out-of-band power should be very small to prevent in-

terferences to adjacent channels. On the other hand, the satellite distance

from earth, its power limitations, and the need for low-cost (and hence

low-gain) mobile antennas puts a serious limit on the power resources. Ad-

ditionally, the fading environment of mobile communication further limits

the power efficiency of the system.
In a bandwidth- and power-limited environment, a bandwidth- and

power-efficient coding/modulation scheme must be used. Trellis coded

modulation (TCM) offers an attractive scheme. It combines the choice

of a higher-order modulation scheme with that of a convolutional code,

while the receiver, instead of performing demodulation and decoding in

two separate steps, combines the two operations into one. As a result, the

reliability of a digital transmission system is increased without increasing

the transmitted power nor the required bandwidth. By using TCM, simple

schemes can be designed that achieve significant power gains (from 3 to 6

dB) without any bandwidth expansion.

Due to the strictly bandlimited environment created by the mobile satel-

lite channel, the signals to be used in conjunction with trellis codes must be

chosen caxefully. Besides having excellent spectral characteristics, the sig-

nals used should have constant envelope if nonlinear amplifiers are used for

better power efficiency. A class of bandwidth-efficient signals that satisfies

both constraints is offered by continuous-phase modulated (CPM) signals,

based on phase modulation where phase continuity is introduced to reduce

the bandwidth occupancy.

The synergy between TCM, which improves error probability, and CPM

signals, which provide constant envelope and low spectral occupancy, is

expected to provide a satisfactory solution to the problem of transmitting

on mobile satellite channels.
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In principle, two implementations of this idea are feasible. The first one

takes advantage of both the bandwidth efficiency and the power efficiency

of CPM codes, by using a receiver which combines the trellis structure

of TCM and that of CPM. In this situation, TCM and CPM can even

be integrated in a single entity, but the number of states necessary for a

trellis representation of these signals is given by the number of TCM states

times the number of CPM states. As this number can grow very large,

the complexity of the receiver may become quickly unmanageable, and a

suboptimum solution should be devised. Moreover, the introduction of an

interleaver/deinterleaver pair, which is well-known to introduce beneficial

effects in digital transmission over channels affected by fading, would not

be allowed without destroying the spectral properties of CPM.

We can trade a decrease in complexity for a decrease in power efficiency

(but not in bandwidth efficiency) by giving up maximum-llkelihood decod-

ing of the CPM signals, which are instead demodulated symbol-by-symbol.

By doing this, we still take advantage of the spectral properties of CPM,

and the introduction of an interleaving/deinterleaver pair is now possible.

This is an added attractive feature of this suboptimum solution, since it in-

creases the protection of the transmitted signal from the effects of selective

fading.
We have considered three solutions: coherent, differentially.coherent,

and non.coherent symbol-by-symbol detection. Since differentially coherent

detection appeared to us to be the most promising technique, our work was

based on a CPM/TCM system based on this kind of detection. This report

describes our analysis, simulation, and implementation o.f differentially-

coherent symbol.by-symbol detection of trellis-encoded continuous-phase mod-

ulated signals.

E .

2 Channel models, CPM, and TCM

Besides additive Gaussian noise, which is the standard environment for the

analysis of coding schemes for the transmission of digital data or speech,

there is a number of additional sources of performance degradation that

must be taken into account to assess the merits of a proposed transmission

scheme for mobile satellite channels. The most important among them are
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Doppler shifts. These are due to mobile vehicle motion. If differ-

ential detection is used, the information-bearing phase turns out to

be shifted by an amount 27rfdT,, where 1/T, is the data symbol rate

and fd is the Doppler frequency shift, which for operation at L-band

can be expected to be up to 200 Hz. At a rate of 2400 symbols per

second the corresponding phase shift is 30 ° .

Fading and shadowing. The transmitted radio signal reaches the

receiver through different paths caused by reflections from obstacles,

yielding a signal whose components, having different phases and am-

plitudes, may either reinforce or cancel each other. Shadowing is

caused by the obstruction of radio waves by buildings, trees, and

hills.

Adjacent channel interference. The 5-KHz mobile channel used

for transmission operates in a channelized environment. As a result,

signals suffer from interference from signals occupying adjacent chan-

nels.

Channel nonlinearities. Primarily because of the high-power am-

plifier in the transmitter, operated at or near saturation for better

power efficiency, the channel is inherently nonlinear.

Finite interleaving depth. In order to break up the error bursts

caused by amplitudes fades of duration greater than symbol time,

encoded symbols should be interleaved. Now, infinite interleaving

provides a memoryless channel, but in practice the interleaving frame

must be limited. In fact, for speech transmission the total coding/de-

coding delay must be kept below 60 ms in order not to cause percep-

tual annoyance. If the depth of interleaving cannot be larger than

the maximum fade duration anticipated, this causes a performance

degradation.

r
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2.1 Continuous Phase Modulation (CPM)

A continuous-phase modulated signal is defined by

2E,

= cos(2 f0t + e(t,.))
(1)

where E, is the symbol energy, T, is the symbol time, and .f0 the carrier

frequency. The transmitted information is contained in the phase

OO

7_ --00

with q(t) the phase-shaping pulse given by

(2)

__tq(t) = _oog(r)dr , (3)

g(t) is the frequency pulse with finite duration, i.e., g(t) is nonzero only

for 0 < t <_ LT,, L the pulse length. The value of L contributes to the

taxonomy of CPM signals, namely:

• L = 1: Full-response signals

• L > 1: Partial-response signals.

It is common to assume

J_ g(r)dr = 1/2.
oO

a= ''',a_2,u-l,ao, al,'''

denotes the symbol sequence sent to the CPM modulator. The symbols a,

take values :kl, =k3,..-,-t-(M - 1), where M = 2 _, m a positive integer.

The parameter h is called the modulation indez.
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2.2 Combining TCM With CPM

If CPM signals are combined with an external convolutional encoder, or

equivalently they are used as the signal constellation to be used in a trellis-

coded modulation (TCM) scheme, a further improvement can be obtained.

This new scheme is obtained by observing that at the output of the trellis

encoder we get a multilevel signal which in turn can be used as the input

to the continuous-phase modulator. The design of the coding scheme and

of the modulator scheme should be performed jointly in order to maximize

the Euclidean distance resulting from the combination of the two.

To implement TCM/CPM, we may want to take advantage of both the

bandwidth efficiency and the power efficiency of CPM codes. However,

the complexity of the resulting optimum demodulator can grow very large,

so that a suboptimum solution should be sought, which trades a decrease

in complexity for a decrease in power efficiency (but not in bandwidth

efficiency). This is obtained b_l uncoupling the demodulation of CPM from

decoding of TCM.

To keep the demodulation problem separate from the decoding prob-

lem, we consider estimating the CPM phases symbol-by-symbol, and using

these estimates to build up a metric for the TCM decoder. Then, we use an

optimum (Viterbi) algorithm for decoding, the complexity of it being that

of the TCM scheme only. This procedure obviously entails a loss of opti-

mality, which is traded against a manageable receiver structure. However,

as mentioned before, the spectral properties of CPM are preserved.

We have first analyzed coherent and noncoherent symbol-by-symbol de-

modulation of CPM signals. The result was that noncoherent demodulation

entails a very large loss of optimality, while coherent demodulation, which

offers a better performance, may still be too complex to implement. For

these reasons, we decided to consider in more depth differential detection,

which has a complexity comparable to noncoherent detection without its

performance penalty.

2.3 Differential detection of CPM

The complex envelope of the received signal, say _(t) is delayed by T,

seconds, transformed into its conjugate _*(t - Ts), and multiplied by itself.

xi
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Then the real and imaginary components of the signal _(t)_'(t - T,) are

sampled every T, seconds. As a result, a discrete signal is obtained whose

phase is
27troT, + AO_ + rb_

where A0,_ represents the change over one symbol interval of the signal

phase, and r/,_ represents the change in phase due to the noise. Under the

assumption that foT, is an integer number, estimate of this phase provides

a noisy estimate of AOr,, which is used to recover the information sequence.

For full-response CPM (the case of precoded partial response was also

considered) we have
AO_ = lrha_,

so that the maximum value taken on by the phase shift is

IAel  Ax= _h(M - 1).

This quantity must be lower than _r because the phases are observed modulo

21r. Thus, we must choose
1

h<_ (4)
M-l"

2.4 Doppler phase shift removal

Let us write the observed signal r(t) in the form

r(t) = P(t)e j[z'_!_'+°(''a)+_(O],

where P(t) and v(t) are the amplitude fluctuation and the phase fluctua-
tion, respectively. They account for fading, noise, and intersymbol inter-

ference. ]d is the Doppler frequency shift.

For differential processing, the signal (5) is synchronously sampled at

times t_ = nTs, n = 0,1,..., and the following sequence is formed:

,.,,=

where Cd = 2rf_T, is the Doppler phase shift,

(6)

AO_ = O(t,_,a)- e(tn__,a) = _rha_

xii
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represents the phase fluctuations due to the transmitted data, and r/_ =

u(t,_) - u(t,__t). Finally,

p,_ - 1p(_,_)p(_,,_l).

(Perfect symbol synchronization is assumed.)

It is seen from (6) that the presence of a Doppler frequency shift causes

the phase of the sequence r,_ to be altered by a term _, added to the

information sequence A0_. This has to be removed prior to demodulation.

Two constraints are associated with the design of a Doppler compen-

sation circuit for continuous-phase modulated signals with application to

mobile satellite communications:

• Fast frequency acquisition is required. In fact, if data are transmit-

ted in short bursts or packets, the acquisition time should not be a

significant portion of the burst interval.

Since multipath fading affects the propagation, the Doppler estimator

must be insensitive to the signal amplitude fluctuations caused by

fading.

As a consequence of the first requirement, we have consider open-loop

estimation structures. Three estimators, that trade robustness to Doppler

shifts for complexity, were proposed and their performance analyzed.

2.5 Symbol synchronization

The operation and performance of a symbol synchronizer suitable for our

transmission scheme have been analyzed and simulated. The idea underly-

ing the synchronizer scheme is the production of spectral lines in the CPM

signal, as generated by passing it in a non-linear device. These spectral

lines, or periodic-like contributions, provide a mechanism for extracting

symbol timing. In fact, the spacing of the lines is I/T,, where T, is the

symbol duration.

.,i
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3 Simulation results and conclusions

The transmission scheme described here was extensively simulated under

several conditions. Several frequency pulse shapes, receiver filter shapes,

TCM schemes, interleaving/deinterleaving sizes and depths, and fading

channels were considered. The results show that, for a careful selection

of system parameters, on fading channels differentially-detected CPM of-

fers an error performance which is essentially the same as differentially

coherent PSI(. Now, since PSK does not use bandwidth in a very efficient

way, it has to be band.pass filtered to meet the requirements of closely-spaced

mobile-radio channeIization. As a result, its envelope is not constant, and

its performance would be degraded by power amplifiers operated at or near

saturation for better power efficiency. On the other hand, CPM with the

parameters chosen is bandwidth efficient, so that it does not require narrow

filtering and consequently offers constant or near.constant envelope.

4 Organization of this report

This Final Report is organized as follows. Chapter 1 provides the motiva-

tion for this work, as well as an overview of the channel model for which

our system has been analyzed and designed. Chapter 2 reviews continuous-

phase modulation, with emphasis on the spectral properties of continuously

phase-modulated signals. Chapter 3 reviews trellis-coded modulation, and

discusses the interactions between TCM and CPM, as weU as the possible

advantages resulting from it. Chapter 4 deals with suboptimum detection

of treUis-encoded CPM. In particular, two extreme cases of suboptimum

detection, viz., coherent and noncoherent, are analyzed. Differential de-

tection of trellis-encoded CPM is the subject of Chapter 5. Chapters 6

and 7 describe the design and the analysis of two circuits that are needed

for the proper operation of a differentially-detected, trellis-encoded CPM

transmission system. In particular, Chapter 6 considers the effects of a

Doppler frequency shift, and its removal. Chapter 7 considers a circuit for

the recovery of the timing information from the received signal. Simulation

results are included in Chapter 8, while Chapter 9 contains the conclusions

drawn from the preceding body of work. Two appendices describe the sire-

xiv
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ulation package written during the work and the hardware implementation

of the transmitter and receiver 2.
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2We observe here that this Final Report is not the result of a simple superposition of

our Quarterly Reports. For legibihty's sake, some discussions that are less relevant to our

presentations, as well as a number of charts showing results of lesser importance, have

been omitted, and the whole material has been reshuffled.
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Introduction
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In thisReport we considera satellite-basedmobile communication scheme

based on continuous-phasemodulated (CPM) signalsused in conjunction

with trellis-codedmodulation (TCM).

In satellite-basedland mobile communication systems both bandwidth

and power are limitedresources.In fact,these systems employ frequency-

divisionmultipleaccess(FDMA) with a givenchannel spacing(say,5 KHz),

and the fractionofout-of-bandpower shouldbe very smallto preventinter-

ferencestoadjacentchannels.On the otherhand, the satellitedistancefrom

earth,itspower limitations,and the need forlow-cost(and hence low-gain)

mobile antennas put a seriouslimiton the power resources.Additionally,

the fadingenvironment ofmobile communication furtherlimitsthe power

efficiencyofthe system.

In a bandwidth- and power-limitedenvironment,a bandwidth- andpower-

efficientcoding/modulation scheme must be used. Trelliscoded modulation

(TCM) offersan attractivescheme. It combines the choiceofa higher-order

modulation scheme with that of a convolutionalcode, while the receiver,

instead of performing demodulation and decoding in two separate steps,

combines the two operationsintoone. As a result,the reliabilityofa digital

transmissionsystem isincreasedwithout increasingthe transmittedpower

nor the required bandwidth. By using TCM, simple schemes can be de-

signedthat achieve significantpower gains (from 3 to 6 clB)without any

bandwidth expansion (see, e.g., [60,80].)

Due to the strictly bandlimited environment created by the mobile satel-

lite channel, the signals to be used in conjunction with trellis codes must be

chosen carefully. Besides having excellent spectral characteristics, the sig-

nals used should have constant envelope if nonlinear amplifiers are used for

10
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CHAPTER I. INTRODUCTION 11

better power efficiency. A class of bandwidth-efficient signals that satisfies

both constraints is offered by continuous-phase modulated (CPM) signals,

based on phase modulation where phase continuity is introduced to reduce

the bandwidth occupancy.

The synergy between TCM, which improves error probability, and CPM

signals, which provide constant envelope and low spectral occupancy, is ex-

pected to provide a satisfactory solution to the problem of transmitting on
mobile satellite channels.

In principle, two implementations of this idea are feasible. The first one

takes advantage of both the bandwidth efficiency and the power efficiency

of CPM codes, by using a receiver which combines the trellis structure of

TCM and that of CPM. In this situation, TCM and CPM can be integrated

in a single entity (see [51] and the references therein), but the number of

states necessary for a trellis representation of these signals is given by the
number of TCM states times the number of CPM states. As this number

can grow very large, the complexity of the receiver may become quickly un-

manageable, and a suboptimum solution should be devised. We can trade a

decrease in complexity for a decrease in power efficiency (but not in band-

width effidency) by giving up maximum-likellhood decoding of the CPM

signals$ which are instead demodulated symbol-by-symbol. By doing this,

the power efficiency of CPM codes is not exploited: we only take advantage

of their spectral properties.
Hereafter we consider three solutions: coherent, dlfferentially-coherent,

and non-coherent symbol-by-symbol detection. Since differentially coherent

detection appeared to us to be the most promising technique, most of this

Report is devoted to a complete description of a CPM/TCM system based
on this kind of detection.

1.1 The channel model

Besides additive Gaussian noise, which is the standard environment for the

analysis of coding schemes for the transmission of digital data or speech,

there is a number of additional sources of performance degradation that

must be taken into account to assess the merits of a proposed transmission

scheme for mobile satellite channels. The most important among them are

[61,641:

• Doppler shifts. They are due to mobile vehicle motion. If differential

detection is used, the information-bearing phase turns out to be shifted

7 :
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Velocity Frequency Phase shift

(MPH.) shift (Hz) (degrees)

30.0

60.0

90.0

120.0

67.04

134.08

201.13

268.17

10.06

20.11

30.17

40.22

Table 1.1:Doppler frequencyand phase shifts.

E ,

m

by an amount 2_rfdTs, where 1ITs is the data symbol rate and fd is

the Doppler frequency shift, which for operation at L-band can be

expected to be up to 200 Hz. At a rate of 2400 symbols per second

the corresponding phase shift is 30% Table 1.1 shows some values

of the Doppler shift obtained for various velocities, carrier frequency

1.5 GHz, and symbol interval Ts = 1/2400.

Fading and shadowing. The transmitted radio signal reaches the

receiver through different paths caused by reflections from obstacles,

yielding a signal whose components, having different phases and ampli-

tudes, may either reinforce or cancel each other. Shadowing is caused

by the obstruction of radio waves by buildings, trees, and hills.

Adjacent channel interference. The 5-KHz mobile channel used

for transmissionoperatesin a channelizedenvironment. As a result,

signalssufferfrom interferencefrom signalsoccupying adjacent chan-

nels.

Channel nonlinearities. Primarily because of the high-power am-

plifier in the transmitter, operated at or near saturation for better

power efficiency, the channel is inherently nonlinear.

Finite interleaving depth. In order to break up the error bursts

caused by amplitudes fades of duration greater than symbol time, en-

coded symbols should be interleaved. Now, infinite interleaving pro-

vides a memoryless channel, but in practice the interleaving frame

must be limited. In fact, for speech transmission the total codlng/de-

coding delay must be kept below 60 ms in order not to cause per-

ceptual annoyance. If the depth of interleaving cannot be larger than

_=_

w
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the maximum fade duration anticipated, this causes a performance

degradation.

v
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Chapter 2

Continuous Phase

Modulation (CPM)

In this Chapter we provide an overview of the basic features of continuous-

phase modulated signals. Additional details can be found in [55,58].

A continuous-phase modulated signal !s defined by

2Es
s(t,a) = _/--_:- cos(2rf0t + 8(t,a)) (2.1)

where Es is the symbol energy, Ts is the symbol time, and f0 the carrier

frequency. The transmitted information is contained in the phase

OO

e(t,a) - 2_h _ a.q(t- nT,) (2.21
rt oo

with q(t) the phase-shaping pulse given by

fq(t) - g(,-)d_-, (2.3)

g(t)isthe frequencypulse with finiteduration,i.e.,g(t)isnonzero only for

0 < t <_LT_, L thepulselength.The valueofL contributestothe taxonomy

of CPM signals,namely:

• L = 1: Pull-response signals

• L > 1: Partial-response signals.

14
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r -

It is common to assume

r)d = Z/2.

(2.2),
a =..',a-2, a-l,ao, al,""

denotes the symbol sequence sent to the CPM modulator. The symbols a,,

take values :t:1, _3,..., :£(M- 1), where M = 2 "_, m a positive integer. The

parameter h is called the modulation indez, and we shall assume

h_2P
q

with p, q relatively prime integers. Notice that the change in the instanta-

neous frequency, i.e.,
/o + 0(t,,,)/2_"

is proportional to the modulation index. The maximum phase change over

a symbol interval is rh(M - 1).
When the duration of the frequency pulse g(t) is greater than 1 (partial

response CPM), the phase function 8(t,a) during the symbol interval may

be written in the form

Tt

8(t,a) = 2_rh
j=n-L+l

ajq(t - iTs) + O=, nTs < t < (n + 1)Ts (2.4)

where ,,- L

8. = _h _ aj rood 2_'. (2.5)

It can be seen from (2.5) that 8,_ can take q different values, namely

{ 21rp 4_rp ...,2_(q-ql)p} (2.6)8.6 O, q, q,

Thus, we can say thatthe phase functionduring any givenintervaldepends

on the actualtransmittedsymbol an and on the state of the modulator,

defined as the value taken by the vector

(an_l,an_2,...,an_L+l,Sn) (2.7)

For each state there are M signal trajectories, and the total number of

distinct signal paths over any Ts-second interval is qM L. The total number
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of states is qM L-1. As a special case, for full-response signaling there are

Mq signal paths, and q states: this reduction in the number of paths and

states, and hence in the complexity of the modulator-demodulator pair, is

traded off for an inferior spectrum.

w

=

2.1 Optimum detection of CPM Signals

Optimum (maximum-llkelihood sequence) estimation of CPM signals in-
volves maximization of the probability density function for the observed

signal conditioned on the symbol sequence a. Under the assumption that

the only disturbance affecting the received signal is an additive white Gaus-

sian noise process n(t), i.e., that r(t) = s(t) + n(t), optimum detection is

equivalent to maximizing the quantity

If we define

we can write

FJCa) = T(t)s(t,a)dt.

,_+I)T,J,(a) = r(t)s(t,a)dt,

_.(a) = _._,(a) + z.(_),

(2.s)

(2.9)

where

= --[(,,+I)T. r(t) ¢os[2a'fot + O(t,a)ldt, (2.10)
z.(_) J.r,

called the branch metric, is the correlation between the received signal and a

reconstructed version of the transmitted signal over the n-th symbol interval.

By using (2.8)-(2.10) it is possible to compute J(a) recursively. The Viterbi

algorithm chooses the sequence a that maximizes J,(a).

Because of (2.4) we can also write

Z,,(a, 0,_) = [("+l)T'r(t)cos[2:r.fot +6(t,a,,)+O, ldt, (2.11)
JnT,

where
Tt

0(t,,,.) = 2,_h _ .jq(t-/T.).
j=rt-L+l

The receiver computes Z,_(a,,, 0,_) for all M L possible sequences

.. = (..,"',-.-L+_)
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and allq possible0,_.This shows that Z_ can take on qM L possiblevalues.

The computation of these valuesrequiresfeedingthe observed signalr(t)

intoa bank of qM L matched filterswhich correlatethe receivedsignalover

one symbol interval.
A maximum-llkelihood detectorprovidesa bit errorprobabilitythatfor

high signal-to-noiseratioscan be roughly approximated by

 erfc( (2.12)'

where d_free is the minimum integral-squared difference between any two sig-

nals corresponding to phase trajectories that are merged till a certain time,

then split and remerged at an arbitrary time later.

2.2 Computation of Power Spectrum

We consider here the evaluation of the power spectral density of CPM sig-

nals. The method used is based on a technique developed by Aulin and

Sundberg [56],and computing the spectrum by Fouriertransformationof

the autocorrelationfunctionof the modulated signal.

The essenceof the method isthe following.First,the CPM signalis

multipliedby itsshiftedversionand itsexpectationistaken to obtain the

autocorrelation.As the CPM signalprocess isnot wide-sense stationary

(but rathercyclostationary),a time-averagedversionof the autocorrelation

functionisdetermined,then itsFouriertransformistaken to get the power

densityspectrum.
First,letus rewrite(2.1)in a complex form as follows:

s(t,a) = _n{eJ(2"/°t+e(t'a))}, (2.13)

where P - Es/Ts is the average signal power, and T_ denotes "real part".

The other symbols are the same as in (2.1). We assume here, for simplicity,

that the data symbols are independent: this assumption is not consistent

with our model if trellis-encoded CPM is considered, but we assume that

the effect of TCM on the power spectrum is negligible.

Let M denote time average (over the interval (0,Ts)), and E denote

expectation with respect to the random variables a,, representing the trans-
mitted data. The (stationary) autocorrelation function of the CPM signal

is then, under the assumption f0Ts >> 1,

,(r) = ME{s(t +r,a)s'(t,a)}

=



L
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Here,

= ME{eJ[°(t+_,a)-°(t,a)]}

= ME{eJ[2_h_, _,[q(t+_.-iT,)-q(_-iT,)]}

= M HE{eJ2rhai[q(t+r-iT')-q(t-iT')]}.
i

Now,

E{ eJ2_rha,[q(t+r-iT,)-q(t-iT,)]}

M/2-1

='ME1 eJ2_rh(2k+l)[q(t+.c_iTj)_q(t_iTs) ]

km-M/2

Moreover, noting that q(t) = 1/2 for t > LTs, and q(t) = 0 for t < O, and

letting
r=r'+mT_, 0_<r'<T_, m=0,1,2,...,

itcan be shown that

= R(_"+ rots)

}= "_sl fO TJ rn_l .._ E1 eJ2_rh(2k+l)[q(t+,,_(i_rn)T_)_q(t_iT_)]d t

i=l-L k=-M/2

so that the power spectrum takesthe expression

{jo /o"_(f) = 2R R(v)e-J2rYrdv + 1 - Cae-J2_YT, R(r

where
1 M/2-1

co=_ _ ej'_. (2.15)
k=-M/2

To compute R(r) effectively and accurately, we subdivide the integration

interval (0, T_) into n subintervals, and use a 5-point Gaussian quadrature

formula to compute the integral over each subinterval. The number n will

be chosen to be large enough so as the limitation in accuracy comes from

computational roundoff errors rather than from numerical approximations.

After computing the autocorrelation function, the fast-Fourier transform

algorithm is used to obtain the power density spectrum.

Power density spectra, in the form of fractional out-of-band power (in

dB) were calculated for several different pulse shapes. The results for four

= .
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of them (namely, LREC, LRC, HCS, and CRC for L = 1, 2, 3, and 4) are

shown in the next figures. Specifically, Fig. 2.1 shows the expressions for

the frequency pulses in the four cases considered here. Fig. 2.2 shows the

corresponding expressions for phase pulses. Frequency pulses and phase

pulses are tabulated in Fig. 2.3 and Fig 2.4, respectively. Figs 2.5 to 2.12

show the fractional out-of-band powers.

w

w
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LREC

LRC

HCS

CRC

f_ t<O

O<_t<_LT

t> LT

t<_0

0<t<LT

t >_ LT

t<O

0<t_< LT

t> LT

Figure 2.2: Phase pulse q(t) for LKEC, LRC, HCS, and CKC.
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Figure 2.3: Frequency pulse g(t) for LREC, LRC, HCS, and CtIC.
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Figure 2.4: Phase pulse g(t) for LtLEC, LKC, HCS, and CI%C.
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Figure 2.5: Fractional out-of-band power (in dB) of octonaxy CPM signals

with modulation index h = 1/8 for LREC pulse shape, L = 1, 2, 3, 4.
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Figure 2.6: Fractional out-of-band power (in dB) of octonaxy CPM signals

with modulation index h = 1/8 for LI_C pulse shape, L = 1, 2, 3, 4.
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Figure 2.7: Fractional out-of-band power (in dB) of octonary CPM signals

with modulation index h = 1/8 for HCS pulse shape, L = 1, 2, 3,4.
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Figure 2.8: Fractional out-of-band power (in dB) of octonaxy CPM signals

with modulation index h = 1/8 for CB.C pulse shape, L = 1, 2, 3, 4.
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Figure 2.9: Comparison of fractional out-of-band power (in dB) of octonaxy

CPM signals with modulation index h = 1/8 for different pulse shapes,
L=I.
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Chapter 3

Trellis Coded Modulation

(TCM)

In this Chapter, we present a review of the main features of trellis-coded

modulation (TCM) as used for digital data communication with the purpose

of gaining noise immunity over uncoded transmission without altering the

data rate.

For the purpose of this discussion, we shall assume a discrete-time,

continuous-amplltude model for the transmission of data on the additive

white Gaussian noise channel. In this communication model, the messages

to be delivered to the user are represented by vectors in an N-dlmensional

Euclidean space R N, called the signal space. When the vector x is trans-

mitted, the received signal is represented by the vector

z=x+y,

where y is a noise vector whose components are independent Gaussian ran-
dom variables with mean zero and the same variance N0/2. The vector x is

chosen from a set 12 consisting of M signal vectors and which will be referred

to as the signa/constellation. The average square length

1
= Ixt

xEG

will be referred to as the average signal energy.
K-1

Consider now the transmission of a sequence {xi}i=o of K signal vec-

tors, where the subscript i denotes discrete time. The receiver which min-

imizes the average error probability over the sequence operates as follows.

32
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It firstobserves the receivedsequence Zo,..-,ZK-1, then it decidesthat

X0,...,XK-I was transmittedifthe squared Euclidean distance

K-1

d = IZ,- =il= (3.1)
i=0

is minimized for xi = Xi, i = 0,...,K - i. In words, the sequence

X0,...,XK-I isclosestto the receivedsequence than any other allowable

signalvectorsequence. The resultingsequence errorprobability,as wellas

the symbol errorprobability,are upper bounded, at leastforhigh signal-to-

noiseratios,by a decreasingfunctionofthe ratiod_.n/NO, where d2ministhe

minimum squared Euclidean distancebetween two allowablesignalvector

sequences.

Uncoded Transmission

An important specialcase occurs when the signalvectorsform an inde-

pendent sequence. In thiscase,the allowablevectorsequences are allthe

elements of O h',and hence d2 isminimized by minimizing separatelythe

individualterms of (3.1),i.e.,[Zi- xil2 for xi E N and i = 0,...,K - i.

The performance of this"symbol-by-symbol receiver"willthen depend on

the minimum distance

d_i n = rain Ix' - x"l 2
Xt' _X It

as x',x" run through _. In fact,the symbol errorprobabilityis upper

bounded (and forhigh signal-to-noiseratioswellapproximated) by

P(e)<_ M-lerfc2 (dmi_'_0) (3.2)

(see,e.g.,[58,page 152]).

With thismodel, the problem of designingan efficientcommunication

system is that of choosing a set of vectorsignalssuch that the minimum

distancebetween any two ofthem isa maximum, once the quantitiesM, N,

and £ are given.Itisconvenientto definetwo quantitiesthat are usefulin

comparing differentconstellations,namely theirinformationrate(measured

in bits/dimension):

log M (3.3)
R- N '

m
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and their normalized squared minimum distance

52 = _'.._..anlog M. (3.4)

The first parameter is also referred to as the "bandwidth efficiency", because

it represents the ratio between the number of information bits carried by a

single signal in the constellation and the number of dimensions, which is

roughly proportional to the transmission bandwidth. The second parameter
can be referred to as the "energy efficiency" of the signal constellation: in

fact, observe that the upper bound (3.2) can be rewritten in the form

-
P(e) < M__._I erfc \2V _00]-- 2

where

J

Eb = log M

represents the average energy per bit. It is seen from (3.5) that the same

P(e) can be achieved with a a smaller signal-to-noise ratio gb/No if 6 is

larger.

N

3.1 The Concept of TOM

TCM is a coded system: this means that it tries to achieve an improvement of

system performance by introducing a redundancy, i.e., an interdependency

between signal vectors. This is equivalent to restricting the transmitted

sequences to a subset of c/K. Now, if we do this, the transmission rate
will also be reduced. To avoid this unwanted reduction, we may choose

to increase the size of G. For example, if we change i2 into l'l' D _ and

M into M' > M, and we select M K sequences as a subset of IT", we

can have sequences which are less tightly packed, and hence increase the

minimum distance between them. In conclusion, we get a minimum distance

dfree between two possible sequences which turns out to be greater than the

minimum distance drain between signals in 12, the constellation from which

they were drawn. Use of maximum-likellhood sequence detection will yield

a "coding gain" _ree/a_'n, less the additional power necessary for signaling

using the alphabet Cl' instead of l'l. We define the energy gain of a TCM
scheme as

m
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where E and E _ denote the average energies spent to transmit with uncoded

and coded transmission, respectively.
The introduction of interdependencies between signals as a way of in-

troducing the wanted redundancy into the sequence set is one of the basic

ideas underlying trellis-coded modulation. (Another one is set partitioning,

which will be described later).

We assume that the signal x,_, transmitted at discrete time n, depends

not only on the source symbol an transmitted at the same time instant (as

it would be with memoryless modulation), but also on a finite number of

previous source symbols:

= f(a., ,a.-L).

By defining
= (3.r)

as the state of the encoder at time n, we can rewrite (3.6) in the more

compact form

= f(a., (3.s)

= a(a., (3.9)

The lasttwo equationscan be interpretedas follows.The functionf(-,.)

describesthe factthat each channel signaldepends not only on the corre-

sponding source symbol but alsoon the parameter a_. In other words, at

any time instantthe transmittedsignalischosen from a constellationwhich

isselectedby the valueofan. The functiong(.,.)describesthe memory part

ofthe encoderand shows the evolutionofthe modulator states(seeFig.3.1).

Here we shallassume thatthe functions] and g are time-invariant,although

itispossibleto considertime-varyingTCM schemes as well.

3.1.1 Trellis Representation

For a graphicalrepresentationofthe functionsf and g itisconvenientto use
a trellis.The valuesthat can be taken by a,_,the encoder stateat time n,

are the nodes ofthe trellis.With each sourcesymbol we associatea branch

which stems from each modulator stateat time n, and reachesthe encoder

stateat time n + 1. The branch islabeledby the correspondingvalue of f.

The trellisstructureisdetermined by the functiong, while f describeshow

channel signalsare associatedwith each branch along the trellis.

+..

_5
I
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Ifthe sourcesymbols are M-ary, each node must have M branches stem-

ruingfrom it(one per sourcesymbol). This impliesthat in some casestwo

or more branches connect the same pair ofnodes: when thisoccurs,we say

that paralleltransitionstake place.

Fig.3.2shows an example of thisrepresentation.Itisassumed that the

encoder has fourstates,the sourceemits binarysymbols, and a constellation

with four signals0,1,2,3isused. The distancepropertiesofa TCM scheme

can be studiedthrough itstrellisdiagram.

3.2 Some Examples of TCM Schemes

Here we describe a few examples of TCM schemes based on their trellis

diagrams. We first consider the transmission of quaternary source symbols,

i.e., 2 bits per symbol. With uncoded transmission a channel constellation
with M = 4 would be adequate. We shall examine TCM schemes with

M1=8.

Let us assume M-ary coherent PSK transmission. With M = 4 we get

d2mi------_n= 2,
E

a figure which will be used as a reference to compute the coding gain of PSK-
based TCM. We use TCM schemes based on two quaternary constellations

{0, 2, 4, 6} and (1, 3, 5, 7} shown in Fig. 3.3. We have

d'2
£t_

4 sin 2 -'"8

Consider first a scheme with two states as shown in Fig. 3.4. If the encoder is

in state $1, constellation (0, 2,4, 6} is used. If it is in state S_, constellation

{1, 3, 5, 7} is used instead. (Notice the presence of parallel transitions).

Let us compute the free distance of this scheme. This can be done by

choosing the smallest between the distance among signals associated with

parallel transitions, and the distance associated with a pair of paths in the

trellis that originate from a common node and merge into a single node at

a later time. The pair of paths giving the free distance is shown in Fig. 3.4,

and we have, by denoting d(i, j) the Euclidean distance between signals i

and j:

_-_ 1[d2(0,2) + d2(0, 1)] = 2 + 4sin2 _ "= 2.586.

w
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Figure 3.2: An example of trellis describing a TCM scheme with four states

and four signals used to transmit from a binary source.
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Figure 3.3: Two quaternary constellations used in a TCM scheme are

{0,2,4,6} and {1,3,5,7}.
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Figure 3.4: A TCM scheme based on a 2-state trellis, 34" = 4, and M' = 8
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Hence, we get a coding gain

2.586

2
= 1.293 =_ 1.1 dB.

Let us now use a TCM scheme with a more complex structure to increase

the coding gain. With the same constellation of Fig. 3.3, take a trellis with

4 states as in Fig. 3.5. We associate the constellation {0, 2,4, 6} to states

S 1 and $3, and {1,3,5,7} to $2 and $4. The pair of paths giving dfre, has

length 1 (a parallel transition) and is shown in Fig. 3.5. We get

,j2

"tr_ _ d2(0,4) = 4,
£1

and hence
4

7=_=2=_ 3dB.

A further step can be taken by choosing a trellis with 8 states as shown in

Fig. 3.6. For simplicity, the four symbols associated with each node are used

as node labels. The pair of paths leading to dfr_ is also shown and yields

g-'7-= g [d2(O'6)+d2(O'7)+d2(O'6)l=2+4sin2_+2=4"586'

and hence
4.856

= 2.293 =v 3.6 dB.
7= 2

Consider now the transmission of 3 bits per symbol and AM-PM schemes.

The octonary constellation

{0,2,5, 7,9,10,13, 15}

of Fig. 3.7 will be used as a reference uncoded scheme. It yields

d2ml------_= 0.8.
g

A TCM scheme with 8 states and based on this alphabet is shown in Fig. 3.8.

The sub constellationsused are

{0, 2, 5, 7, 9, 10, 13, 15}

and

{1, 3, 4, 6, 9,11, 12, 14}.
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Figure 3.5: A TCM scheme based on a 4-state trellis, M = 4, and M' = 8
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Figure 3.6: A TCM scheme based on an 8-state trellis, M = 4, and M r = 8
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0 * I+

4 + 5 *

8 * 9 +

12 + 13 *

*2 +3

+ 6

* 10 +11

+ 14 * 15

Figure 3.7: Two octonaxy AM-PM constellations.
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= ,
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0,2,5,7,8,10,13,15

1,3,4,6,9,11,12,14

5,7,0,2,13,15,8,10

4,6,1,3,12,14,9,1 1

10,8,15,13,2,0,7,5

11,9,14,12,3,1,6,4

15,13,10,8,7,5,2,0

12,14,9,11,6,4,3,1

Figure 3.8: A TCM scheme based on an 8-state trellis and AM-PM constel-

lations, with M = 8 and M I = 16
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We get
E' = 2.5 d '2.

We get

d_r,, t _ t3) + d_(0,t) + d_(0,5)]
E---;- = _-7[d (10'

= _[0.8e' + 0.4E' + 0.8E']
= 2

and hence
2

= 2.5 =_ 3.98 dB.
7= 0.8

Set Partitioning

Consider the determination of dfree. This is the distance between the signals

associated with a pair of paths that originate from an initial split, and, after

L time instants, merge into a single node as shown in Fig. 3.9. Assume first

that the free distance is determined by parallel transitions, i.e., L = 1. If A

denotes the set of signals associated with a given node, then dfr_ equals the

minimum distance among signals in A.
Consider then L > 1. With A,B,C,D denoting subset of signals as-

sociated with each branch, and d(X, Y) denoting the minimum Euclidean

distance between one signal in X and one in Y, d_r_ will have the expression

d_,, = d2(A,B) + ... + d2(C,D).

This implies that, in a good code, the subsets assigned to the same origi-

nating state or to the same terminating state ("adjacent transitions") must

have the largest possible distance. To implement these rules, the technique

suggested by Ungerboeck [80] and called set partitioning is the following.

Set partitioning has been described as "the key that cracked the problem of

constructing efficient coded modulation techniques for band-limited chan-

nels."

The M'-ary constellation is successively partitioned into 2, 4, 8,..., sub-

sets with size M'/2,M'/4, M'/8,..., having progressively larger minimum

distancesd") (seerig.3a0).When,mJn_ " *

1. Parallel transitions are assigned members of the same partition.

2. Adjacent transitions are assigned members of the next larger partition.
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A

G n _ Gn+l

B

L=I

A C
O"n _ _ O'n+ L

On+L-1
O'n+ 1

L>I

Figure 3.9: A pair of splitting and remerg]ng paths for L = 1 (parallel

transitions) and L > 1.
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Figure 3.10: Set partition of an 8-PSK constellation.



L

L

r

w

CHAPTER 3. TRELLIS CODED MODULATION (TCM) 49

3.3 Combining TCM With CPM

If CPM signalsare combined with an external convolutionalencoder, or

equivalentlythey are used as the signalconstellationto be used in a TCM

scheme, a furtherimprovement can be obtained. This new scheme isob-

tainedby observingthat at the output of the trellisencoder we get a multi-

levelsignalwhich in turn can be used as the input to the continuous-phase

modulator. The designof the coding scheme and of the modulator scheme

should be performed jointlyin order to maximize the Euclidean distance

resultingfrom the combination ofthe two. As observedin [76],to maximize

the Euclidean distanceofthe coding/modulation scheme, the trellisencoder

should reduce the connectivityofitstrellisin such a way that:

• The Euclideandistancebetween signalsleavingthe same stateismax-

imized.

• The Euclidean distancemerging intothe same stateismaximized.

To implement TCM/CPM, we may want to take advantage ofboth the

bandwidth efficiencyand the power efficiencyofCPM codes.In thiscase,the

receivercombines the trellisstructureofTCM with that ofCPM, and TCM

and CPM can be integratedin a singleentity(see[51]and the references

therein).The number ofstatesnecessaryfora trellisrepresentationofthese

signals,and hence fortheirdemodulation, isthe product of the number of

statesneeded by TCM and the number ofstatesneeded by CPM. Sincethis

number can grow verylarge,a suboptimum solutionshouldbe sought,which

tradesa decreasein complexityfora decreaseinpower efficiency(but not in

bandwidth efficiency).This isobtained by using a differentialdemodulator

or a discriminatorinsteadof a coherentreceiver.

w
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To keep the demodulation problem separate from the decoding problem,

we considerestimatingthe CPM phases symbol-by-symbol,and using these

estimatesto buildup a metric forthe decoder. Provided that the number

of decoder statesisfiniteand the metric chosen isadditive,we can use a

Viterbialgorithmfordemodulation, the number ofstatesbeing thatrelated

to the TCM scheme only. This procedure obviouslyentailsa lossof opti-

mality,which istraded againsta manageable receiverstructttre.However,

as mentioned before,the spectralpropertiesof CPM are preserved.

In thisChapter we considercoherentand noncoherentsymbol-by-symbol

demodulation of CPM signals.Coherence can be achievedby takingadvan-

tageofthe synchronizationpropertiesofCPM [38,62],although,as observed

in [57,52],as the spectrum of the transmittedsignalbecomes narrower,the

problem of findingthe exact phase of the carrierincreases.To avoid the

problem offindingthe phase of the carrier,one viablesolutionisthe use of

noncoherent detection.

Suboptimum coherentand noncoherentdetectionofCPM (inthe special

case of CPFSK) was consideredin [48]foruncoded transmission.In this

Chapter, considerationof suboptimum schemes involvesthe derivationof a

metricto be used with the Viterbidecoder forTCM. Thus, the appropriate

performance measure in our case isthe cutoffrateRo [47]of the channel

generated by CPM in conjunctionwith itsdetectionscheme. The use of

R0 to demonstrate the efficiencyof a coding scheme in the caseof a fading

channel,typicalofmobile satelliteand terrestrialmobile radioapplications,

50
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was advocated in [45].

The organization of this chapter is the following. We first summarize our

signal and channel model. Symbol-by-symbol coherent detection of CPM

is first examined, then incoherent detection is covered in Section 4. The

Appendix reviews the basic steps involved in the computation of tto for

fading channels.

4.1 Signal and channel models

The communication scheme considered in this section is shown in Fig. 4.1.

The source data

U = _0, Ul,''"

are first sent into an encoder component, whose output is the symbol se-

quence
a---- aO,al,...

The encoder includes a conventional linear convolutional encoder with rate

rn/(m + 1), followed by an M-ary mapper. The convolutionally encoded

output sequence consists of binary data symbols. The output of the mapper

is the sequence a of M-ary symbols, generated according to some specific

mapping rule. We assume that M is a power of 2, and that the symbols a,_

take values =t:1,-4-3, ... ,+(M- 1).

The coded sequence a is first interleaved (by using a block or convolu-

tional interleaver [41, pp. 347-349]), to produce a'. This new sequence is

then sent to the continuous-phase modulator, which outputs a signal whose

complex envelope is

s(t,a', ¢o) ----,/_s exp j[8(t,a')Jr ¢0]
VTo

(4.1)

where ¢o is the carrier phase, Es is the signal energy per symbol, and Ts is

the symbol time. The energy per bit is Eb = E_/log 2 M. The transmitted

information is contained in the phase

t¢-I

8(t,a') = 2_rh _ a_q(t- kTs) (4.2)
k=O

with q(t) the phase-shaping pulse given by q(t) = fd g(r)dr, and g(t) is the

frequency pulse with finite duration, i.e., g(t) is nonzero only for 0 < t <

t
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LTs, L the pulse length. The parameter h is called the modulation index,

and we assume it to take on a rational value. The maximum phase change

over a symbol interval is rh(M - 1).
A CPM scheme is defined by selecting the values of M, h, and the fre-

quency pulse shape. Some of the most popular pulse shapes are LREC (for
L = 1 often referred to as Continuous-Phase Frequency Shift Keying, or

CPFSK), Tamed Frequency Modulation (TFM), Raised Cosine (LRC), Half

Cycle Sine (HSC), Convolved Raised Cosine (LCRC), Gaussian Minimum

Shift Keying (GMSK), SpectraUy Raised Cosine (LSRC). (For further de-

tails, see [55,58].) In this Chapter we consider Full Response (i.e., L = 1)

CPM.

In our analysis, we assume that the channel includes multipath reflec-

tions in additionto Gaussian noise.Thus, ifr(t)and u(t)denote the signal

observed at the channel output and a complex Gaussian noiseprocess,re-

spectively,we have

r(t) = a', ¢0)+ v(t)

where itisassumed that r(t)isobserved during the time interval(0,_¢T,),

and p(t)representsthe (normalized)random fadingamplitude. The prob-

abilitydensityfunctionof p(t)depends on the model chosen forthe fading

process:we have

p(p)=2pe -p2, p>_0

for the Rayleigh model,

p(g) = 2p(1 + K)e-K-P_O+K)Io(2p_/K(1 + K)), p > 0

for the Rician model In the latter expression, K denotes the ratio of

power in the line-of-sight component to that in the diffuse or noncoher-

ent component, and Io(.) the modified Bessel function of order 0. Note that

E[Ip[ 2] = 1 for the Rayleigh and (unshadowed) Rician model. Note also that

the Rayleigh fading model is the limiting case of the Rician model when

K=O.

4.1.1 Computation of R0

Here we summarize the relevant steps in the derivation of the cutoff rate

Ro of the memoryless channel generated by CPM in conjunction with an

interleaver/deinterleaver pair. Consider the transmitted codeword XN with

block length h r. Let us assume that decoding is based on the observation of

t
w
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the received N-tuple rN and on the use of the additive metric

N

m(rN,XN) = E m(ri'zi)'
i=I

(4.3)

where ri, zi are the components of rN, xN, respectively. The decoding rule

is then: choose iN if

m(rN,:_N) = max m(rN,XN).
XN

In this situation, the pairwise error probability, i.e., the probability that

iN _ XN have a larger metric than the transmitted XN, can be bounded

from above by using Chernoff bound. Under our assumption that the chan-

nel is memoryless, we have

P[xN--* iN] <_ E{e)_-'_l[m(ri'_')-m(r"x')]IXN}

I

N

i=1

Now, define the quantity D_ as follows:

e -Dx(x'_) = E f_e'X[m(r"e)-m(r'r)][z'_,
k .J

(4.4)

so that N

I)[XN ""4 _N] <-- H e-D)'(xi'x{)"

i--I

Next, apply a random coding argument. With the assumption that

the code alphabet consists of M distinct signals, randomly select the 2N

signals forming XN and iN, where each signal is independently selected

with uniform probability. The average pairwise error bound is then

P[XN "" XN]

N

--< H e-Dx(zi'/:i)
i=1

N

= H e-Dx(:':i"_')
i--1

[ '/]= e_Dx(:c, _ N

= 2-Ro(_)N
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where we have defined

Ro(A) = - log2 e -D_(_'_), (4.5)

and the random coding average has the explicit expression

1
= Z: Z: (4.6)

The value of A should be chosen in order to minimize the Chernoff bound,

i.e., to maximize Ro(A). If this is not feasible, a suboptimum bound will be

obtained.

Fading channel

With a channel affected only by additive complex white Gaussian noise n

with two-sided power spectral density 2N0) and fading (represented by a

random variable p), if perfect state information is assumed we may use the

metric
m(,,=) = - II r - p= II2,

where r = pz + n. In this case, by observing that for a complex Gaussian
random variable n with mean zero, variance 2No and independent real and

imaginary parts we have

E[e a'_] = elal2No/2,

a simple calculation shows that, by choosing for :k its optimum value 1/4N0,

e-Dll+tCo(x,_)_ E {e-r_'o a211x-_l12},

where the expectation is taken with respect to the random variable p repre-

senting the fading effect. We get the expression

4.2 Suboptimum coherent detection

The detection problem is as follows. The optimum (maximum likelihood

sequence) detector must find the sequence of source symbols u which is
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mapped into the sequence a' that maximizes the likelihood function

A[r(t)la',p(t),¢o] = exp [ --_o .lo It(t) - p(t)s(t,a',¢o)12dt

= exp(__-_llr(t)-,(t)s(t,a',¢o)ll 2 dr}.

Now, let us divide the total observation interval into t¢ subintervals of dura-

tion Ts seconds each. Then we can write

IIr(t) - p(t)s(t,a',_bo)112-- _ IIrk - p_(at,¢k, ¢o)II2 •
k=O

The time dependence has been omitted for simplicity, r_ and p_ denote r(t)

and p(t) in the interval (kTs, (k + 1)Ts), and, in the same time interval,

j[2_rhatq(t kTs) + Ck + ¢0],
s( ark,Ck, ¢o ) = V _ exp

(4.8)

where
k-1

' k = 1,. ,_, (4.9)Ck= _h _ a_, ..
rt=0

is the value of the phase accumulated up to the k-th time interval. The

latter is also called the "phase state" of the CPM signal.
If we assume that the receiver achieves perfect coherence, the value of ¢0

is known, and hence, without loss of generality, we shall assign it the value 0
and exclude it from consideration as well as from our notations. Disregard,

for a moment, the interleaver/deinterleaver pair. In this situation, optimum

coherent detection of the received sequence would be obtained by using in

the TCM detector the additive metric

rn[r(t),s(t,a')] = _ II_k- Pk_(at,¢k)II 2 •
k=0

In the Viterbi-algorithm parlance this corresponds to associating the branch

metric II rk - pks(a_, Ck) II2 with the trellis branches corresponding to the

transmitted symbol a t. Now, it is apparent that the metric values depend

on _bk as well, i.e., on the state of the CPM modulator when the signal

scat, Ck) was transmitted. To take this fact into account, we should expand
the TCM trellis. Let us denote by STCM the number of TCM states and
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by SCPM the number of CPM states.The latterisequal to the number of

distinctvalues(rood 2_')of the accumulated phases,i.e.,ifh = p/q isthe

modulation index, with p and q relativelyprime integers,equal to either

q (ifp is even) or 2q (ifp isodd) [58,p. 169]. Then every statein the

originalTCM trellismust be transformed into SCPM states,one for each

valueof Ck- The resulting"product trellis"has STCMSCP'_ states,and this

isthe number that determinesthe computational complexityof the "single-

approach" Viterbi algorithm.
To avoid this state growth and to be able to perform interleaving/de-

interleaving (which is feasible only if we separate the operations of CPM

demodulator and TCM decoder), we should get rid of the term Ck, possibly

by using non-coherent or differential detection (see, e.g., [361/. Here we

consider a coherent scheme, based on the following idea. The CPM signal is

sent to an optimum coherent detector, based on the Viterbi algorithm and

which outputs only the sequence of states, i.e., the values of the sequence

Ck. These phases are then removed from the received signal, which turns

out to be, in the interval (kTs, (k + 1)Ts),

2]_$ • t /t

,.(t)= V-- e v j,  qt - kTs)+ v(t).

After deinterleaving,the originalorder of the sequence a isrestored,and

hence the metricsl]rk - pks(ak)I[2 can be sentto the TCM decoder. To be

ableto analyze thisreceiver,we shallmake the simplifyingassumption that

the sequence of statesCk isdeliveredto the TCM decoder without errors.I

With thisreceiverstructure,we generate (seeFig. 4.11 an equivalent

discrete-time,discrete-input,continuous-outputchannel,whose inputs are

the TCM encoded symbols an and whose output isa sequence ofquantities

used to compute the metrics to be associatedwith the symbols a,_.This

channel should resemble a memoryless channel (due to the idealinterleav-

ing/deinterleavingprocess) perturbed by additivenoise and independent

fading. Notice that with thistransmissionscheme the designof the TCM

scheme issimplified,because we may takeadvantage ofthe wide setofresults

availableon the designof TCM schemes for thesechannels [44].

_This assumption is simi]a_to the standard assumption usually accepted in the study

of coherent detection systems, i.e.,that the carrierphase recovery system operates with

zero error. In both cases this is not realistic,since it implies an infinitesignal-to-noise

ratio,and hence zero error probability. Consequently, the resultsthat follow should be

interpreted as bounds to the performance of any reM-lifesystem.
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4.2.1 Computation of Ro

Given a transmissionchannelto be used forcoding,a suitableone-parameter

characterizationof itscoding capabilitiesisprovided by the cutoffrate R0

createdby the modulation system [47].In fact,although no formal proof is

available,itiswidelybelievedthat R0 isthe ratebeyond which itbecomes

very expensiveto communicate reliablyover a channel.

The computation of Ro isdescribedin the Appendix. For the AWGN

channel without fading,(4.7)specializesto

Ro = 2 log 2 M - log 2
I M M

M + E E e-IIs(2i-M-1)-s(2j-M-1)ll2/8N°

i=l ill
j#i

(4.10)

where in our case

I1_(2i- M- 1) - s(2j - M - 1)II

2Es _oT"- T, 11 eJ2_rh(2i-M-1)q(t) -- eJ2rh(2j-M-1)q(t) ]12dt

= _2E" [2Ts-2foT'c°s4rh(i-j)q(t)dt I

For example, in CPFSK we have

t

q(t) = 2-Y:'

and hence

II s(2i - 1) - s(2j - 1)I1=: 4Es [1 -
sin2rh(i- j)]

The 1RC phase pulse isdefinedas

t 1 t

q(t) = 2T, 47r sin2_r_-:,

and the distances II s(2i- 1) - a(2j - 1) II can be evaluated by numerical

integration. The corresponding values of Ro are plotted, along with Ro for

coherent PSK, inFig. 4.2 for M = 8 and in Fig. 4.3 for M = 16. It is
noticed that for low values of the modulation index h (i.e., small spectrum

occupancy) PSK has a larger Ro, due to its better distance properties (which

are traded for the better spectral properties of CPM).
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When fading is present and perfect state information [64] is available, (4.7)

becomes

i=1 j=l

(4.11)

Now, by using the results of [64], we obtain, for a PAcian channel,

1 + K exp , (4.12)
E[exp -p2/9ij] = 1 + K + 13ij 1 -4- g nu t_ij

while for a Rayleigh channel

1 (4.13)
E[exp = 1--+Z j"

By substituting

1

_J - S--_o II _(2i- 1)- _(2j- 1)II 2 (4.14)

in (4.11), we get the desired expression for Ro. The corresponding values of

Ro are plotted in Fig. 4.4 for M = 8 and Fig. 4.5 for M = 16.

Fig. 4.6 shows the effect over Ro of the selection of the modulation index

h. If trellis-coded modulation, based on an m/(m + 1) convolutional code,

m = log 2 M - 1, is to be used in conjunction with M-ary CPM, we are in-

terested in the signal-to-noise ratio necessary to achieve a value of Ro equal

to log 2 M - 1, the actual number of information bits carried by each Ts-

second signal. This value is plotted versus h for octonary CPFSK. It is seen
that the lowest values of Eb/No, and hence the most power-efficient coding

channel, is generated for higher values of h. This fact can be explained by

observing that higher modulation indices correspond to larger phase fluctu-
ations in the transmitted waveforms, which means that the waveforms are

more easily distinguishable. On the other hand, larger values of h imply a

broader power density spectrum, so that the trade-off is between spectrum

occupancy and power efficiency. This is illustrated in Fig. 4.7, which shows

the out-of-band power of 1RC-CPM as a function of the modulation index.

It may also be observed that for large h the power efficiency of CPFSK can

be greater than that of PSK.

Figure 4.8 shows, for M = 8 and h = 1/4, a comparison between R0

associated with optimum and suboptimum coherent detection of CPFSK. It

is seen that for Ro = 2 suboptimum detection causes a loss in signal-to-noise

ratio of about 2 dB.

W
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4.3 Suboptimum noncoherent detection

As noted before,to avoid the stategrowth caused by optimum detection

and in order to be abletoperform interleaving/deinterleaving,we must get

rid of the term Ck + ¢0 appearing in (4.8).Here we do thisby considering

noncoherent symbol-by-symbol demodulation of CPM signals.

4.3.1 Computation of Ro

Let us definethe quantities

and

--_ /(i+I)TjAi r(t)s'(t,a_)dt (4.15)
JiT,

Ai = [(_+t)T. r(tlFCt,&_)dt. (4.161
J iT_

These quantities,for given valuesof the fadingvariableand of the trans-

mitted symbol a_,are complex-valuedGaussian random variables.Sincewe

assuming perfectinterleaving,the sequence {A_} isan independent,identi-

callydistributedsequence.

We assume here the followingnoncoherent detectionrule: choose the

symbol sequence {&_} if

_] Ii_12= max_ I_1_, (4.17)
i i

where the maximum istaken over allthe possiblesequences {ai}.

The pairwise error probability P[a' --* &'] that the detector chooses &'

a' when it is known that either .6' or a' was transmitted may be upper

bounded by using the Chernoff bound:

(4.18)

= rain H E {exp(-_[lA, I2 -li,[2])lp,, a:} (4.19)

-- rain I_ E {e¢"]pi,Ti}, (4.201

where _ is the Chernoffbound parameter (to be optLmized to get the tightest

possible bound) and
7_= i_1__ I_1_. (4.21)
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The actual computation of the Chernofl" bound requires the calculation of

the expectation E over 7_, i.e., over the pair of complex random variables

A_, A,. Let z i denote the following Gaussian random vector:

•_= [i,, _],

so that we can write

_i li_l_ I,X,I2 " "" " = --_'A--T= - = X,Xi - X_X, (4.22)

where

A= 0 -1 '

and the superscript T denote transpose. Thus, the computation of the

Chernoff bound is based on the evaluation of an average of the form

E{exp_z'A.zT[p,a '} -/exp_z'AzTfz(zlp, a')dz (4.23)

where fz(zlp, a') denotes the conditional Gaussian probability density func-

tion
1 1

fz(z[p,a') = (2r)21ql exp{-_[z - ¢]'q-l[z - i] T} (4.24)

with Q the conditional covaxiance matrix

1 "IT} IP,a] (4.25)q =_z[exp{[- - ,1"[,-

and i = E[zlp, a']. Explicitly, we must compute the integral

(2_)_lql_/ _{_''A'r __[.__ ,].q-,[,._ ,]r}d,. (4.26)

After a certainamount ofalgebra,we find

E {exp[_z'AzT]lp, a'} = IHI _B (4.27)_.e ,

where

and

B = -1_.'q-1[I- (I- 2_QA)-I] _.T (4.28)

IHI z
_ (4.29)

lql IX- 2_QAI'

imm
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so that,in conclusion,

exp{-½_Q?l[I- (I- 2_A)-1]}_, r (4.30)
P[a' --* _.'lp]< m_n 1-! lI- 2_qiAl "

8

We now determine the entries of the covariance matrix Qi. Under the as-

sumption that the noise is white and complex with power spectral density

2N0 we obtain

[ 1 Ai] (4.31)Qi=2N°E" A_ 1

where we define

1 [.+_r. exp[j2.'h(,,_-a_)q(t- iT.)lat
Ai = "_s J/T,

and E, is the average signal energy in a Ts-second interval.

We also have

2i = 2piE_[Ai , 1],

and

where

[I-2_QiA[ = det[ 1-A-AiA AiA]I+A

= i - A2#i

A = 4_NoE,

_,_-- 1-IzX_l_.
and

(4.32)

(4.33)

After some further lengthy but straightforward computations, we finally

obtain

1 E, p_(A - A2)pi]. (4.34)
P[-' -- _'1. ] -<_n 1-I1- _., exp[ _0 1 - _./

It can be easily proved that, under the constraint

O<A<I,

the exponent of the right-hand side of (4.34) is always negative, as it should

be to provide a meaningful bound.

I
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By using a result in [64], we observe that, for a Rician channel,

I+K /3K
Z[e_ -p_Z] = 1 + X + Z e_p - 1 + K + 8'

while for a Rayleigh channel, as K = 0,

1

E[exp-p2_]- 1--_"

Thus, by substituting
E, (A- A2)_

in (4.34), we obt_, for any _ e (0,1),

P[a' --*_'] <
I+K1"1"

exp (1- A2/z,)(1 + K) + ._0 (A - A2)/J,

for l_ician fading, while for Rayleigh fading we find

1

P[a' ---+A'] <: l-I/(1- A2iu,) d- _o(A- A2)/_,"
(4.35)

The corresponding values of R0 are plotted in Fig. 4.9 to 4.12, where A

was chosen equal to 0.5, a value which was found optimum or near optimum

in most cases. Fig. 4.13 shows the effect over R0 of the selection of the

modulation index h. The signal-to-noise ratio necessary to achieve a value

of Ro equal to log 2 M- 1 is plotted versus h for octonary CPFSK. As for

coherent detection, the lowest values of Eb/No, and hence the most power-

efficient coding channel, correspond to higher values of h.

1row
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Trellis Encoder

Trellis Decoder

_!ii!ii_iiiii!i!i!_ii!iiiiiiiiiiiiiiii!iiii!_i_ii_!i_i!i!i!__!___!iiii__ii!i!_!!_i

!_i!iii!iiii!iii!i!iiii!iiiii!!iiiiiiiii

:_:;:!:_:i:_:i:!:!:_:i:i:_:i:i:i_i:i:i:i:i:

w

Figure 4.1: Block diagram of the transmission system.
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Figure 4.2: Comparison of cutoff rate Ro of coherent octonary PSK,

llIC-CPM and CPFSK with coherent, symbol-by-symbol detection and ad-

ditive, white Gaussian noise channel.
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Figure 4.5: Comparison of cutoff rate Ro of 16-ary coherent PSK, 1RC-CPM

and CPFSK with coherent, symbol-by-symbol detection and Rice/Rayleigh
fading channel.

h

m



=

CHAPTER4.

14

COHERENT VS. NONCOHERENT CPM DETECTION68

w

Z

6

0
0.1 0.2 0.3 0.4 0.5

V

h, Modulation Index

Figure 4.6: Eb/No for R0 = 2 bits/symbol with octonary CPFSK versus the

modulation index h. + denote the points at which CPM starts outperform-

ing PSK.
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Figure 4.9: Comparison of cutoff rate Ro of 1RC-CPM and CPFSK with

noncoherent symbol-by-symbol detection and of coherent PSK over additive,

white Gaussian noise channel. (M = 8).
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Figure 4.13: Eb/No for Ro = 2 bits/symbol with octonaxy, noncoherent

CPFSK versus the modulation index h.
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Chapter 5

Differential CPM

m

In thisChapter we describesymbol-by-symbol differentialdetectionofCPM.

Further,we considerprecodlngofdifferentially-detectedCPM. The material

thatfollowsisadapted from [35].

The complex envelope of the receivedsignal,say _(t)isdelayed by Ts

seconds,transformed intoitsconjugate _*(t- Ts),and multipliedby itself.

Then the realand imaginary components of the signal_(t)_(t - Ts) are

sampled every/'8 seconds. As a result,a discretesignalisobtained whose

phase is
27rfoT_ + Ag_ + rl,_

where A#_ represents the change over one symbol interval of the signal

phase, and T/,_represents the change in phase due to the noise. Under the

assumption that f0Ts is an integer number, estimate of this phase provides

a noisy estimate of AS_, which is used to recover the information sequence.
For full-response CPM (the case of precoded partial response will be

considered later) we have
AO,_ = _ha,_,

so thatthe maximum valuetaken on by the phase shiftis

IAOlmnx = rh(M - 1).

This quantitymust be lowerthan _rbecause the phasesare observed modulo

2_r.Thus, we must choose

I (5.1)
M-I

76



w

w

u

m
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5.1 Precoding differential CPM

A form of precoding is developed for use in the channel, to allow symbol-by-

symbol detection even for partial-response signalling, in which the frequency

pulse duration is longer than one symbol time. This precoding undoes, be-
fore it is done, the correlation among symbols introduced by the modulator

and the differential detector. The precoding is based on a modulo-M op-

eration. Precodlng is not needed for full-response CPM when the minimal

modulation index is desired; for a larger modulation index or for partial-

response signalling, it is needed.
Our description of the precoder will be based on the CPM modulator

model developed by Rimoldi [34]. The source output (see Fig. 5.1 is a se-

quence u of independent, equally likely, M-ary symbols un. The first element
in the transmitter is the precoder, the output of which is the sequence u _ of

M-ary symbols ' This sequence is input to the continuous-phase modula-
U n •

for. The output of the modulator is an I_ signal with information-carrying

phase ¢(t). The receiver consists of a differential detector and a baseband

signal processor (BSP). The next element is a phase detector, with output

A¢(t) ÷ noise, modulo 2_r, where A¢(t) -- ¢(t) - ¢(t - T_). This output

is sampled every T_ to yield the sequence ACn + noise, modulo 27r. This is

input to the BSP, which outputs the sequence of soft-decision estimates of

the u_.
We write the CPM signal phase in the form

exp{j[27rflt + ¢(t, u')]}.

In particular, following the notation of [34], we define the "tilted phase" ¢

by

n-L L-1

¢((r + n)T,,u') = 2rh _ u_÷4xh _ u__iq((r +i)T,)+ W(rT,)
i=0 i=0

for 0 < _" < 1. Here W is a time function dependent on h, M, and q. The

frequency )1 is lower than the signal's center frequency by h(M - 1)/2Ts.
The differential detector outputs noisy samples of the differential phase.

Let us suppose that the sampling epoch is r_Ts. Without loss of generality,

_, e (0,1].

We define the samples qi of q by

qi=q((r,+i)T,) fori=O,1,...,L-1

w
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Figure 5.1: Block diagram of differential CPM detection.
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while requiring that
qo> O.

The phase ¢_ at the n-th sampling time is

Crl, = ¢((_. + n)T.,u')
n-L L-I

' 4,_hZ" W(,-sTs)= 2rh_u 4+ ,__,qi+
4=0 4=0

The n-th sampled, differential phase A¢,_ is then

for n>_ 0

(52)

A¢. = ¢.--¢.-1
L-I I

= 2_h[-" 2q0+ _ .'_,(2q4 - 2q4-1)+ -'_L(2 × _ - 2qL-1)]
4=1

for n > 1. For the case of full-response CPM (i.e. L = 1), we may choose

l"s = 1 so q0 = 1/2. Then
A¢. = 21rh u..' (5.3)

Now we axe in a position to see what a precoder can do for us. If

precoding is not used in the transmitter, so that u r is the channel input
,U! /

sequence, then the receiver has to try to remove the effects of ,_-1,.. • ,Un-L
' (This is "opening the eye" of the signal.)from A¢,_, the better to detect u n.

It is better to remove the effects of nearby symbols in the transmitter, where

the symbols are known without error [32]. To that effect, let us presume

that u' is the symbol sequence out of a precoder and that u is the M-ary

symbol sequence input to the precoder and thus to the channel. We want

A¢,_ to be closely related to u,_ only. We have to assume now that all the

qi's are rational. Then

2_rh L
Un_ i diA¢_= Q _' (5.4)

4=0

where

do = Qx2qo

di = Qx(2ql-qi-1) fori=l,...,L-1
1

dL = Q X(2X_--2qL-I)

W
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and Q is the smallest positive integer such that all the dd's are integers.

In analogy with the coherent reception case [32], we want a precoder that

makes L

,,.= RM(_ u'_,d,)
i=0

where Rx is the modulo-z function. Then we shall have

u,_ -- RM(t¢ A¢a), (5.5)

where Q

_,_ _"

The precoder has to perform the operation
L

,_"= R_ [_ (u.- _,,'_, d_)].
i=l

It is required that do and M be relatively prime. In the ease where L = 1
We can think thatand rs = 1, there is no need for a precoder, so u,_ = u,_.

Q = 1. ACn and u,_ are simply related by

_ = _ A¢. (5.6)

The spectrum of the CPM signal is the same with or without precoding,

since the _'u,_ s are equally likely and independent when the u_'s are [33].

w

w

5.2 Computation of R0

In this section we consider the computation of the parameter R0 for the

channel created by CPM modulation with precoding and differential detec-

tion. The results obtained from this computation will allow us to choose the

parameters for the combination of CPM with trellis-coded modulation.
We now make two assumptions which allow us to calculate R0. The

baseband signal processor (BSP) input (see Fig. 5.1) is R2_(A¢,_ % noise).

The first assumption is that the BSP output V,_ is simply given by

V. = RM[sRz_(A¢. + noise)] e [0,M).
i

The second assumption is that

Q/h = AM (5.7)

W
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for some positive integer A. The firstassumption then takes the form

V,_ = RM[Ic(A¢,_ + noise)].

Thus, whether precoding is used or not, the following simple relationship

between the channel input U,_ and output Vn can be derived:

V, = aM [U_ + _(noise)] (5.8)

The noise term in the differential detector output, which is the BSP input,

is
noise =/_n -/_-z, (5.9)

where /_,_is the error in the N-th noisy phase. It turns out that Ro for

the channel can be calculated once the probability density function of #,_ is

known. The pclfof #_ is

Z 2¢'_cos(a)[Z Q(v/_cos_)]e_P(_ c°s2 a)}p_(_)= 2-_exp(-_){z+
(5.10)

for 0 <_ a < 27r, where

1 oo

Q(z) = _f_ exp(-t2/2) dr.

We can now calculate the cutoff rate Ro for our channel. We derive a

discrete-input memoryless channel equivalent to our channel in terms of Ro,

then we present numerical results. From Equations (5.8) and (5.9) we know

that successive channel outputs V,_-I and V,, are given by

v___ = RM[,,,,-_+ ,_(_,,,-_- _,,,-2)]
V, = RM[,,,,+ '¢(_',,- _',,-_)]. (5.ZZ)

This does not represent a memoryless channel. While the channel input

symbols u_-1 and u_ are independent, the noise terms l_-z -/_n-2 and

_r, --_r,-1 are not.
Here we construct a discrete-input memoryless channel, for which R0

can be calculated. In constructing the memoryless channel, let us define a

new sequence of continuous-valued random variables Y,_ by

Yn = RM(Vn +'" + Vl + "Co) _. [0)M) for n > 1 (5.12)

The receiver must observe V0 defined by

Vo= R. [_(¢o+ ,o)].
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Given V0, foreach N the set {YI,...,YN} of random variablescan be cal-

culatedfrom the set (VI,... ,VN} of random variables, and vice versa. We

can show that the new channel is memoryless. We find that

n--1

Y,_ = RM(__, u_ + ,¢¢0 + _/_,_) (5.13)
i=I

from which we can show that the Y_'s are independent. The fact that the

distribution of Y,_ depends only on the value of X,_ follows from the relation

Yn = RM(Xn + _¢0 + _n),

where the receiver must know RM(_¢o). (The latter point means that there

must be phase synchronism at time zero, which can be obtained along with

symbol synchronism by the transmission of a training sequence before the

data.)

Ro isgiven by

R0 = - log2 1 /0 M M-1 M-1dy _ __, V/p(ylklp(yl i)
k=0 i----0

(5.i4)

where p denotes the conditionalprobabilitydensityfunctionfor YI given

Xl. For a given SNR, R0 isdetermined solelyby A and M.

Figure 5.2 shows how Ro varieswith A and SNR, for M = 2 and A =

1,2,3,4,8.From thisplot (and similarplotsthat have been obtained for

M = 3,4,8, and 16, we findthet for R0 in the mid-range, having A = 2

insteadof A = 1 representsa 4.5-5dB lossin SNR. Similarly,having A = 3

insteadof A = 2 representsa 3-3.5dB loss.Figure5.3 shows how Ro varies

with M and SNR, for A = 1, M = 2, 3, 4, 8, 16.

5.3 Selection of channel parameters

In this section we will look at how one makes a good selection of the channel

parameters,which are as follows:

I. the modulation index h;

2. the phase pulse q;

3. the scaledsampling epoch r,,a positivetime no greaterthan I (the

actualsampling epoch being rsT,).

W
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Here we will give examples of the good selection of channel parameters.

The families of pulse to be treated are named, as is common usage, by the

frequency pulse and not the phase pulse. The families will be treated in

order of increasing smoothness, which corresponds to the signal spectrum

having a wider mainlobe and faster roll-off at frequencies far from the carrier

frequency.
The highest quality channel (A = 1) can be obtained with a frequency

pulse of duration LT if h = L/M and L is as follows: for the rectangular

(LREC) pulse, L is any integer; for the triangular (LTRI), L is any integer;
for the raised cosine (LRC), L = 1 or 2; for the convolved-raised-cosine

(LCRC), L = 1 or 2. The second highest quality channel (A = 2) can be
obtained with h half the size. In general, larger h means wider spectrum, so

we have listed only the smallest h in each case. For a given L, different h's

are provided by different r's. In general, larger L means narrower spectrum,

but larger L calls for larger h to maintain the channel quality, so it needs to

be investigated which L provides the best spectrum.

=
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Chapter 6

Doppler phase shift removal

In this Chapter we consider the effect of a Doppler frequency shift over

dlfferentially-detected CPM signals, and we derive a circuit that makes it

possible to estimate and to remove the corresponding phase shift.
Let us write the observed signal r(t) in the form

r(t) = P( t )e j[2'_l_t+e(t'a)+_(t)], (6.1)

where P(t) and v(t) are the amplitude fluctuation and the phase fluctuation,

respectively. They account for fading, noise, and intersymbol interference.

fd is the Doppler frequency shift.
For differential processing, the signal (6.1) is synchronously sampled at

times

t_ = nTs, n = O, 1, . . . ,

and the following sequence is formed:

where

r. = -_r(t.)r'(t._l) = p.e jt_+A°"+''l

Cd = 27rfdTs

is the Doppler phase shift,

ZXen= 0(t_,a) - e(tn_l,a) = _han

represents the phase fluctuations due to the transmltted data, and

_ = v(t_) - v(tn_l).

(6.2)

86
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Finally,

=

(Perfect symbol synchronization is assumed.)
It is seen from (6.2) that the presence of a Doppler frequency shift causes

the phase of the sequence r_ to be altered by a term Cd, added to the
information sequence Ae_. This has to be removed prior to demodulation.

6.1 Estimation schemes

Two constraints are associated with the design of a Doppler compensation

circuit for continuous-phase modulated signals with application to mobile

satellite communications:

• Fast frequency acquisition is required. In fact, if data are transmit-

ted in short bursts or packets, the acquisition time should not be a

significant portion of the burst interval.

• Since multipath fading affects the propagation, the Doppler estimator
must be insensitive to the signal amplltude fluctuations caused by

fading.

As a consequence of the first requirement, we consider open-loop esti-

mation structures, as first suggested (for different systems) in [82,78,29].

The class of methods we propose to estimate the Doppler phase shift

_bd is based on the following considerations. Consider a random variable ®,

observed rood 2r/A and taking values 8 e (-r/A,*r/A). Let f(e jA°) be its

probability density function. We assume that .f(.) is a symmetric function,

so that

Eta =
J-2_r/A

is a real quantity. Now the problem is the following. Assume that we observe

K (say) values of • = $ + ¢, where ¢ is a constant, and we want to estimate

¢ based on these observations. The probability density of $ + ¢ is obtained

by shifting (rood 2x'/A) the original function fl(0), so that we get

[2./A eJAC f(eJA(¢_¢))d_)
E[eJA_] : a-2_r/A

= eJA_E[eJAe].
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Thus, under our symmetry assumption, ¢ can be obtained from the phase

of E[eJA_], which ill turn can be estimated as

K

1 eJA¢ k (6.3)

k=l

where Ck, k = 1,... ,K, denote the observed values of 9.
Observation of eq. (6.2) shows that the phase of the received samples

includes a noise term r/n, which we shall assume to have a symmetric prob-

ability density function, and a data term A0,_, which takes on values

+_rh,+3xh,...,+(M - 1)_rh (rood 2z').

Since h = J/M, the probability density function of the above phase turns

out to be periodic with period 2_rh, and in the interval i-x, x) it has copies

centered at ilrh, i = ±1, ±3,..., ±(M - 1).

From the theory presented before we see that the estimate of the Doppler

shift _bd can be based on the phase of the quantity

1 K

k=l

where
zn -- F(pn)e jM(¢d+AO'_+m_), (6.4)

and the positive function F(.) is arbitrary. Thus, the estimator of the

Doppler phase shift becomes, if E[e jAe] is a positive quantity,

1 tall_ 1 _" znK=-o 1 f(P,_)sinM((VP4 + A0. + r/_) (6.5)
= K-I M(¢d + A0. + r/_)"M _ Zn=o F(p,) cos

In words, (6.4) is equivalent to performing a transformation from rectangular

to polar coordinates on each complex sample r,,. Next, we perform two
transformations on its amplitude and phase. Finally, we perform a polar-to-

rectangular transformation on the result. As observed in [82], in a practical

implementation the nonlinearity becomes a read-only memory transforming

a quantized complex number into another quantized complex number.
The choice of the function F should take into account the presence of

fading. In fact, samples heavily affected by fading should be given a lower

weight in the time averages which form the estimate _. In our simulations,

we have always assumed F(pn) = p,, which is perhaps the simplest choice to
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decrease the influence of the samples whose amplitude is lowered by fading

effects.
For future reference, observe that (6.5) can be rewritten in the form

1 Ac sin M¢_ + As cos Md_d (6.6)
2p= -_ tan -1 As cos MCd - Ac sin M_d'

where

K-1

1 M(AO_+?_)ac = F(p.)cos
n,-_O

I K-1

As = "_ _ F(p_lsinM(AO_ + ,7_)
r_-_-O

The trigonometric identity

tan- t Bsin¢ + Acos¢ A (6.7)
Bcos¢ - Asin¢ = ¢ + tan-1 B'

in conjunction with (6.6), provides an expression for the estimation error:

1 1 As (6.8)

6.1.1 Estimator A

The firstestimatorwe considerisbased on eq.(6.5),with F(pn) = p,_.

6.1.2 Estimator B

We considerhere an estimatorstructurewhose aim isto broaden the range

of Doppler phases that can be tracked.

Assume that the receivedsignalissampled twiceper signalinginterval,

namely, at time instants (n + a)Ts and (n + b)Ts, n = 0, 1,..., where 0 <

a < b < 1. If one sample is multiplied by the conjugate of the other one, we

get a sequence of quantities whose phases have the form

_n = (b - a)dpd + 21rha_,4(a, b) + tin,

where A(a, b) < ½ denotes the area of the frequency pulse used for CPM
between times aTs and bTs. (Note that r}n has now a meaning different from
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before). The presence of the factor b - a in the Doppler phase term causes
an increase in the estimator variance: in fact, we have

1 As

- _d - (b - a)M tan-1 A--'c

instead of (6.8). Under the rough assumption that the term tan -1 _c re-

mains the same, the estimation error increases by a factor 1/(b- a). This,

in turn, increases by a factor of approximately 1/(b - a) _ the value of the

sample size K necessary to achieve a given estimator variance.
As a consequence of this estimator structure, the probability density

function of the phase _b,_turns out to be periodic with period 47rh.4(a, b), a

quantity less than 2_rh. To avoid ambiguities in the estimation procedure,

we must have: I(b - a)¢41 < IrhA(a, b). Thus, with respect to Estimator A,

we get a broader range of Doppler phases that can be estimated if the ratio

p = 2A(a, b)/b - a is greater than 1.

6.1.3 Estimator C

This estimator further extends the range of Doppler frequencies that can be

tracked.
The basic idea underlying Estimator C is that in one symbol interval

the phase variation due to the Doppler frequency shift is linear, while that
due to data modulation depends on the shape of the phase pulse, and hence

can be made nonlinear. Thus, it exploits the nonlinearity of the phase pulse

by performing two differential detections based on four samples within each

symbol interval. Details about it can be found in [36].

6.2 Simulation results

We now describe some results arising from computer simulation of Doppler

frequency shift estimators A,B, and C. We assume an octonary, full-response
CPM with modulation index h = 1/8 and 1RC frequency pulse, i.e.,

1 2_'t.

g(t) = cos- -j.

In Estimator B, a = 0.1 and b = 0.9, so that

2
=0.4935,
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and 2A
= 1.234.

P-b-a

The comparisons are made in terms of the variance of the Doppler frequency

estimation error. For all the estimators, 4095 symbol intervals were simu-

lated. For Estimators A and B, a window of K intervals was used to compute

¢, and hence ]d. This window was slided by one symbol interval at the time

to generate a set of estimates. The estimate of _2 was then obtained by av-

eraging the squared estimation error over 4095 - K runs. (Notice that with

this procedure the estimates become less and less accurate as K increases).
For Estimator C, the time-average was evaluated by using a one-pole But-

terworth filter whose output was sampled at time KTs.

In Figs. 6.1 to 6.6 the variance of the Doppler frequency estimation error

is plotted vs. K for several values of signal-to-noise ratio. Figs. 6.7 to 6.9

compare the error variances of estimators A,B, and C for three values of

signal-to-noise ratio.

6.3 Conclusions

Three estimatorsofDoppler frequencyshiftin CPM signalswere proposed,

and theirperformance evaluatedby simulation.Their structureisbased on

differentialdetection,which makes them attractiveforuse ina differentially

coherentreceiver(althoughinprinciplethey can be used inconjunctionwith

any other CPM detectionscheme).
These estimatorsare in order ofincreasingcomplexity.Increasedcom-

plexityismade necessaryto remove ambiguitiesin the estimate when the

Doppler frequencyshiftishigh. Moreover, at leastforhigh signal-to-noise

ratios,a wider range of trackableDoppler frequenciescausesa substantial

increasein the varianceof the estimationerror.
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Figure 6.1: Estimator A. Variance of the Doppler frequency estimation error

in the presence of AWGN and data modulation, fd = 0 Hz, vs. the number

K of samples averaged (abscissa label is K/100).
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Figure 6.2: Estimator A. Variance of the Doppler frequency estimation error

in the presence of AWGN and data modulation, f4 = 134 Hz, vs. the number

K of samples averaged (abscissa label is K/100).
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Figure. 6.3: Estimator B. Variance of the Doppler frequency estimation error

in the presence of AWGN and data modulation, ]d = 0 Hz, vs. the number

K of samples averaged (abscissa labet is K/100).
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Figure 6.4: Estimator B. Variance of the Doppler frequency estimation error
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Figure 6.5: Estimator C. Variance of the Doppler frequency estimation error

in the presence of AWGN and data modulation, fd = 0 Hz, vs. the number

K of samples averaged (abscissa label is K/100).
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Figure 6.6: Estimator C. Variance of the Doppler frequency estimation error

in the presence of AWGN and data modulation, fd = 134 Hz, vs. the number

K of samples averaged (abscissa label is K/100).
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Chapter 7

Timing recovery circuit

This Chapter presentsanalysisand simulationof a circuitdesigned to re-

cover the symbol timing from a CPM signal.This circuitisbased on the

inherent self-synchronizingcapabilitiesof CPM, and in particularon the

property that,when raisedto a suitablepower, a CPM signalwith rational

modulation index willexhibita power spectraldensitywith spectrallines

spaced by the clockfrequency.
After the relevantmathematical analysis,we describethe simulation

procedure. Simulationresultsare presentedand interpreted,with the aim

of obtainingdesignguidelines.The conclusionisthat,with a proper choice

ofthe filtersand ofthe CPM pulseshapes,thiscircuitcan actuallysolvethe

problem of recoveringthe symbol timing in our system with a high enough

accuracy.

7.1 Generalities on symbol synchronization

In thissectionwe show the basicoperationof the synchronizer.Later on,

we shallexpand on thisanalysistoillustratehow to modify the synchronizer

to allow itto work in the presence of fadingand Doppler frequency shiR.

The originaldesignwas suggestedin [3],which presented the system as a

generalmethod for recoveringsymbol timing and carrierwave phase and

frequencyina CPM system. For our purposes,the system was simplifiedto

recoveronly the symbol timing.Fig.7.1shows the elements ofthe system,

with typicalfilterbandwidths foran 8-ary CPM system, when Rs = 2400,

h = 1/8,and inthe absence ofDoppler shift.

The analysisinthissectionisthe basisfora computer simulationof the
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system. The graphs inthischapterwere obtainedfrom simulation,using the

above mentioned parameters and a pulseshape ofI-REC. Later,simulation

willbe used to calculatethe variance of the symbol timing jitterin the

presence of Ricianfading,Doppler shift,and Gaussian noise.

The motivationbehind the system stems from the factthata CPM signal

with an integer valued modulation index h contains spectral lines [2], which

can be extracted to produce the symbol timing information. When Doppler

shift is present, the lines shift in frequency, but, since they all shift the same

amount, the timing information is not lost. This will become more clear as

the analysis progresses. The underlying principle of the system is based on

two standard trigonometric identities:

1 I cos2z (7.1)cos2z = _ +

1 1cos(_-_) (7.2)cos•cosy= 5co,(_+ y)+

These two identitiessuggest that, given a CPM signalwith modulation

index,h = 1/% we can change itintoa CPM signalwith h = i by raising

the signalto the 7thpower. This isillustratedbelow,with a simple cosine

functionwith argument 0:

1 1

cos20 = _ + _ cos2e (7.3)

3 1
cos30 = _cos0 + _ cos30 (7.4)

3 1 1
cos'0 = _ + _cos20 + _cos40 (7.5)

So, if we pass a CPM signal with h = 1/'7 through a 7-power device, the value

of e in the above equations is 21trot % ¢(t, 5). The output from the device

containsseveralcosineterms,includingone withargument 727rf0t+_,¢(t,5).

Now, sincethe original¢(t,5) iscalculatedusing h as the modulation index,

the "new" ¢(t,5) isessentiallythe same as the originalone, exceptthat the

"new" h isequal to 7 times the originalh, or h,_ew= 7horiginat= 1. In [2]

itisshown that an integer-hCPM system containsspectrallines,and the

"new" CPM signal,with h = I,isin that category.

'7.1.1 Basic Synchronizer

Figure 7.1 is the block diagram of the basic synchronizer.The operation

is straightforward.First,BPF1 passesthe receivedsignal,while limiting

w
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the amount of noise. Next, the CPM signal is passed through a V-power

device, which changes it to integer-h CPM. Now, the only term in the power

expansion that is useful is the highest frequency term (7f0), so BPF2 selects
the zone of frequencies near 7f0. Next, filters NBF1 and NBF2 each select

a spectral line, one located at vfo + nlrls/2 and one at vf0 - nR_/2, which

appear in the newly formed integer-h CPM. The two selected lines axe then

multiplied together to form sum and difference frequencies. The difference

frequency is then selected by LBPF, yielding a sinusoid of frequency nR_.

The frequency of the recovered sinusoid is then divided by n, yielding a

signal with frequency Rs, the symbol rate.

7.1.2 Low-Pass Equivalent Signals

In order to simulate the system described in Fig. 7.1, low-pass equivalent

signals representing the complez envelopes of the bandpass signals were used

throughout the simulation. (This is also a possible means of actual hard-

ware implementation.) The advantage of using low-pass equivalents instead

of their bandpass counterparts is that a lower sampling rate could be used,

without any loss of information. This keeps simulation run times to a min-

imum. For this reason, the frequency spectrum plots shown in this chapter

are for the complex envelopes of each signal. The spectrum of the actual

bandpass signals are derived by shifting the spectrum of the complex enve-

lope up in frequency, such that the dc (zero-frequency) component is located
at the reference frequency of each plot, and each plot, being symmetrical, is

reflected across its own reference frequency.

Although the analysis below is general enough to include the effects of

Doppler shift, noise, and fading, the spectra illustrated in this chapter were
calculated without adding any of these parameters, in order to illustrate

the basic principles of the system without any complications. The effects of

those parameters on symbol timing recovery will be included later.

7.2 System Analysis

7.2.1 Signal Definitions

We begin the analysis by referring to the definition of the CPM signal.

The spectrum of this signal (point "A" on Fig. 7.1) is shown in Fig. 7.2.

This plot is the spectrum of the complex envelope of the signal, whichs is

referenced to fc, the carrier frequency of the CPM signal. This spectrum
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was calculated using the computer simulation to provide a time-domain

representation of the signal, and then taking the discrete Fourier transform

of the data points. The sampling frequency of the simulation was fs = 16Rs.

BPF1 was designed to have a bandwidth sufficiently wide to pass the CPM

signal undistorted, and to allow for a given amount of Doppler shift, while

limiting noise. Therefore, the spectrum at point "B" is identical to the

spectrum at point "A", except that the noise power at "B" is reduced. A

theoretical power spectrum is shown in Fig. 7.3, which was calculated using

a technique described in [9] and presented in greater detail in what follows.

In Fig. 7.3, the frequency range is normalized to the symbol rate, Rs, but

the plot is otherwise in agreement with the simulated results. Notice that

the magnitudes of the two power spectra are different, but that the relative

magnitudes are essentially the same. There are two reasons for the difference

in absolute magnitude. First, the theoretical graph is normalized to the

symbol rate, so the magnitude is scaled to the normalization factor. Second,

the simulation results were calculated using a discrete Fourier transform,

so the resulting power level depends on the block-length N. Notice that

the main lobe of the signal is fairly narrow, with a low-pass-equivalent 3

dB bandwidth of about Rs/4 (the actual band-pass signal has twice this

bandwidth, or Rs/2).
At the output of BPF1, we have the undistorted CPM signal with

Doppler shift, A f, plus bandpass Gaussian noise, n(t) (In this section Af

and nit ) are both set to 0, but they are included for completeness.) We let

the signal power be P. Thus

y(t) = v_cos(2_(f0 + Af)t + ¢(t,a)) + n(t) (7.6)

= I(t) cos 2,_fot - Q(t) sin 2,_fot (7.7)

where

I(t) = V_ff cos (2rAft + ¢(t, &)) + no(t) (7.8)

Q(t) = v/2"ff sin (2rAft + ¢(t, &)) + ns(t) (7.9)

and no(t) and n,(t) are the in-phase and quadrature-phase noise compo-

nents, respectively. In polar form:

y(t) = R(t)cos(2rrfot + O(t)) (7.10)

where

R(t) = k/I_(t) + Q2(t) (7.11)

O(t) (7.12)oct)= tan-' z(t----S
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7.2.2 7-Power Device Operation

At the output of the 7-power device,the signalentersBPF2, which serves

as a zonal filter,allowingcomponents in the vicinityof7fo to pass through

it.The signalin the vicinityof 7f0 is:

y (t) = [R*(t)cos _ (2_'fot + 8(t))].ylo

= k[RZ(t)cos(78(t))cos27rTfo t- R_(t)sin(78(t))sin21rTfot]

= Ly(t) cos 2_'7fot - Q_(t) sin 2z7fot

= (7.13)

where k isa constant,and equation(7.13)isa bandpass signalwith complex

envelope (referencedto 7f0):

u(t) =

Without noise, and with h = 1/7,

oO

(7.14)

OO

iT,)= iT,) (7.1s)
! O0

which corresponds to integer-valued h CPM, having spectral lines located at

odd integral multiples of R,/2, as shown in [2]. The spectrum at point "C"

is shown in Fig. 7.4, which is the low-pass equivalent spectrum referenced to

f0. The actual bandpass signal has 8 spectral lines centered about f0. The

spectral lines are very striking in that plot, confirming the results in [2].

7.2.3 Filters NBF1 and NBF2

Next, we need to selectcertainspectrallinesusing bandpass filtersNBF1

and NBF2. The choiceis somewhat arbitrary.In fact,any narrow filter

should work (without Doppler shift).Since the signalisdefinedas a low-

pass signal,the bandpass filtersmust also be describedin terms of their

low-passequivalents,with in-phaseand quadrature-phaseimpulse response

components of each filter.

We willanalyze the case forNBFI; the analysisfor NBF2 isidentical,

except forseveralobvious substitutions.Startingwith the signalentering

the filter,we realizethat itisa low-pass signalreferencedto 7f0. NBFI

has a centerfrequency of (Tfo + nR_/2), which means itcan'be described
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by a low-pass filter, referenced to its center frequency.

response:
hit ) = Re[h(t)e32_(_]o+_1%) ]

where

It has an impulse

(7.16)

h(t) = he(t) 4" jh_(t) (7.17)

and he(t) and hs(t) are the in-phase and quadrature-phase impulse responses

of the filter. Rewriting the bandpass signal, z(t), entering NBF1 as:

z(t) = Re[._(t)e j2_'r'f°t] (7.18)

= Re[_(t)e-J2_R, teJ2_r('_.to+_ R°)t] (7.19)
n n

- _¢(t)cos2x(Tfo 4- _R,)t- _,(t)sin2a'(Tfo + _Ro)t (7.20)

= .e(t) + i.,(t) (7.21)
where

 e(t) = Re[ (t)e
n n

= zc(t) cos (2rTR,t) + z,(t) sin (2_'_R,t)

= tm[ (t)e-J2" a,']
n

= -zc(t)sin(2_r_R,t) + z,(t)cos(2r2R,t )

where z_(t)and z,(t)are the in-phaseand quadrature components of the

low-passequivalentofz(t).

Now, with thisnew signalreferencedto the same centerfrequency as

NBF1, we use the equivalentlow-pass filteringtechniquedescribedin [10]

and diagramed in Fig.7.5.The digitalfiltersused were designed using At-

lanta Signal Processors Digital Filter Design Package Version 1.02. With

symmetrical bandpass filters referenced to their center frequencies, only the

in-phase component, he(t), of the impulse response is needed, since the

quadrature-phase component, h_(t), is exactly zero. Therefore, Fig. 7.5

simplifies to Fig. 7.6. A similar analysis holds for NBF2, with z(t) being

re-referenced to (Tf0 -nl:l,/2). Thus, we produce yl(t), the filtered version

of z(t) through NBF1, and y2(t), the filtered version of z(t) through NBF2.

The power spectrum at point "D" is shown in Fig. 7.7, and at point "E"

in Fig. 7.8 using n = 1. In Fig. 7.7. These two figures are plotted slightly

differently from the others. They include both the positive and the negative

w
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frequenciesofthe spectra,sincethe spectraare not symmetrical about their

centerfrequencies,and itisimportant to show what isoccurringon each side

of the centerfrequency.In Fig. 7.7,the centerfrequency is(Tfo + I/2Ts).

Notice thatthereare 3 additionalspectrallinesthatare higherin frequency

than the selectedline,and 4 lineslowerinfrequency.Although the presence

oftheseadditionalspectrallinesisvisuallyapparent inthe graphs,they are

attenuatedabout 55 dB from the spectralllneof interest,due to the atten-

uation of the narrow-band filters.Since they are greatlyattenuated,they

actuallyhave littleeffectin the spectrum. In Fig.7.8,the centerfrequency

is (7)to - 1/2Ts). In that graph, there are 4 spectral lines in the positive

frequency direction, and 3 lines in the negative direction. The difference

between the two plots is related to the spectral line that we are recovering;
the first one has 3 lines above it, and the second one has 4. But in either

case, the additional lines are greatly attenuated, so as to be insignificant.

In Figs. 7.7 and 7.8, there are basically two discrete frequency signals

(one at 7.f0 + 1/2T_, and one at 7fo - 1/2Ts) plus some continuum, due
to the randomness of the data stream and any additive noise in the signal.

(If the data stream were periodic and there were no additive noise, there
would not be any continuum.) At point "D', the signal is a sinusoid of

frequency (7.f0 +nR,/2). At point "E', it has a frequency of (7.fo- ,Rd2).
When the two are multiplied together, they produce a signal that has the

sum and difference of the two frequencies. The resultant waveform contains

three types of components: line × line (the desired components), line x

continuum, and continuum × continuum. Obviously, the first component is

what we need to produce our final results, while the effects of the additional

components must be minimized.

7.2.4 Multiplier and LBPF

Next, we multiply these two bandpass signalstogether,and keep them in

low-pass terms, referencedto a common centerfrequency. We have the

two signals,yl(t),which isreferencedto (7.f0+ nR,/2), and y2(t),which is

referencedto (Tf0 - nRs/2). Writing them as bandpass signals,we have:

yl(t)=ycl(t)cos2r(Tfo+nR,)t_y,,(t)sin2x(Tfo+nR,)t (7.22)
2 z

1'1

y2(t) = Yc2(t) cos2r(Tfo - -_R,)t- ys2(t)sin2r(Tfo - n-R')t2 (7.23)

-: Xm_=
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Multiplying them together yields

yl(t)y2(t) - Ycl(t)Yc_(t)[cos2'r2"rfo t + cos2,_nRst] (7.24)
2

Y¢| (t )Y'2( t ) [sin 2z27 fot - sin 27rnRst]
2

Yc2(t)Y" (t)[sin2znR,t + sin27r27.fot]
2

-4 y'' ( t )y,, ( t ) [cos 2zrtR,t - cos 27r27.fot]
2

which containsfrequencycomponents around 27fo and hrs. This suggests

that we can now recovereitherthe carrierfrequency(by hlgh-passfiltering

and dividing by 27), or the symbol timing information (clockrate). To

recoverthe symbol timing,we selectthe components around hrs. In the

vicinityof nRs:

z(t) = yl(t)y2(t) = l(y¢,(t)yc2(t) + y,l ( t )y,2 ( t ) ) cos 2_nRst (7.25)

_l CY_2(t)y,, (t ) - y,,(t)y_, (tl)sin 2rnR, t

So, the low-passequivalentsignalreferencedto nRs is:

z(t) = Re[_.(t)e j2"_R't] (7.26)

with

and

= zo(t)+ jz,(t) (7.27)

1
z_(t) = _(y_(t)y¢_(t) + y,_Ct)y,_(t)) (7.28)

z,(t) = _(yc2(t)y,_(t) - (7.29)

The spectrum of this recovered signal is shown in Fig. 7.9, representing the

signal at point "F'. In the simulation we have let n - 1, so the spectrum in

the figure is referenced to nRs = tl_, the symbol rate. This signal is then

filtered by LBPF in a similar way as in NBF1 and NBF2. Now, we have a

signal T(t), which is the filtered version of z(t), with an in-phase component,

T_(t), and a quadrature-phase component T_(t). T(t) will become the symbol

timing signal, Ts_m(t). The bandpass signal after LBPF is now:

T(t) = Re[(T_(t) + T](t))l/2e j(2''_R't+¢(t))] (7.30)
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where
T (t)

¢(t) =  ctan(T-- ) (z.3i)

7.2.5 Symbol Timing Recovery

In order to recover the symbol timing signal, the hardware would count zero

crossings of this bandpass signal, and then divide the frequency by n. For

simulation purposes, we form the signal

T,_m(t) = cos l[2xnR, t + ¢(t)] (7.32)

which is a sinusoid of frequency 21rR,, and phase, ¢(t)/n, that varies slightly

with time, otherwise known as phase jitter. Ideally, ¢(t)/n would be con-

stant at a value proportional to the time delay between when the signal

is transmitted and when it is received. This allows the system to track

the CPM signal, given varying delay times. Of course, in practice, the

phase is not constant, due to the noise, fading, and signal dependent jitter.
Therefore, a suitable performance measure is the variance of ¢(t), which

is a measure of how ¢(t) varies with time. The spectrum of tire recovered

signal is shown in Fig. 7.10, representing the signal at point "G'. Since

this is the signal of interest, we have chosen to plot the spectrum of the

actual bandpass signal, rather than the spectrum of the complex envelope

of the signal. Therefore, the line at Rs = 2400 contains the symbol timing

information (frequency and phase). The phase of this recovered signal is

shown in Fig. 7.11. The variance of the recovered phase in the figure is

1.3x 10-6,which isquitesmall.A more detaileddiscussionon interpreting

the phase-jittervarianceisincludedlater.

7.2.6 Fading Description

In order to simulate the fading effects on the CPM signal, a ltician fad-

ing model was used. The complex fading envelope has an in-phase and

quadrature-phasecomponent given by:

Fc(t) = A + w¢(t)

F,(t) = w,(t),

where A is the directcomponent, and we(t) and w,(t) combine to give the

scatteredcomponent of the signal.The ratioPdi_ect/Pseatte_ediscalledK_

7"-
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where A2/2
g = -- (7.35)2

O"scat

and ascot2is the power in the scattered component. The scattered component

of the signal is calculated by first generating two independent sequences of
white Gaussian variables, each with a variance a_. The two sequences are

then filtered by a low-pass filter, yielding a variance (coming out of the filter)

2 which is equal to the power in the scattered component of the noise.of O'scat,

The bandwidth of this filter is chosen to equal the Doppler spread, Bd, of the

channel [17]. The reciprocal of Bd is approximately equal to the coherence
time of the channel, which is a measure of how fast the envelope of the fading

signalchanges. A largecoherencetime means that the fadingsignalisslow

to change, and that the bandwidth, Bd, isfairlynarrow. In our simulation,

we used a slow-fadingapproximation,which means Bd 4:.Rs (inour case,

Bd _ 100 Hz), and the fadingvariablewas updated only once every symbol

time,soitstayedconstantfrom symbol tosymbol. The relationshipbetween

the input varianceand output varianceofa Gausslan random processgoing

through a linear,shift-invariantfilteris:

0.02= _s--_a_ (7.36)

where fs is the sampling frequency, and B is the one-sided noise-equivalent

bandwidth of the low-pass filter (100 Hz in our case). Therefore, a_c_t2 is

givenby:

o',c_t = a_ (7.37)

Combining (7.35) and (7.37), we find that e_ is given by

A2f,
o,_ = 4KB (7.3s)

Once the fading envelope is generated, the original CPM signal is multiplied

by the fading envelope to produce:

I/,d,(t) = Re{(I(t) +jQ(t))(Fc(t) +jF,(t))} (7.39)
= I(t)Fc(t) - Q(t)F,(t)

QS_d,(t) = Im{(I(t) + jQ(t))(F,(t) + jF,(t))} (7.40)
= /(0Rs(t) + Q(t)Fc(t)

r
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7.2.T Noise Description

Finally, in order to add bandpass noise to the signal, we use a low-pass

equivalent noise signal. We must first determine a relationship between 0./2,

the input variance of the Gaussian noise source, and Eb/No, the bit energy

per noise power density ratio. For a bandpass filter with bandwidth 2B, we

know the following:

S P
m .--

N No2B
EbRb Rb ( Eb ,_ (7.41)

Therefore,
P2B

N= =0"20
Rb(Eb/NO)

Setting equation (?.36) equal to (7.42) gives:

(7.42)

P.f8 (7.43)
0"2= Rb( No)

Therefore, in order to simulate a given Eb/No, we generate two independent

sequences of white Gaussian variables with variance 0"/2,defined by equation

(7.43). Then, we filter those sequences through BPF1, using the technique

in Fig. 7.6, and the resulting a02produces the desired Eb/No, when the noise

is added to the signal. A plot of the noise spectrum is shown in Fig. 7.12,

for Eb/No = 10 dB, with a low-pass equivalent bandwidth of 2500 Hz for

BPF1. The sidelobes in the noise spectrum are a result of using an elliptic

filter design for BPF1, since the noise spectrum is essentially the frequency

response of BPF1.
The nex Section will address the additional problems encountered when

the CPM signal gets faded, noise is added, and Doppler frequency shift is
introduced.

w
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7.3 Application to Mobile Environment

The basic synchronizer system described in the last section was designed for

a non-mobile (stationary), non-fading environment. However, in a mobile

environment there are additional problems that must be taken into account,

in order to ensure that the synchronizer will work.

7.3.1 Time Delay

The basic problem that must be solved in any environment is to recover

the phase of Rs, which is proportional to the time delay between the point
when the CPM signal gets transmitted and when it is received. In the

mobile environment, accurate phase recovery is important because of the

unknown distance (hence unknown delay time) between the vehicle and the

satellite. As an example, a time delay that is an integer multiple of Ts/4

would yield a recovered phase, ¢, equal to 27r/4 = 7r/2. Because of the

extreme importance in recovering this exact phase, the synchronizer must
be able to unambiguously track the symbol timing over the range 0 to Ts, and

over any time delay.
Notice that the last block of Fig. 7.1 is a divide-by-r* function. The

analysis in the last section suggests the reason why the divide-by-r* is needed.

Basically, the frequency of the recovered signal entering the divide-by-r*

block is n times the symbol rate (nRs). Because the phase of the signal

gets divided by r. as well as the frequency, a value of n that is anything
other than 1 will produce an r.-fold ambiguity in the recovered phase of the

signal. Take, for example, the case when n = 3. Assume the true phase of
the CPM signal is 2r/3. When multiplied by 3, it becomes 2x, and after

the divide-by-n, it becomes 2r/3. Next assume the true phase is 47r/3.

When multiplied by 3, it becomes 4_', which is indistinguishable from 2z'.

When passed through the dlvide-by-n, it becomes 2_r/3, which is obviously
incorrect. Similarly, a CPM signal with a true phase of 2x becomes 2z'/3 at

the output of the synchronizer. Clearly, this produces an ambiguity in the

recovered phase. The result of this ambiguity is the inability to track the

recovered phase for varying signal delays.
There are several approaches to resolving this ambiguity problem. One

approach is to recover two pairs of spectral lines, such as the n = 5 and the
n = 7 lines. That will produce two phases, ¢5(t) and ¢7(t), which may be

different from one another:

(7.44)
¢5(t) =  5(t) + e -g-

w

F

w
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2_r (7.45)
¢7(0 = &(t) + eT-T.

The inherent ambiguity may be resolved by finding the smallest integer

values of es and e7 in the range (0 < e5 < 5; 0 < er < 7) such that

_bs(t) _ _br(t) (7.46)

Aside from the fact that there would still be the possibility of an error

in the recovered phase, this technique is intxerently complicated and time

consuming. A better tedmique, in the sense that it is simpler and less prone

to errors, is to avoid the ambiguity issue completely, by choosing n = 1.

The selection ofn = 1 can cause difficulty in the recovery process. In [4],

it is stated that the value of n which produces the least phase jitter is

n = M - 1, where M is the alphabet size. If M > 2, then the best value

of n is greater than 1. However, in resolving the ambiguity issue, we have

already chosen n = 1. Therefore, we must be careful, when we select a pulse

shape, to choose one that will produce as small a phase jitter as possible,

given that we are using the n = 1 spectral llne. This means we need a pulse

shape with a strong spectral Une at n = 1. Next section includes the results

that support our preference for 1-ttC.

7.3.2 7.power device effects

The system considered contains a component that magnifies some of the

disturbances (noise, fading, Doppler) that occur in a mobile-satellite en-

vironment. The component is the 7-power device, which raises the CPM

signal to the 7 power. Breaking the action into magnitude and phase rela-

tions, it raises the magnitude to the 7 power, and multiplies the phase by

7. Therefore, disturbances that affect the amplitude of the CPM signal are

exponentially-magnified, while distortions that affect the phase of the CPM

signal are linearly-magnified.
The negative effects of the 7-power device are especially noticeable on the

Doppler shift and the fading of the CPM signal. First, the device multiplies

the received Doppler shift by 7, making Doppler uncertainty 7 times larger

than originally anticipated. The two filters (NBF1 and NBF2) must be
chosen to have adequate bandwidth in order to accommodate the maximum

possible Doppler shift of the CPM wave. The maximum possible Doppler
shift depends on the vehicle speed, relative to the satellite. It is calculated

as follows:
Alma _ _ fovmax (7.47)

c
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where fo is the carrier frequency, o._a_ is the maximum vehicle speed, and c is

the speed ofllght. As stated earlier, the 7-power device produces an apparent

Doppler shift (as seen by NBF1 and NBF2) equal to 7Af. Therefore, NBF1
and NBF2 must be wide enough to account for the maximum apparent

Doppler shift, 7A f,_az. In Fig. 7.13, the system parameters are listed. From

those parameters and equation (7.47), we calculate Af, n_ = 138 Hz, and

7Af,_ = 1104 Hz. Therefore, NBF1 and NBF2 must allow for a frequency
shift of _=1104 Hz, so they must have bandwidths of at least 2208 Hz. On

Fig. 7.17 they have bandwidths of 3200 Hz, which is more than enough to
allow for the Doppler shift, and narrow enough to reject the higher order

sinusoids that appear at spacings of R, above the n = 1 line.
Since NBF1 and NBF2 must be quite wide, their memory is reduced con-

siderably, and they are more susceptible to noise. This effect can be viewed

as follows. Every time a symbol of {+1} is transmitted, the instantaneous

CPM frequency (the derivative of the phase) is in the center of NBF1, so the

filter gets excited. The filter then begins to resonate at its center frequency,

with the filter output decaying exponentially after the data symbol ends.

The filter continues to decay until it gets excited again, by another (+1}

symbol transmission. Similarly, NBF2 gets excited when a symbol of (-1}

is transmitted, and decays between {-1} symbol transmissions. The decay

can be described by a time constant of the form 1/2rB, so a wide filter

has a short time constant, and decays quicker than a narrow filter. Once

the filters are completely decayed, the phase information they contain is no

longer useful, so the recovered phase tends to drift randomly between 0 and
2_r. In order to limit these effects, we can narrow the post-detection filter, so

that it has a long time constant, and retains the phase information longer.

Viewing the action of the filters in the frequency domain, we can visu-

alize the CPM signal as a random process that contains spectral lines and
continuum. Filters NBF1 and NBF2 select the appropriate spectral lines,

while allowing some amount of continuum to pass through. This continuum

is then a source of noise, in the sense that it is an undesirable signal. If the

filters are narrow, the signal that passes through them is predominately si-

nusoidal, but ff the filters are wide, more noise passes through. The amount

of spectral line power relative to continuum at the center frequency of filter
NBF1 is then related to the frequency of {+1} symbol transmissions, pulse

shape, M, and h. Similarly, the power of the spectral llne at the center of
filter NBF2 is related to the frequency of {-1} symbol transmissions. The

final filter, from this viewpoint, limits the amount of noise that passes to

the synchronization signal.

ira.
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The other mobile-related effect that is magnified by the presence of the

_-power device is the dynamically-changing fading. First, the magnitude of

the fading is raised to the 7 power, causing a large dynamic range expansion.

Second, the fading-induced phase distortions are multiplied by 7, increasing

the swing of the phase. Figure 4.3 is the spectrum of the CPM signal after

the 7-power device for a 1-RC pulse shape, when noise (10 dB SNR) and

fading (K = 10 d.B) are added to the CPM signal. Notice the asymmetry
of the spectrum; most importantly, where we used to see only spectral lines,

we now see that the lines are modulated by the fading. Therefore, when we

recover the synchronization signal, we get a sinusoid that is phase-modulated

by the fading channel. Therefore, the recovered phase contains a lot of

jitter. Figure 4.4 shows the recovered phase under the above mentioned
conditions. It has an initial transient, which seems strange, coming out of

such a narrow filter. However, the initial transient can be explained by the

fact that the final filter is slow to respond to an input signal, so its output

is slow to increase in magnitude. In the complex plane, that corresponds

to an output which is near the origin. Being near the origin, the phase can

easily move from one quadrant to another, causing large swings, until the

output magnitude increases. Once the magnitude of the filter output builds,

its output phase is more stable. Although the mean value of the phase is

correct (0 radians), the variance is quite large, so the tracking is not very

good. Shortly, we will describe a device that limits these effects.

Finally, the non-linearity increases the effects of noise in the original

CPM signal by producing additional cross-terms between the noise and the

desired signal. This tends to degrade the performance of the system. Once

again, a narrow post-detection filter will limit these effects, and will be

discussed in the next section.

7.3.3 Doppler Shift

As mentioned in the previous section, Doppler shift is an important factor in

a mobile environment, especially when it is time-varying, due to the change

in the relative motion between the vehicle and the satellite. However, since

Doppler shift affects all of the spectral lines equally, the timing information
is not lost. In other words, when the two Doppler-shifted spectral lines are

multiplied together and the symbol timing is recovered, the shift is self-

canceling.
Because filters NBF1 and NBF2 must be wide, however, to allow the

CPM signal to shift by /Xfma_, they decay quickly, after being excited.
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Rs, = 2400 Hz

= 1/2400 sec

= 1/8
7=8

g(t) = 1-1 c
a_ • {±1, ±3, ±5, ±7}

f0 = 1.5 GHz

v_a, = 100 km/hr

Figure 7.13: System Parameters

Therefore, the recovered phase is prone to drifting, because the memory
in the filters is relatively short, and once the filters are completely decayed,

the phase they produce is no longer reliable. This problem was overcome by

using a very narrow final post-detection filter, which limits the excursions in

the recovered phase that pass through the relatively wide NBF1 and NBF2.

7.3.4 Reducing fading effects

Basically, the fading is caused by reflections and blockages of the CPM signal
due to obstructions in the signal path (i.e. buildings). Also, because the sig-

nal path keeps changing as the vehicle moves, the received composite signal

changes over time. This makes it difficult to maintain a lock on the received

signal. A step that greatly reduces the fading effects is to insert a hard Iim-
iter at the front end of the synchronizer. This device maintains a constant

signal amplitude, but it produces additional frequencies at multiples of the

carrier, while keeping the original signal intact. The additional frequencies

must then be filtered out through BPF1. The hard-limiter thus limits the

effect of fading to only phase-shifting of the received signal, rather than

phase and magnitude distortion. In effect, it restores the constant-envelope
characteristic of the CPM wave, leaving residual phase modulation.

7.3.5 System Parameters

The parameters that were used in the simulation, described both in the

analog and digital domain, are shown in Fig. 7.13.
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-Parameter Analog

Sampling Frequency fs = 38.4 kHz

Digital

f,=16

Symbol Time T_ = 1/2400 sec T_ = 1

Doppler Shift Affix = 138 Hz Afmax = 0.0579

NBF1 Bandwidth 3200 Hz 4/3

NBF2 Bandwidth 3200 Hz 4/3

LBPF Bandwidth 50 Hz 1/48

BPF1 Bandwidth 5000 Hz 50/24

129

Figure 7.14:Simulation Parameters

The modified block diagram of the synchronizer is shown in Fig. 7.17.

Most notably, it contains the added hard limiter, the narrow post-detection

filter, and eliminates the divide-by-n, because n is always 1. In the simula-

tion, the addition of the hard limiter was handled very simply. The polar

form of the received CPM signal is:

y(t) = RCt) cos[2zfot + O(t)]. (7.48)

The llmiter simply keeps the magnitude of this signal constant, setting R(t)

equal to 1. Therefore, (7.48) simplifies to

= cos[2 fot + o(t)]. (7.49)

The next section will present the results obtained in simulations of the com-

plete modified system, as shown in Fig. 7.17.

E
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7.4 Results and Conclusions

In [4] an analysis was presented that calculated the timing jitter of the

recovered symbol timing, using the block diagram in Fig. 7.1. The main

assumption in the analysis was that the spectrum of the integer-h CPM

(after the V-power device) consisted of a spectral line in the presence of
a continuum, and that the continuum was constant near the spectral line.

Therefore, the analysis calculated the magnitude of the spectral line, and

the value of the continuum at the frequency of the spectral line. Then

it showed how to calculate the timing jitter from those two values. The

above assumption is very good' provided that the bandwidths of NBF1 and

NBF2 are small, compared to the symbol rate. Some results are tabulated

in Fig. 7.18 using a bandwidth of 2.0/T_ for BPF1, and a bandwidth of

O.O05/Tb for NBF1 and NBF2. Note that the jitter variance is normalized

to (2z')2rad 2, which means that when we calculate the standard deviation

of the phase jitter, by taking the square root of the variance, we should

interpret the units as being fractions of a symbol time.

7.4.1 Performance Criteria

With that interpretation of phase jitter in mind, we need to establish an

acceptable level of jitter, in order to judge the performance of the synchro-

nizer. Ultimately, we are concerned with a method of producing reliable

communication using this digital system, so we need a low bit-error rate.

The relationship between error rate and phase jitter takes the form:

Pc(At) = / P(elAt).f(At)dAt (7.so)

where At represents the error in the timing, and /(At) is the probability

distribution of At. A higher phase-jitter variance yields a higher timing-

jitter variance, which means that (7.50) will produce a higher bit-error rate.

Generally, a phase jitter corresponding to about 5% of a symbol time is

considered good, and 10% of a symbol time is acceptable. Therefore, our

goal is to keep the timing jitter below 10%, which means that the normalized

phase jitter should be below (0.1) 2 = 0.01.

For narrow filters (NBF1 and NBF2), the final post-detection filter need

only serve as a zonal filter, allowing frequencies in the vicinity of Re to

pass. Therefore its bandwidth is of Little concern. Fig. 7.19 presents the
results when those filters are much wider. These results were calculated



CHAPTER7.

BPP1

TIMING RECOVERY CIRCUIT

Hard Limiter BPF2

133

w

s(t,a)

I

fo

5 ()_

m

| i

T_(t)

LBPF

lOHz

<

Y: (t)

y2(t)

NBFI

vf0 +R,/2

NBF2

t"

x(t:

L.

BPF3

I

I

I

I

!

t

pag. 58, Report # 5

=

÷

Figure 7.17: Modified Symbol Synchronizer



= -

w

w

CHAPTER 7. TIMING RECOVERY CIRCUIT 134

Pulse Shape

1-REC

1-RC

Eb/No (d.B) Normalized Variance

0 unreliable

10

20

3O

4O

50

10

2O

1.0

4.5 x 10 -3

3.1 x 10 -4

2.9 x I0-s

2.7 x I0-_

unreliable

8.8 x 10 -2

3.3 x 10 -4

2.1 x 10 -s30

40 2.0 x 10 -_

50 1.8 x 10 -z

Figure 7.18: Analytical Results (NBF1 and NBF2 bandwidth = O.O05/Tb)

(M = 8, h = 1/8, n = 1)

using bandwidths of 2.0/Ts for BPF1, and a bandwidth of 0.5/Tb for NBF1

and NBF2.

Notice that, for very large bandwidths of NBF1 and NBF2, the calcu-

lated jitter variance is unreliable because it falls out of the range 0 to 1,

corresponding to phase jitter in the range 0 to 27r. The reason for that

behavior is that the original assumptions which supported that particular

analysis fall apart (i.e., the assumption that the continuum is constant near

the spectral llne). In this situation, the final post-detection filter serves a

far more important role, and must be narrowed considerably.

7.4.2 Pulse shape selection

Even with a narrow post-detection filter, the system did not perform reliably

with some choices of pulse shape, even without noise or fading! An example

is with the 1-REC pulse shape. A typical graph of the recovered phase in

this situation is shown in Fig. 7.21 without noise or fading. In this situation

the phase drifts slowly from -_r to _r, without any sign of stabilizing. Even

though it seems like there are sudden phase discontinuities at several points
in the graph, these discontinuities are just shifts between -_r and 7r, which

really are not shifts at all; they Occur due to the definition of the arctangent
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Pulse Shape Eb/No (dB) Normalized Variance

1-REC 0 unreliable

10 unreliable

2O

3O

4.5 x I0 -t

40

50 2.7 × 10 -4

1-R,C 0 unreliable

10 unreliable

20

30

40

50

3.3x 10-2

2.1x 10-3

2.0x 10-4

1.8x 10.5

Figure 7.19: Analytical Results (NBFI and NBF2 bandwidth = 0.500/Tb)

(M = 8, h = 1/8, n = 1)

function. When the driftingphase gets closeto one of the extremes and

crossesoverintothe next quadrant inthe z-y plane,the arctangentfunction

redefinesthe signalto fitthe new quadrant. In any case,the behavior of

thiswaveform isunacceptable.

The reason for the unacceptable behavior is due to the spectrum of

the integer-hCPM signal,given the 1-REC pulse.We willsee,in the next

section,an analysisthat calculatesthe spectrum, but basicallyitshows that

the power inthe spectralllneat n - 1 isnot strongenough totrackreliably,

given that the wide filterspass a largeamount of continuum. Ifthe filters

were narrow, then therewould be no problem with the REC waveform, but

because they are wide,they pass a lotofpower that isnot at the frequency

ofthe spectrallineofinterest.Therefore,we need to selecta pulse that has

a high power in the n = 1 spectral line.

Power Spectrum Calculated

In [9]Aulln and Sundberg presenta method forcalculatingthe spectrum ofa

CPM signal.First,they derivedan exactexpressionforthe autocorrelation

= =

l

_=_
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functionof the CPM signal:

= + roT,)

1 IT, m+l M-1

n=l-L k=-(M-1)

(7.51)

pkeJ2rhk[q(t+r'-(n-m)T,)-q(t-nr,)]}dt

(7.52)

over the interval:

0 <_ r < (L + 1)T, (7.53)

where pk is the probability of the k th symbol occurring. Note that the time
difference 1"has been written as:

r = r' + mT_; O <_ r r < l, re=O,1,... (7.54)

The power spectrum is then the Fourier transform of the autocorrelation

function:

S(f) = 2Re(jfo LT, R('r)e -j2_rp'dT

eTJ2_lLT'cae-j2_rfT" _o-t TsR(r + LTs)e-J2'_Yrdr} (7.55)
1

where
M-1

ca = Z r, eJh" (7.56)
k=-(M-1)

k odd

In this particular situation, h is equal to 1 (after the power-law device).

This yields ICal = 1. It is shown in [9] that this situation causes the auto-
correlation function to be periodic outside 17"1= LTd. Therefore, R(v) can

be written as:

R(_) = Roon(_) + Rdi,(r) (7.ST)

where Rai,('r) is periodic, causing the discrete components in S(f). In [12] it

is also shown that when [Ca] = 1, Rcon(r) -- 0; Ir[ _> LTs. In this instance,

Rco,,(v) yields the continuous part of the spectrum, and Rdis(v) yields the
discrete components. Therefore, the complete spectrum is found by taking

the Fourier transform of Rcon(r), and finding the coefficients of the Fourier

series of Rd/s(r).

= :
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To determine Rd_s(v), we use the fact that Rco_(v) = O; Ivl _> LTs.

This means that Rdi_(v) = R(v); Iv[ _ LTj. It also means that Rdis(g)

is completely defined over a period of 2T,, since we already know that the

spectrum has discrete components at Rs/2. Therefore, we calculate Rdis(r)

over the range 2LT, < _" < 4LTs, and extend it in either direction to get the

complete signal. Now, subtracting R4i,(r) from R(r) gives Rco,_(v).

The continuum part of the spectrum is calculated by taking the Fourier

transform of Rco_(r):

FSco,_(f) = Rcon(r) e-j2rfrdr
Oo

\

where the limits of integration are reduced due to the known characteristics

of/Lob(r).
Finally, the Fourier series coefficients of irldis(v) are calculated:

R, [2/R. Rd_o(r)e_j,_R°,d r (7.59)
Cn _ T JO

The resultsofnumericallyevaluatingequations(7.58)and (7.59)are plotted

in Figs.7.22and 7.23,with the magnitude of the spectrallinesequal to the

power in each one.

The spectrum for the I-ILEC pulse is shown in Fig. 7.22,and for the

1-RC pulse in Fig.7.23.Notice how much greaterthe ratioof the spectra/

lineto continuum is in the I-RC case than in the 1-REC case. Using 1-

RC givesa 9 dB gain in thisratio.The idealcase (idealin the sense that

it produces the strongestspectra/lines)isan impulse, which produces a

differentialphase shiftkeyed signal(DPSK). In that case,

T, (7.60)0(t)= _-_(t-T)

When integrated,q(t)becomes:

o; o _<t < _ (7.61)q(t) ½; ÷<t<T,l

In this system, the phase jumps abruptly at T,/2, and always by an odd

integral multiple of lr. So, ¢(t, _) assumes values that always increment by

r_d
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z"over a symbol time, producing a signal whose complex envelope is a square

wave. Therefore, the DPSK spectrum consists only of spectral lines, with

no continuum, since a square wave can be expressed as a sum of sinusoids.

Given the above, an intuitive reason why 1-tiC produces a better spectrum

(as far as tracking performance goes) than 1-REC is that g(t) is closer to an

impulse for the 1-RC pulse than for the 1-REC pulse.

However, this change in pulse shape is not without problems. The orig-

inal CPM spectrum using 1-1_C has a wider main lobe than with 1-REC.

The sidelobes, however, are eventually lower, partially reducing the affect
of the wider main lobe on the out-of-band power. This seems to be a minor

price to pay, given the ease of synchronization of the recovered signal.

FUter action

Given the relatively strong spectral lines of the 1-RC system, we can now

illustrate the action of NBF1 and NBF2. As referenced in earlier chapters,

NBF1 gets excited periodically, then decays between excitations. For M = 8,

it gets excited an average of 1 time in 8, specifically when a {+1} symbol

is transmitted. This phenomenon is illustrated in Fig. 7.24 for NBF1, and

in Fig. 7.25 for NBF2, using one-sided filter bandwidths of 2R_/3 = 1600
Hz for each filter. In the ideal situation, we expect each filter to oscillate

continuously at its center frequency, which means that the complex envelope,
relative to its center frequency, should remain constant. Obviously, from

the graphs, this is not happening. In our situation, the filters decay greatly
between excitations, and especially between symbols. Because of the short

decay time, the filters lose their memory quickly, and the phase is no longer
useful after the filters are completely decayed. At that point, the phase

begins to drift, but adding a narrow post-detection filter alleviates some of

the phase drifting by increasing the memory of the effective combination of

filters NBF1, NBF2, and LBPF.
It is fairly obvious that a smaller alphabet size, M, would increase the

likelihood that NBF1 would be excited (a {+1} symbol would be sent more

frequently), allowing a shorter decay time between excitations. This is equiv-

alent to increasing the spectral llne power in the n = 1 line. This would

improve the tracking performance also, but at a cost of lower information

throughput.
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Pul,e Shape Eb/N0 (dB)
1-RC 0

5

10

120

120

10

10

K
6O

6O

6O

10

13

10

10

AF (Hz) Normalized

0 1.0

0 1.8

0 6.9

0 1.6

0 1.3

0 1.1

1.3150

Jitter Variance

x 10-3

X 10.4

x I0-s

X 10 -4

X 10-4

Figure 7.20:Final simulationresults

w

w

Recovered phase

Figs.7.26and 7.27show two examples of phase recovery,the only difference

being in the delaytime between when the signalistransmittedand when it

isreceived.In Fig.7.26,a zero delayisused, producing a recoveredphase

whose averagevalueis0. In Fig.7.27,a delay of0.25Tsisused,producing a

phase whose averagevalueis-z'/2.Note thata delayof Ts isequivalentto

zerodelay,and would produce a recoveredphase of0. Sincethe synchronizer

produces an output thatisproportionalto the delaytime,itisnow clearthat

the synchronizerisperforming itsintended task. In order to illustratethe

effectsofDoppler shift,noisemagnitude, and fadingseverityon the variance

of the recoveredphase,some simulationresultsare tabulatedbelow.

Interestingly,the variancefor the no-noise,no-fading,no-Doppler shift

caseisnot exactlyzero,though itisquitesmall.The reasonisdue to data

noise,which surfacesbecause of the randomness of the transmitted data

symbols. Most importantly,it isrelatedto the probabilityand of {+1}

and {-1} symbol transmissions,and the autocorrelationfunction of the

symbol generatingsourcefunction(usuallythe sourcesymbols are assumed

to be uncorrelatedwith one another.) A deterministiccase,in which the

symbol pattern is periodic (alternating {+i}, {-I} symbols, for example)

does produce zero variance, because the filters (NBF1 and NBF2) reach a

steady-state after a few symbols are sent.
In the worst-case noise situation without fading, Eb/No = 0 dB, and

the jitter variance is 10 -3 . This means that, on average, the timing jitters

about :t=(10-3) 1/2 = +0.032 of a symbol time, which is acceptable. In the

worst case fading situation, without noise, K = 10 dB, and the timing jitters
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about _(1.6 × 10-6) 1/2 = +0.0013 of a symbol time. This suggeststhat,in

the expected environment,the noiseismore ofa problem than the fading.

Severalcombinations ofnoiseand fadinglevelsare includedin Fig.7.20,

but perhaps the most important two are the ones closestto the expected

case;namely the situationwhen Eb/No = 10 dB, K = 10 dB, with varying

valuesof Af. Without any Doppler shift(A.f = 0), the variance of the

phase jitteris 1.1 × I0-4, which means that the timing typicallyjitters

±(1.1 × 10-4)I/2= ±0.01 of a symbol time, which is acceptable.With a

maximum Doppler shiftof 150 Hz (largerthan we expect),the timingjitter

increasesslightly,to ±(1.3× 10-4)I/2= :I:0.011ofa symbol time. The reason

why the valueisslightlyhigherforthe Doppler-shlftedcaseisa combination

of severalfactors.First,the spectrallinesare shiftedcloseto the edge ofthe

filters(NBF1 and NBF2), sotheiramplitudesare startingtobe reduced,due

to the roUoffof the filtersat the edge of theirbandwidths. Also,the filters

used in the simulationare IIR,which means they do not have linearphase,

but they are easierto use,in terms of memory requirementsand speed of

execution. Since they are not linearphase, especiallyat the outer edges

of the frequency band, the signalsthat are near the edge experiencesome

additionalphase distortion,which,combined with the amplitude reduction

at the filter edge, increases the jitter variance. In addition, a factor that is

always present is simulation "noise" which translates into slight uncertainty

in the accuracy of the simulation results, due mostly to finite averaging time
in the simulation. However, even with the 11 percent increase in standard

deviation between the no-Doppler and maximum-Doppler cases, the system

is still quite useful.
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Chapter 8

Simulation results

w

u

In this Chapter we present simulation results that allow a comparison be-
tween differentclassesoftrellis-encodedcontinuous-phasemodulation (CPM)

schemes with differentialdemodulation and optimum (maT]rmlm-likellhood,

i.e.,Viterbi)decoding. The performance analysiswillbe based on bit error

probabilityversusthe ratio£b/No between the averageenergy per informa-

tionbitand the noisepower spectraldensityofthe additivewhite Gaussian

noiseaffectingthe transmission.The baselineforour comparison has been

chosen to be the performance ofdifferentially-demodulatedphase-shiftkey-

ing (DPSK) with 8 levels.In fact,DPSK offersconstant-envelopesignals

(likeCPM) and isdemodulated differentially(likeour scheme). DPSK turns

out to be more power-efficientthan CPM, but on the other hand itoccupies

a broader bandwidth than CPM: thus,thiscomparison willshow how our

treUis-encodedCPM scheme willtradebandwidth efficiencyfor power effi-

ciency.However, as will be demonstrated, trellis coded CPM comes fairly

close, and indeed somewhat better, in performance to the filtered DPSK par-

ticularly in a Rician fading environment.
Our simulation will include the effects of additive white Gaussian noise

channel, Rician fading, and Doppler frequency shift. Our goal is to get the

best combination of

o Frequency shaping pulseg(t).

o Full-or partial-responseCPM.

o Receiver filter shape and bandwidth.

o Trellls-codedmodulation (TCM) scheme.

i
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Hereafter,themodulation index h forCPM has alwaysbeen chosen equal

to l/M, M the number of symbol carriedby CPM. We hasten to observe
thatifthe demodulation were optimum, i.e.,coherentand based on Viterbi

algorithm, then the optimum choiceof h would involvea subtletradeoff

between power and bandwidth. With differentialdetection,itisknown that

increasingh willincreasethephase differenceamong CPM signalsassociated

with differentsymbols, and hence increasethe signaldistance,which will

ultimatelyresultinto a smaller errorprobability.Since increasingh will

alsoincreasethe bandwidth occupancy, the strategythat we have chosen

isthe following:choose h = 1/M, and the phase pulse shapes that satisfy

the bandwidth constraintsfor that value of the modulation index. Soft

decisiondemodulation was optimized based on analysisof the eye patterns.

A complete setofprecoded partialresponse signalshave been studiedunder

the AWGN model. It was observed that partialresponse systems shows a

performance degradationlargerthan full-responseCPM. For thisreason,

full-responseCPM was analyzed more thoroughlywith the aim of choosing

the finalcandidate system. The selectedfull-responsescheme was then

testedunder the Rician fadingenvironment.

w

w

8.1 Description of simulation results

In thissectionwe presentthebestcombinationsofTCM schemes,continuous-

phase modulations, and receivingfiltersfora number of channels.The fol-

lowing situationsare considered:

1. Frequency pulse shapesas shown in Table 8.1.In particular:

• LREC denotesrectangularfrequencypulsewith durationLTs (in

particular,L - 1 denotes full-responsesignaling).

• LHCS denotes "half-cyclesinusoidal"frequencypulsewith dura-

tionLTs.

• LSRC denotes "spectralraised cosine"with duration LTs and

"roUoi_ factora.

• GMSK denotesa Gaussian frequencypulse.This has a theoreti-

calinfiniteduration,and istruncatedto duration LTs.

2. Receiverfiltershapes:

• LREC filter.
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• Butterworth filter (unless otherwise specified, the Butterworth
considered here has order 6 and a 3-c]B bandwidth of 4800 Hz).

• LARC (raised cosine) filter (see Table 8.2).

• LBSRC (spectral raised cosine) filter (see Table 8.2). Here/3/is
the roUoff factor, and ao is a normalization constant chosen such

that f h2(t)dt - 1.

• Gaussian filter

3. Trellis-coded modulation schemes:

• Rate-2/3, 4 states (see Fig. 1)

• Rate-2/3, 8 states (see Fig. 2)

• Rate-2/3, 16 states (see Fig. 3)

4. Interleaving/deinterleaving sizes and depths:

• No interleaving

• (128,16) interleaving

• (256,16) interleaving

It should be observed here that we limited our consideration of TCM to

schemes with no more than 16 states, and this for two reasons:

1. While it is known that by increasing the number of states the perfor-

mance of TCM increases, it has been observed that above a certain

number of states the returns are diminishing, thus rendering less and

less attractive the increase in complexity entailed.

2. We are interested in system performance at relatively small values of

signal-to-noise ratio (typically, they correspond to error probabilities
around 10 -3. /n this range, TCM schemes with a large number of

states perform more poorly than simpler schemes. In fact, the higher

is the number of states, the higher is the signal-to-noise ratio necessary

to take full advantage of the potential coding gain generated by the

introduction of trellls-coded modulation.

Interleaving the symbols after the TCM encoder and deinterleaving them

before the TCM decoder would make the equivalent channel, as seen by

the TCM scheme, more similar to a memoryless one. Since the decoding

strategy is based on the simplifying assumption that the channel is indeed

memoryless, it is expected that interleaving prove beneficial in the present

context.

vm.
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LREC

GMSK

HCS

SRC

I 1

2--r_j)

g(t) = 0,
O<_t<_LT,

otherwise

1 [Q(2_Bt-T,/2"_ (2rBt+T'/2"_g(0= _-_: _ )-Q _ )]

r rT,
g(t) - 2LT, sinL--_s

g(t) = I[

l+a

&'_ ,;1 - sin L2 _,2L:G L
0

It - LT,/2I < LT_ 1-.___-- 2 l+a

_-_ < It- LT,/2] < _2 i-'-_- - 2

It- £T,/21 > -_

Table 8.1: Frequency pulses used in the simulation.

w

w

LARC

LBSRC

0 <_ t <_ LATs

otherwise

sin2rt/L_Ts cos_12rt/LBT,
h(t) = ao 2rt/LBT, ' i-(4BIt/LBT,) $ 0 < t31 < 1

Table 8.2: Impulse responses of filters pulses used in the simulation.
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8.1.1 Gaussian channel

In this section simulation results will be provided in the form of error prob-

ability charts corresponding to a transmission system operating over the

additive white Gaussian noise (AWGN) channel, with intersymbol interfer-

ence generated by non-ideal filters.

• Fig. 8.4 shows the performance of 4-state, TCM-encoded CPM signals

with full response signaling, HCS1 frequency pulse, M = 8 levels, h =

0.125, and differential detection. This scheme carries 2 information

bits per symbol. Here we compare the effect of different receiver filters,

namely:

I. IRC

2. 2RC

3. 2RC with (256,16)block interleaving

4. SRC with Ls = 1.01 and rolloff _/= 0.4

5. Same as above, with (256,16) block interleaving

6. Butterworth

7. Same as above, with (256,16) interleaving

Comparison of the performance with and without interleaving shows

the benefit of introducing the latter. SRC filters provide the best

performance in this situation.

• Fig. 8.5 shows the performance of 4-state, TCM-encoded CPM signals

with partial response signaling, 2REC frequency pulse, M = 8 levels,

h = 0.125, and differential detection. Thls scheme carries 2 informa-

tion bits per symbol. Here we compare the effect of different receiver

filters,namely:

1. 1REC

2. IRC

3. 3RC

4. Gaussian filterwith 3-dB bandwidth 0.95

5. SRC with LB = 1.01and rolloff/3/=0.4

This chartshows thatthe 2REC pulseofferspoor performance forthis

system.
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Fig. 8.6 refers to the same situation as in Fig. 8.5, with the only

change of an 8-state trellis in lieu of a 4-state trellis. The increase

in complexity does not help.

Fig. 8.7 refers to the same situation as in Fig. 8.6, with the complexity
of the TCM scheme further increased to 16 states. The same conclu-

sion reached before about 2REC is still valid under the new conditions.

Fig. 8.8 shows the performance of 4-state, TCM-encoded CPM signals
with partial response signaling, 2RC frequency pulse, M = 8 levels,

h = 0.125, and differential detection. This scheme carries 2 informa-

tion bits per symbol. Here we compare the effect of different receiver

filters, namely:

I. IREC

2. IRC

3. 3RC

4. Gaussian filterwith 3-dB bandwidth 0.95

5. SRC with LB = 1.01and roUofffl!= 0.4

This chart shows that the 2RC pulse offersa performance for this

system which is betterthan 2REC, but stillworse than the HCS1

pulse consideredbefore.

Fig. 8.9 refersto the same situationas in Fig. 8.8,with the only

change of an 8-statetrellisin lieuof a 4-statetrellis.The increase

in complexity causesonly a marginal performance improvement.

Fig.8.10referstOthe same situationasinFig.8.8,with the complexity

of the TCM scheme furtherincreasedto 16 states.The performance

improvement ismodest.

Fig.8.11shows the performance of4-state,TCM-encoded CPM signals

with partialresponsesignaling,GMSK frequencypulsewith BT = 0.4

and truncatedat LTs = 2, M = 8 levels,h --0.125,and differential

detection.This scheme carries2 informationbitsper symbol. Here

we compare the effectof differentreceiver filters,namely:

I. IREC

2. IRC

w
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3. 3RC

4. Gaussian filter with 3-dB bandwidth 0.95

5. SRC with LB = 1.01 and rolloff/3/= 0.4

This chart shows that the GMSK pulse offers a performance similar

to 2KC.

• Fig. 8.12 refers to the same situation as in Fig. 8.11, with the only

change of an 8-state trellis in lieu of a 4-state trellis. The increase in

complexity causes no performance improvement.

• Fig. 8.13 refers to the same situation as in Fig. 8.11, with the complex-

ity of the TCM scheme further increased to 16 states. The performance

improvement is modest.

• Fig. 8.14 shows the performance of 4-state, TCM-encoded CPM sig-
nals with partial response signaling, HCS2 frequency pulse, M = 8

levels, h = 0.125, and differential detection. This scheme carries 2

information bits per symbol. Here we compare the effect of different

receiver filters, namely:

1. 1REC

2. 1RC

3. 3RC

4. Gaussian filter with 3-dB bandwidth 0.95

5. SRC with LB = 1.01 and rolloff _j, = 0.4

This chart shows that the GMSK pulse offers a performance similar

to 2RC.

• Fig. 8.15 refers to the same situation as in Fig. 8.14, with the only

change of an 8-state trellis in lieu of a 4-state trellis. The increase in

complexity causes no performance improvement.

• Fig. 8.16 refers to the same situation as in Fig. 8.15, with the com-

plexity of the TCM scheme further increased to 16 states. There is no

evident performance improvement.

• Fig. 8.17 compares the performance of two TCM schemes with differ-

ent number of states (and consequently, different complexity) under

=
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the same conditions, namely, TCM-encoded CPM signals with partial

response signaling, 2RC frequency pulse, M = 8 levels, h = 0.125, and
differential detection. The receiver filter is SRC with LB = 1.01 and

rolloff_! = 0.4. It is seen that, at least for large enough signal-to-noise
ratios, increase in complexity involves a performance improvement. It

should be noticed, however, that this improvement depends on the spe-

cific receiver filter involved, and different filters give different returns,

as shown by comparison of Figs. 8 and 9.

• Fig. 8.18 compares the performance of two TCM schemes with differ-

ent number of states (and consequently, different complexity) under

the same conditions, namely, TCM-encoded CPM signals with par-

tial response signaling, GMSK frequency pulse truncated at LTs = 2

and with BT = 0.4, M = 8 levels, h "- 0.125, and differential detec-

tion. The receiver filter is 1RC. The same conclusions reached in the

examination of Fig. 8.17 still hold true.

• Fig. 8.19 compares the performance of three TCM schemes with dif-

ferent number of states (and consequently, different complexity) under

the same conditions, namely, TCM-encoded CPM signals with partial

response signaling, HCS2 frequency pulse, M = 8 levels, h = 0.125,
and differential detection. The receiver filter is Gaussian with BT3 =

0.95. As expected, a 16-state scheme provides a larger coding gain, but

this is true only at higher values of signal-to-noise ratio. The overall

performance is slightly worse than with 2RC pulses.

• Fig. 8.20 shows the performance of 4-state, TCM-encoded CPM signals

with full response signaling, 1REC frequency pulse, M = 8 levels, h =

0.125, and differential detection. This scheme carries 2 information

bits per symbol. Here we compare the effect of different receiver filters,

namely:

1. IREC

2. IRC

3. 2RC

4. Gaussian filterwith BTs = 0.95

5. SRC with/_s = 1.01and rolloff19!= 0.4

6. Butterworth

w
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Butterworth filtersprovidethe best performance in thissituation,but

the system performance isworse than with full-responseHCSI pulse

(SeeFig.8.4 above).

Fig.8.21referstothe same situationasFig.8.20,with the only change

of an 8-stateTCM scheme insteadof a 4-statescheme.

Fig. 8.22 refers to the same situation as Fig. 8.20, with the only change

of an 16-state TCM scheme instead of a 4-state scheme.

Fig. 8.23 shows the performance of 4-state, TCM-encoded CPM signals

with full response signaling, 1RC frequency pulse, M = 8 levels, h -

0.125, and differential detection. This scheme carries 2 information

bits per symbol. Here we compare the effect of different receiver filters,

namely:

i. 1REC

2. IRC

3. 2RC

4. Gaussian filterwith BTs = 0.95

5. SRC with LB = 1.01and roUoff/31= 0.4

6. Same as above, with (256,16)block interleaving

7. Butterworth

The SRC filter with interleaving provide the best performance in this

situation. The resulting performance is only slightly worse than that

of 8DPSK.

Fig. 8.24 refers to the same situation as the previous figure, but it

emphasizes the effect of interleaving. It is seen that for an error prob-

ability of 10 -3 interleaving improves the signal-to-noise ratio of about

0.8 dB.

• Fig.8.25refersto the same situationas Fig.8.23,with the only change

of an 8-stateTCM scheme insteadof a 4-statescheme. Also, inter-

leavedSRC filteringisnot consideredhere.

• Fig. 8.26 refersto the same situationas the previous figure,but it

emphasizes the effectofinterleavihg.Itisseen thatforan errorprob-

abilityof 10-3 interleavingimproves the signal-to-noiseratioof about
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0.8 dB, although RC filters do not provide as good a performance as

SRC filters.

Fig. 8.27 refers to the same situation as Fig. 8.25. It emphasizes the
effect of interleaving. It is seen that for an error probability of 10 -3

interleaving improves the signal-to-noise ratio of about 0.8 dB. Here

SB.C filters are considered, which improves the performance with re-

spect to RC filters.

Fig. 8.28 refers to the same situation as Fig. 8.25. It emphasizes the
effect of interleaving ancl of the interleaving size and depth.

Fig. 8.29 refers to the same situation as Fig. 8.27, with the receiving

filter changed from SB.C into Butterworth. This proves once again the
benefits of"interleaving, but the performance is not as good as with

SRC filter.

• Fig. 8.30 compares 4-state and 8-state TCIV[ schemes in the same sit-
uation as in Fig. 8.28. Once again, it is seen that an increase in the

number of states improves the performance at higher values of the

signal-to-noise ratio.

• Fig. 8.31 shows the performance of 16-state, TCM-encoded CPM sig-
nals with full response signaling, 1RC frequency pulse, M" = 8 levels,

h = 0.125, and differential detection. This scheme carries 2 informa-

tion bits per symbol. Here we compare the effect of different receiver

filters, namely:

1. IRC

2. 2RC

3. 2RC with (256,16)block interleaving

4. SRC with LB = 1.01and ronoff;91- 0.4

5. Same as above, with (256,16)block interleaving

6. Butterworth

7. Butterworth, with (256,16)block interleaving

The SRC filterwith interleavingprovide the best performance in this

situation•The resultingperformance isonly slightlyworse than that

of 8DPSK.
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• In the same situation as in the previous figure, Fig. 8.32 compares

interleaved and non-interleaved transmission with SRC filtering. Here

interleaving provides a gain of 0.6 dB in signal-to-noise ratio.

• In the same situation as in Fig. 8.31, Fig. 8.33 compares interleaved

and non-interleaved transmission with Butterworth filtering. Once

more, interleaving provides a gain of 0.6 dB in signal-to-noise ratio.

• Fig. 8.34 shows the performance of 4-state, TCM-encoded CPM signals

with full response signaling, GMSK1 frequency pulse with BTs - 0.7,

M = 8 levels, h = 0.125, and differential detection. This scheme

carries 2 information bits per symbol. Here we compare the effect of

different receiver filters, namely:

1. 1REC

2. 1RC

3. 2RC

4. Gaussian filter with BT, = 0.95

5. SB.C with LB = 1.01 and rolloff flf = 0.4

6. Butterworth

The Butterworth filter provides the best performance in this situation,

although the resulting performance is several dB worse than that of

8DPSK.

• In the same situation as in the previous figure, Fig. 8.35 considers an

8-state TCM scheme.

• In the same situation as in Fig. 8.34, Fig. 8.36 considers a 16-state

TCM scheme.

• Fig. 8.37 compares 4-, 8-, and 16-state TCM scheme for full response

signaling, GMSK1 frequency pulse with BTs = 0.7, M = 8 levels,

h - 0.125, and differential detection. The receiver filter here is But-
terworth. The same conclusions listed before about the effect of an

increase in the number of states of the TCM scheme hold here: such

increase is beneficial only at high-enough signal-to-noise ratio.

• Fig. 8.38 shows the performance of 4-state, TCM-encoded CPM signals
with full response signaling, HCS1 frequency pulse, M = 8 levels, h =
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0.125,and differentialdetection.This scheme carries2 information

bitsper symbol. Here we compare the erectofdifferentreceiverfilters,

namely:

i. SRC with Ls = 1.01and rolloff_!= 0.4

2. Same as above,with (256_16)block interleaving

3. Butterworth

4. Butterworth with (256,16)block interleaving

The SRC filterwith interleavingprovidesthe bestperformance in this

situation.

• In the same situationas in the previous figure,Fig. 8.39 compares

interleavedand non-interleavedtransmissionwith SRC filtering.Here

interleavingprovidesa gain of0.9 dB in signal-to-noiseratio.

• In the same situationas in Fig.8.38_Fig.8.40 compares interleaved

and non-interleavedtransmissionwith Butterworth filtering.Here in-

terleavingprovidesa gain of 0.8dB in signal-to-noiseratio.

• Fig.8.41shows theperformance of8-state,TCM-encoded CPM signals

with fullresponse signaling,HCS1 frequencypulse,M = 8 levels,h -

0.125,and differentialdetection.This scheme carries2 L_ormation

bitsper symbol. Here we compare the erectofdifferentreceiverfilters,

namely:

I. 1RC

2. 2RC

3. 2RC with (256,16)block interleaving

4. Gaussian filterwith BTs = 0.95

5. SRC with LB = 1.01and roUoff8/= 0.4

6. Same as above, with (256,16)block interleaving

7. Butterworth

The SRC filterwith interleavingprovidesthe bestperformance in this

situation.

• In the same situationas in the previous figure,Fig. 8.42 compares

interleavedand non-interleavedtransmissionwith SRC filtering.Here

interleavingprovidesa gain of 0.9dB in signal-to-noiseratio.
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• Fig. 8.43 shows the performance of 16-state, TCM-encoded CPM sig-
nals with full response signaling, HCS1 frequency pulse, M = 8 levels,

h = 0.125, and differential detection. This scheme carries 2 informa-

tion bits per symbol. Here we compare the effect of different receiver

filters, namely:

1. 1RC

2. 2RC

3. 2RC with (256,16)block interleaving

4. SRC with £s = 1.01and rolloff_I = 0.4

5. Same as above,with (256,16)block interleaving

6. Butterworth

7. Butterworth with (256,16)block interleaving

The SRC filter with interelaving provides the best performance in this

situation.

• In the same situation as in the previous figure, Fig. 8.44 compares

interleaved and non-interleaved transmission with SRC filtering. Here

(256,16) block interleaving provides a gain of about 1 dB in signal-to-

noise ratio, while (128,16) interleaving offers only 0.4 d.B.

• Fig. 8.45 refers to the same situation as the previous figure, with But-

terworth receiving filter. Comparison of interleaving schemes of dif-

ferent size shows that (256,16) block interleaving provides a gain of

about 0.8 dB in signal-to-noise ratio, while (128,16) interleaving offers

only 0.4 dB.

• Fig. 8.46 compares the performance of 4-state and 8-state TCM-encoded

CPM signals with full response signaling, HCS1 frequency pulse, M =

8 levels, h = 0.125, and differential detection. This scheme carries 2

information bits per symbol. The receiver filter is Butterworth.

In conclusion, for the AWGN channel model (i.e., in the absence of fad-

ing) an 8-state TCM-encoded CPM signals with full response signaling, IRC

frequency pulse, M = 8 levels, h - 0.125, and differential detection, in con-

junction with an SRC receiver filter with LB = 1.01 and rolloff _3] -- 0.4, and

(256,16) block interleaving, offers the best compromise between complex-

ity and performance in the signal-to-noise range and among the candidate

schemes considered in this Report.
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8.1.2 Fading channel

We now consider a channel affected by additive Gaussian noise, intersymbol

interference due to filtering effects, Doppler frequency spread, and Rician

fading. The following parameters were selected:

1. Rician parameter K: chosen to be 10 .

2. Doppler frequency spread : chosen to be 20 and 40 Hz.

In our simulations we have examined the behavior of the best schemes

found for the AWGN channel, i.e., 1RC and 1WCS. The latter has a higher

degradation (as shown in Fig. 8.44), but is spectrally more efficient than

tRC.

The resultsobtained are illustratedin the figuresthat follow.

Fig. 8.47 illustrates the performance of the full-response 4-state trel-
lls coded CPM with HCS pulse shape, SRC filtering, two different

interleaving sizes, and a Doppler spread of 20 Hz.

Fig. 8.48 shows the performance of the previous system with an 8-state

CO de.

Fig. 8.49 refers to the same situation as the previous figure. The only

change is in the number of TCM states, that is 16 here. Here, a
comparison is made between the proposed CPM system (which has

constant envelope) and the filtered 16-state 8DPSK (whose envelope

is not constant).

With (256, 16) interleaving the CPM system offers the same perfor-
mance as the non-constant envelope filtered 8DPSK with (128, 16)

interleaving. This will make the CPM relatively superior the 8DPSK

system.

With (128, 16) interleaving, our CPM system shows a degradation of

only .5 clB with respect to 8DPSK. In the presence of significant chan-

nel nonlinearities due to power amplifiers driven at or near saturation

for better power efficiency, CPM will perform better than 8DPSK be-

cause in the latter scheme envelope fluctuations will cause phase fluc-

tuations, which in turn will be reflected into further performance degra-

dation.

h
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Fig. 8.50 shows the performance of the fullresponse 4-statetrellis

coded CPM signal,over the Rician fading channel with a Doppler

spread of 40 Hz, with HCS pulse shape,SRC filter,and two different

interleavingsizes.

Fig. 8.51 demonstrates the expected 2 dB loss,for a 4-statetrellis

coded CPM signal,due to the presence of fading,with and without

interleaving.

Fig.8.52isthe same asFig. 8.50with an 8-stateTCM scheme.

Fig.8.53compares the performance of the 8-statetrelliscoded fullre-

sponse CPM signaloverAWGN channelwith Ricianfadingand 40 Hz

Doppler spread,with and without interleaving.This system shows a

performance degradation,due to fading,ofonly .9dB.

Fig.8.54isthe same as Fig.8.50with a 16-statecode.

Fig.8.55 compares the performance of fuU-responseCPM signalwith

HCS pulse shape over AWGN channel with Ricianfadingand a 40 Hz

Doppler spreadfor 4,8, and 16-statecodes. A performance improve-

ment of about 2 dB caused by the increasein the number of code

statesfrom 4 to 16 isobserved here.

Fig.8.56 compares the performance, over two differentRician fading

channels with the same interlavingscheme, of the followingtwo sys-

tents:

8DPSK : 16-statetrelliscoded,filtered,overRicianfadingwith 20 Hz

Doppler spread,and (128,16) interleaving.

Differential CPM ; 16-statetrelliscoded, over Rician fading with

40 Hz Doppler spread,and (128,16) interleaving.

Fig. 8.57 illustratesthe performances of 4-statetrelliscoded CPM

signal,over the Rician fadingchannel,with 1RC pulse shape for two

differentinterleavingsizes.

Fig.8.58illustratesthe performancs of 8-statetrelliscoded CPM sig-

nal,over the Rician fading channel, with 1RC pulse shape for two

differentinterleavingsizes.Comparison is drawn with the 16-state

non-constant envelope interleaved,_viththe same Doppler spread of

20 Hz, filtered8DPSK, indicatinga lossofonly 1 dB.

m
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• Fig. 8.59 illustrates the performancs of 16-state trellis coded CPM

signal, over the Rician fading channel, with 1RC pulse shape for two

different interleaving sizes. Comparison is drawn with the 16-state

non-constant envelope interleaved, with the same Doppler of 20 Hz.,

filtered 8DPSK, indicating a loss of only 1.1 dB.

• Fig. 8.60 is the same as fig. 8.57 except, the Doppler spread is 40 Hz.

• Fig.8 61 is the same as fig. 8.58 except, the Doppler spread is 40 Hz.

• Fig. 8.62 compares the performance, over two different Rician fad-

ing channels with the same interleaving scheme, of the following two

systems:

8DPSK : 16-state trellis coded, filtered, over Rician fading with 20 Hz

Doppler spread, and (128, 16) interleaving.

Differential CPM ; 16-state trellis coded, over Rician fading with

40 Hz Doppler spread, and (128, 16) interleaving.

• Fig. 8.63 compares the performance, over the same Rician fading chan-

nel with 20 Hz. Doppler spread, of:

8DPSK : 16-state trellis coded, filtered, and (128, 16) interleaving.

Differential CPM ; 8 and 16-state trellis coded, and (128, 16) in-

terleaving.

We observe that, under the conditions o.[ our simulation, the CPM scheme

offers the same performance as a filtered 8DPSK signal, but with the addi-

tional positive feature of a constant envelope. This, in essence, will make
the CPM a more attractive system. We also observe that, in the presence of

a finite-size block interleaving, larger Doppler spreads may cause a smaller

performance degradation than smaller spreads. This is apparently due to

the fact that Doppler f_equency spread causes a reduction of the length of the

bursts, which are not completely interspersed by a finite-depth interleaver.

=
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Figure 8.22
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shape, h=0.125, and differential detection with and without interleaving.
Trellis coded 8-level DPSK is also shown for comparison.

Figure 8.24
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Conclusions

W
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We have considered a satelllte-based mobile communication scheme based on

continuous-phase modulated (CPM) signals used in conjunction with trellis-

coded modulation (TCM). We have proved that the synergy between TCM,

which improves error probability, and CPM signals, which provide constant

envelope and low spectral occupancy, provides a satisfactory solution to the

problem of transmitting on mobile satellite channels.

CPM signals are differentially demodulated symbol-by-symboL By doing

this, the power efticiency of CPM is not exploited, but its spectral properties

are retained, and interleaving/deinterleaving is made possible.

This transmission scheme was extensively simulated under several condi-

tions. Several frequency pulse shapes, receiver filter shapes, TCM schemes,

interleavlng/deinterleaving sizes and depths, and fading channels were con-

sidered. It has been found that, over the AWGN channel model (i.e., in the

absence of fading) an 8-state TCM-encoded CPM signals with full response
signaling, 1RC frequency pulse, M = 8 levels, h = 0.125, and differential

detection, in conjunction with an SRC receiver filter with LB = 1.01 and

rolloff/3/ = 0.4, and (256,16) block interleaving, offers the best compro-

mise between complexity and performance in the signal-to-noise range and

among the candidate schemes considered in this Report. For fading chan-

nels, full-response CPM with 1HCS pulses offers the same performance as a

filtered 8DPSK signal, but with the additional positive feature of a constant

envelope. This, in essence, will make the CPM a system more attractive
than DPSK.

In conclusion, our results show that, for a careful selection of system pa-

rameters, on satellite-based land mobile communication channels a differentially-

detected CPM scheme can offer an error performance which is essentially the
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same as differentially coherent PSK. Since PSK does not use bandwidth in a

very efficient way, it has to be band-pass filtered to meet the requirements of

closely-spaced mobih-radio channdization. As a result, its envdope is not

constant, and its performance would be degraded by power amplifiers oper-

ated at or near saturation for better power efficiency. Since CPM with the

parameters chosen is bandwidth emcient it does not require narrow filtering,

and consequently offers constant or near-constant envelope, thus preventing
a possible cause of serious performance degradation.
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Appendix A

The simulation package

m

A.1 Structure of the simulation package

The computer simulation package developed for the analysis and design of

the trellis-encoded CPM scheme includes the following subpackages:

1. Input/Output blocks. They input the various parameters affecting

system performance and store them into an assigned file. They also
store the output quantities and store them into files for graphical pre-

sentation.

2. TCM encoder and Viterbi decoder.

3. CPM modulator and demodulator. These blocks generate different

pulse shapes according to the input parameters, and demodulate the

received signal by using a differential or non-coherent demodulator.

4. Channel simulators. Addition of Gaussian noise and fading with or

without shadowing.

5. Filter simulators. Modules are available to simulate the following filter
families: llLEC, LRC, Gaussian, Chebychev, Butterworth, and LSI_C.

Gaussian and LSRC use the frequency-domain exact form, the other

filter models are based on approximations.

6. Simulator of the Doppler-frequency shift estimation and removal.

7. Simulator of the timing recovery circuit.

237
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Figure A.I: Flow chart of the simulation program.
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Fig. A.1 shows the flow chart of the package as used to simulate the
behavior of the TCM-encoded CPM system. The number of CPM symbol

levels generated by the transmitter may be 2, 4, ar 8. The binary and

quaternary case have been validated by comparing our simulation results
with results previously published. The pulse shapes chosen were LREC,

LRC, and GMSK. The binary cases considered are without precoding, and

the samples at the output of the differential detector were taken at integer

multiples of signal symbol time, i.e., t,_ - nTs. For for quaternary GMSK

precoding was used on the source data. The precoding rules are described

in the fonowing:

Transmitter: output of data generator

output of precoder

input of CPM modulator

Receiver: detectoroutput

bn e {0,1, 2, 3}

an -- b,_ - an-1 rood4

a. e {0,1,2,3}
cn = 2an - 3

e
yn -- Cn + Cn-I "- 2(an -{-an-l) -- 6

-- 2[(bn - an-1 rood 4) + a_-l] - 6

{0,+2, +4, +6}

The decoding rulesare:

y,_---6or2 ==_ bn=O

y_=-4or4 ==_ b_=l

y_=-2or6 ===_ bn=2

y,_=O ==_ b,_=3

The relationsamong b,_,a,_-1,and y,_are summarized in Table A.1.

A.I.I Multipath fading simulator

In our descriptionof the channel used in thisReport, we have listedthree

fading models, namely, the Rayleigh,Rice, and Loo models. Here we de-

scribethe structureofthe softwarewrittentosimulatethesechannelmodels,

and providetheirvalidationbased on simulationresults.

The commonly acceptedsignalpropagationmodel forsatelllte-basedmo-

bilecommunication isbased upon considerationof three signalpaths from

the satelliteto the mobile,namely, a line.of-sightor directpath, a specular

path, and a scatterpath or multipath. The specular and directpath are

co_nbinedto form the coherentcomponent, while the diffusepath forms the

noncoherent component.
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Table A.I: Precodlag table for quaternary CPM.

w
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The latter component is Gaussian, while the coherent component, in

terms of its cbmplex envelope, is either a constant (Rayleigh model, Rice

model) or is subjected to a log-normal transformation (Loo model). The

log-normal transformation represents the effects of foliage attenuation, and

is usually referred to as shadowing.
The sum of a constant-envelope signal and a Gaussian process has an

envelope modeled by a Rician probability density function. In the absence

of the constant-envelope component, the probability density function is of

the Rayleigh type. The functional block diagram for the Rayleigh fading

simulator is shown in Fig. A.2. The Gaussian noise source generates a

sequence of white Gaussian noise samples. These samples pass trough a

shaping filter, and modulate the in-phase and quadrature parts of a radio-

frequency carrier. The theoretical model for the shaping filter is depicted in

Fig. A.3, and its frequency response can be expressed in the form

f A [I- (///o)2]-I/4I/I</d
H(f)

0 I/l>/d

where fd = v/),isthe Doppler frequencyspread corresponding to a vehicle

speed v when the carrier wavelength is A, and A is a gain constant. The

probability density function of the fading sample is

f_(a) = 2ae -_2, a > O.

The phase of the Rayleigh sample has a uniform distribution between -_r
and T.

The functional block diagram for the Rician fading simulator is shown

in Fig. A.4. The upper arm is essentially the same as for the Rayleigh

model simulator. The lower arm generates a Doppler-shifted signal compo-

nent, which represents the direct path propagation. The probability density

function for the Rician envelope is

,_(a)=2a(l+K)e-K-a2(l+lQIo(2aCK(l+K)), a > O,

where K is the ratio between the power in the direct path and the power in

the multipath signal. The phase probability density function of the Rician

fading samples is given by

e-K 2@f6)(O)= 2---_"+ v/-gc°sOe-Ksin20[2-erfc(v/-'Kc°sO)]"
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The block diagram of the shadowed Rician fading simulator is depicted in

Fig. A.5. The simulator is similar to the Rice model, except for the lower
arm signal path, which is modeled by a log-normal shadowing component.

The probability density function of this shadowing component is

1 ((lny-l_°)21, O<y<oo-/y(y) = 2 -- -
x/2_'croy

It is well known that a random process _/(t) whose probability density func-

tion is log-normal can be represented in the form

y(t) = exp{X(t)},

where X (t) is Gaussian, with mean/Jo and variance _02. The bandwidth of

the shaping filter for the lognormal component is about 0.01 narrower that

that of the Rayleigh component.

Validation

The baseband equivalent representation of the faded samples is used in the

computer simulations. The baseband equivalent signal samples can be ob-

tained by forming the complex baseband signal. The shaping filter for the

Rayleigh component is approximated by a third-order digital Butterworth

filter with bandwidth fa. The magnitude of the frequency response is de-

picted in Fig. A.6. The theoretical model for the frequency response of the
third-order digital Butterworth filter has a peak at the frequency fa. How-

ever, the out-of-band response of the Butterworth filter does not decrease

sharply. This is due to the low filter order, and causes some higher-frequency

noise components to pass through the filter.
The fading samples generated by using the third-order digital Butter-

worth filter are shown in Fig. A.7 and Fig. A.8 for a vehicle velocity of

20 MPH and 55 MPH, respectively. The carrier frequency is 1.5 GHz and

the elevation angle is 90 ° • It can be seen that the fading samples for the

lower speed vary much slower than those for higher speed. In both cases, as

it can be observed, there is a hlgh-frequency wiggle along the slower varying

fading trajectory. This is due to the fact that the out-of-band attenua-
tion of the third-order Butterworth filter is not large enough, so that the

high-frequency noise component still passes through the filter and creates

the wiggle. The high-frequency wiggle will produce some extra phase jitter

in the differential detector, which makes the simulated system performance

slightly worse than that obtained with the theoretical fading model.
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To validate the fading simulator, the statistical frequency of a set of

fading samples is plotted against the theoretical density function. Fig. A.9
shows one of these plots for the envelope of the samples in a Rician model

with K - 10. Similarly, Fig. A.10 shows the phase of the fading samples.

It can be seen that in both cases the histogram agrees very well with the

theoretical probability density function.

A.1.2 Simulation of the receiver

In this section we describe in some detail the general structure of the receiver

simulation subpackage.

In particular:

• The received signal may be a binary, quaternary, or octonary CPM

signal.

• The front-endfiltermay have a Gaussian,LSRC, or RC response.

• The differentialdetectorperforms thefunctionz(t).z*(t-Ts),where as

usualTs denotesthe symbol intervaland • denotescomplex conjugate.

• The post-detectionfiltermay be Gaussian,LSRC, or RC.

• The "phase measurement" block performs the followingoperation:

¢(t) = tan -1 I[y(t + A)]
R[y(t + A)]'

where, for Q = 2M - 1,

A = [ T,/2

[ 0

while for Q = M we have

0/2A = T,/2

forfull response,

forpartialresponse,

for full response,

for partial response,

A.2 Eye patterns and their interpretation

In this section we first briefly describe the significance and the interpretation

of the eye patterns of the signals obtained at the output of the differential

L
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detector. Then we shall show a number of examples of eye patterns as

derived by using Our simulation package. The eye pattern, besides being

helpful in qualitative interpretation of the channel performance, will help us

in the selection of the detection time for each symbol interval.

Symbol precoding must be used not only in the case of partial-response

CPM, but also for full-response scheme when the pulse is only approximately

contained in a T,-second interval (e.g., GMSK pulses with truncation length

greater than or equal to 2). The eye diagram will be useful to verify this,
and to validate the simulation results by verifying their consistency with the

results expected from the analysis.
If we let the transmitted phase of a CPM signal be written in the form

Oo

e(t,a) = a,,q(t- nT,), (A.1)
rt _o

where a,_ e {0,3=1,+3,"*,:]=(M - 1)}, at the output of the differential

detector, for any time t, we can get the phase difference between 0(t, a) and

O(t - Ts, a) :
O0

O0

A0(t,a) = 21rh _ a,q(t- nT_) - 2_'h E a,q(t- (n + I)T,). (A.2)
1¢t._ -- O0

Et._. -- OO

The eye diagram can be generatedby slicingthe signalAO in segments

of duration NT, seconds each, and superimposing the variousslicesin the

interval(0,NTs).
Let us take,forillustration'ssake,N = 1,and considera partial-response

CPM with pulselengthL symbol intervals.Eq. (A.2) can be simplifiedby

rewritingitin the form

I, (A.3)
 e(t,a) = Z _ .._x)q(t - nT.)

n=-k-L&l

where
kT, < t < (k + 1)T,.

The above equation is the analytical description of the eye diagram in the

interval (kT,, (k + 1)T_). If we consider a full-response CPM scheme, i.e., if

we assume L = 1, (A.3) specializes to

AO(t,a) = 2rrh(ak -ak-x)q(t-kT')+rhak-l' kT, < t < (k+l)T,. (A.4)

From the above equation,wa can observe that the eye diagram should

reflectthe shape ofthe q(.)function.
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Example 1.

For a binary full-response CPFSK scheme, i.e.,

0 t<_0
q(t) = t/2T, O < t < T,

1/2 t > Ts

we have

)t - kT,/,o(t,a) = ,_h(ak - ak-1 -T-, + ,_h,_k-_, kT, < t < (k + 1)T,.

The corresponding eye diagram is shown in Fig. A.11. []

(A.5)

Example 2.

Consider now a quaternary CPM scheme with h = 0.25, and a GMSK pulse

with truncation length LT = 1. We have for this case

AO(t, a) = 2xh(ak - ak_l)qGMSK(t -- kTs) + rhak_l, kTs <<_t < (k + 1)Ts.
(A.6)

There are 4 possible initial states, i.e., {-3x, -z'h, rh, 3rh}, and four transi-

tions stemming from each state. For any given state, the slope of the transi-

tion, i.e., the coefficient of the q(.) function, will depend on the present state

ak_l_rh and on the input symbol ak. For example, the transitions stemming
from state -3rh are

O, 4_rhq(t - kT,), ;6rhq(t- kT,), ;8xhq(t - kT,),

The corresponding eye diagram isshown in Fig.A.12. []

Example 3.

Consider a partial-response binary CPM scheme with rectangular pulses,

and L = 2. We have in particular

0 t<O
q(t) = t/2LT, O< t < LT,
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Figure A.11: Eye diagram of binary CPFSK.
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/ '\/ ,,

Z

= = Figure A.12: Eye diagram of quaternary CPM with GMSK pulse, h = 0.25,
LT=I.
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so that

Ae(t,,,)
- kT

2zh(ak - ak_l) t 4Ts

+2a'h(ak_l - ak-2) t - kT

+rhak_2.

The corresponding eye diagram is shown in Fig. A.13. []
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w

Figure A.13: Eye diagram of binary partial-response CPM with rectangular

pulse.
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Appendix B

Hardware Implementation

B.1 Introduction

This appendix describes the work done on the firmware implementation of

the 4800 bps trellis coded CPM modem. The parameters associated with this
hardware have been determined by the appropriate simulations and analysis.

The overall functional block diagrams, for the full response and the partial

response, are shown in Fig. B.1 and Fig. B.2 where the transmitter includes

the following modules:

• Multiplexer.

• Trellis encoder.

• Iaterleaver.

• Precoder(not used in the full response due to performance degrada-

tion.)

• CPM modulator.

• D/A converter.

• Lowpass filter.

• IF frequency converter.

Accordingly, the receiver includes:

• Bandpass filters.

259



APPENDIX B. HARDWARE IMPLEMENTATION 260

• Clock recovery.

• Differential detector.

• Deinterleaver.

• Trellis decoder.

The end-to-endsystem requiresan extensivedigitalsignalprocessing,math-

ematicalcalculations,and logicaloperations.The TMS320C25 DSP micro-

processor(TMS) performs a major part of the mathematical operations.

The supplemental digitaland analog circuitswillserveas peripheralhard-

ware forfrequency conversion,filtering,and interfacing.

v

I

B.2 Transmitter

The transmitterhardware interfacediagram isshown in Fig.B.3. The TMS

performs,at baseband, the trellisencoding,Interleaving,and CPM modu-

lation.Additionally,the timing for allother circuitsin the transmitteris

coded on TMS. The resultingbaseband signalsI(t)and Q(t) signalsare then

upconverted to the desiredIF level.The IF frequency ischosen to be 28.8
KHz. The transmittercircuitsalsoneeds synchronizedtiming signalsthat

willinclude:

• A 4.8 KHz pulse for data source.

• A 2.4 KHz pulse for symbol rate.

• A 19.2 KHz pulse for sampling.

B.2.1 Baseband Processing

The data, at the rate of 4800 bps, may be provided by a codec or any

terminal processor. The packetizeddata isfed to TMS in the form of 2

parallelbits each at the rate 2.4 Kbps. The data isencoded, in TMS,

with a rate 2/3 trellisencoder, producing an aggregaterate of 7200 bps.

Equivalently,the encoder output isgenerated at the rate of 2400 symbols

per second (3 bitsper symbol). The interleaverblock iseither(16 by 8)

or (16 by 16). Implementation of both the trellisencoder and interleaver

is done by TMS. The interleavedoutput symbols are input to the CPM

modulator. The CPM signalsare representedby 8 samples per symbol.

Thereforethe requiredsample rateis19.2KHz. This would mean that the
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TMS must complete the entire entire operations, for each sample, within

1/19200 : 52 Micro seconds. A considerable speed is achieved by the use
of various table look-ups representing all trigonometric operations as well

as many transmitter functions. The computed I and Q digital data are sent

through the appropriatedata bus and loaded intotwo latchesat the rate

of 19.2KHz. The D/A converterwilltransform the 12 bitsdigitalI and Q

components intothe correspondinganalogbaseband signals.
The TMS softwareblock diagram, forbaseband processing,isillustrated

in Fig.B.4.

B.2.2 IF Converter

The block diagram of the IF upconverterisshown in Fig.B.5. Here, the

baseband components are up convertedto the IF band at the selectedfre-

quency of28.8KHz. The lowpass filters,multlp].iers,adders,phase shifters,

and oscillatorhave allbeen implemented by analog circuits.

Two differenttypes oflowpass filterare used forthe IF conversion.The

firstisa fourthorderlinearphase lowpassfilterforthe analogI and Q. The

bandwidth isset at 2.5 KHz. The second, on the other hand, isa fourth

order chebychev. The transmittercircuitschematicsaxe shown in Fig.B.6,

Fig.B.7,Fig.B.8,and Pig.B.9.

B.3 Receiver

The receiverisconsiderablymore complicatedthan the transmitter.A full

digitalreceiverwillbe implemented in accordance with the basicblock dis-

gram shown in the Fig.B.10. Due tothe substantialdegreeof computations
involvedin the transmitter-receiveroperations,a singleTMS willnot be able

to accommodate the maximum allowedprocessingtime of 52 Microseconds

per sample. There are eightsetsofI and Q signalsamples per symbol. The

calculationshave thusbeen splitbetween fourTMS microprocessorsystems.

The assignments are:

Systems one and two : perform the upconversions,downconversions,and

the associatedlow-passfilteringoperations.

System three : willdo allthe baseband processings.

System four: willperform the trellisdecoding and deinterleaving.
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B.3.1 IF Sampling

The 28.8KHz IF signalisanalog filteredfornoisereductionand then ap-

pliedto the input of the A/D converter.The filteredwaveform issampled

at 115.2 KHz. The alignment of samples isachieved through a firstorder

interpolationofin-phasesamples. Here thereare 8 groups of I and Q sam-

ples.The groups of the I,Q signalsare separatedby 52 Microseconds. The

A/D output I and Q samples are separatedby 8.681 Microseconds. This

separationsetsthe upperbound on the converterspeed. Therefore,a fairly

high speed converterisrequired to meet the required timing . To retain

the baseband component lowpass filteringiscarriedout by using TMS im-

plemented appropriateFIB.filters.Fig.B.10 illustratesthe basic receiver

architectureat the IF level.

The ground noiseisexpected to be largerthan 1/256 ofthe input signal.

Therefore,an 8bitresolutionassociatedwith the A/D deviceshouldprovide

sufficientaccuracy.The schematicsofTMS systems one and two are shown

in Fig.B.11 and Fig.B.12.

B.3.2 Baseband Operations

The baseband operations include filtering, clock recovery, and differential

detection. These functions are implemented on the third TMS system. The

block diagram of the differential detector is shown in Fig. B.13. Fig. B.14

and Fig. B.15 illustrate details of the third and fourth TMS systems.

B.3.3 Decoder and Deinterleaver

The fourth TMS system will perform operations of deinterleaving and Viterbi

decoding. The schematics of this system is shown in The TMS is interrupted

at the rate of 2.4 KHz. After the filtering, Doppler correction, and demodu-

lation the data will be delnterleaved and decoded. Then the decoded symbols

are loaded into the shift registers.

B.4 Status of the Hardware

1. The transmitter hardware has been completed and tested. The circuits

include:

• "The TMS microprocessor system.

• Peripheral circuits.
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• IF upconversion circuits.

The TMS software for the transmitter is complete. It does not include

the encoder. The eye diagrams corresponding the CPM signal with

1RC pulse, have been photographed and are shown in Fig. B.16 and

Fig. B.17. The current system runs on a 2400 bps data rate. Thus
transmitter hardware must be upgraded to accommodate the required

4800 bps data rate. This transmitter box, with operating instructions,

has been delivered along with the final report.

2. As for the receiver, a total of four TMS microprocessor systems make

up the receiver. The hardware for these systems have been completed.

The components include:

• The memory system.

• Memory peripheral circuits.

• System's timing,

• A/D converter.

• Interrupt circuits.

• Handshaking logics for interfacing of the multiprocessor opera-

tions.

Moreover, except the decoder, the software for the baseband receiver

has been completed. In summary, additional time is required to com-

plete the hardware implementation of the differential CPM system.

= =
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