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EXECUTIVE OVERVIEW

This document is the year end report for the period 1/1/92 to 12/31/92 for

Cooperative Agreement NCC1-136. The report is represented by the doctoral

dissertation of Mr. Rodrigo Obando who was a research assistant on the project. The

focus of the research is the modeling and design of a fault tolerant multiprocessor

system which incorporates the Algorithm to Architecture Mapping Model (ATAMM).

The design aspects of the research are imbedded in a four processor Generic VHSIC

Spaceborne Computer (GVSC). Subsequent implementation and evaluation

demonstrated the correctness of the fault tolerant design. Of interest is the fault

tolerance in the "death of a processor" and the ability to reconfigure and recover on

the fly without loosing data. This is important in the support of fault tolerant critical

real time tasks. The research also addresses modelling the transient behavior of

the fault detection and recovery processes and establishes minimum time bounds for

the real time system to regain steady state output. An additional byproduct of the

work is the simulation of the GVSC ATAMM Multicomputer Operating System or

(AMOS). The simulator was validated against actual GVSC performance and

provides a valuable tool to explore data flow problems which may require more than

four processors.



A PERFORMANCE PREDICTION MODEL FOR A FAULT-TOLERANT
COMPUTER DURING RECOVERY AND RESTORATION

ABSTRACT

The modeling and design of a fault-tolerant multiprocessor system is addressed in this

report. In particular, the behavior of the system during recovery and restoration after a

fault has occurred is investigated. Given that a multicomputer system is designed using the

Algorithm to Architecture to Mapping Model (ATAMM), and that a fault (death of a

computing resource) occurs during its normal steady-state operation, a model is presented

as a viable research tool for predicting the performance bounds of the system during its

recovery and restoration phases. Furthermore, the bounds of the performance behavior of

the system during this transient mode can be assessed. These bounds include: time to

recover from the fault (t_), time to restore the system (t_) and whether there is a

permanent delay in the system's Time Between Input and Output (TBIO) after the system

has reached a steady state. An implementation of an ATAMM based computer was

developed with the Generic VHSIC Spaceborne Computer (GVSC) as the target system.

A simulation of the GVSC was also written based on the code used in ATAMM

Multicomputer Operating System (AMOS). The simulation is in turn used to validate the

new model in the usefulness and accuracy in tracking the propagation of the delay through

the system and predicting the behavior in the transient state of recovery and restoration.

The model is validated as an accurate method to predict the transient behavior of an

ATAMM based multicomputer during recovery and restoration.
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CHAPTER ONE

INTRODUCTION

This dissertation addresses the modeling and design of a fault-

tolerant multiprocessor system. In particular, the behavior of the system

during recovery and restoration is investigated. Fault-tolerant computing

has become an increasingly important facet of real-time computing

systems. Real-time computing is a rapidly growing field in its own right.

The demand for real-time computing systems in industries such as

aeronautics and defense has produced an increase in research in this area.

A real-time computing system designer cannot afford to omit fault-tolerant

capabilities in systems designs. It is not realistic to consider that the

system will never fail. When a real-time system requires that the output

meet deadlines with high reliability, then the system has to be fault-

tolerant.

A computing system with fault-tolerant capabilities has to deal with

recovery and restoration of the system after an error has been detected. A

fault-tolerant computer requires redundancy of some kind to recover from a

fault. Such redundancy may be temporal or hardware based. An example

of temporal redundancy is the process of retry after a failure of a task. An



example of hardware redundancy is the use of multiple computing

resources to perform the same task concurrently [1], [2], [7].

A real-time computing system with fault-tolerant capabilities has

greater requirements than other computing systems. One of these

requirements is that in addition to recovering from a fault it must deliver

its output before or on a given deadline. Meeting such requirements is

critical in the design and implementation of real-time fault-tolerant

systems. A fault in any computing system causes the system to go through

a transient in its behavior. A fault-tolerant system is designed to prevent

any further damage in the system and to repair the damage that has been

done. A system without fault-tolerant facilities is doomed to fail to perform

to specifications if a fault occurs. A fault-tolerant real-time computing

system, on the other hand, should be able to go through the transient

meeting also the data deadlines imposed on the system. Determining the

system feature of transient behavior is crucial in the design of fault-

tolerant real-time computing systems [3].

Prediction of performance during a transient phase, such as that

caused by a fault, requires first the prediction during the steady-state

phase of the system. Fortunately, there exists a model that allows such a

prediction: the Algorithm To Architecture Mapping Model (ATAMM) [4],

[5], [6] developed at Old Dominion University. The development of

ATAMM has made performance prediction of a class of multiprocessor
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systems possible. Steady-state performance prediction is possible for

systems designed to follow the ATAMM design guidelines. It is possible to

calculate bounds for such measures as throughput (TBO: Time Between

Outputs) or system delay (TBIO: Time Between Input and Output).

1.1 Fault-Tolerant Computing

One taxonomy of the phases that a fault-tolerant computing system

goes through is error detection; damage confinement and assessment; error

recovery; and fault treatment and continued system service [1]. An error is

the deviation from specifications caused by a fault and can be detected by

hardware mechanisms or software procedures. Damage confinement and

assessment is the process of reducing the spread of damage and estimating

its extent in the system. The kind of process to be used depends on the

type of fault detection used. If the damage is beyond repair it may be

necessary to restart the system from its initial state. After having assessed

the damage, recovery from the damage needs to take place. Error recovery

is a very important aspect of fault-tolerant computing since the system

depends on a proper mechanism to recover the lost work to continue

reliably. The phase of fault treatment and continued service is used to

locate the fault and remove it and to leave the system in a healthy state.

After this stage the system may continue normal operation until another

fault occurs [1], [2], [7].
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1.2 ATAMM Context

Of interest is the behavior of a multiprocessor system operating

periodically on a set of inputs. The application of ATAMM has been

limited to large grain, decision-free algorithms. The number of computing

resources the system contains is on the order of twenty. The

communication-to-computing effort ratio is small.

It is of interest to use the ATAMM model to design fault-tolerant

computers. A system designed to follow the ATAMM rules is a good

candidate for a fault-tolerant computer since the model predicts how the

system should be changed to continue after a failure of a computing

resource. The system can be designed to follow a given performance path

from n computing resources to 1 computing resource. For every number of

computing resources, a different performance operating point can be

obtained. In a graceful degradation scenario, ATAMM lends itself to

• predict a particular degradation path, optimized for the application at

hand [4], [5], [6].

1.3 Current Research Areas

Three of the current research areas in fault-tolerant computing are

faulty processor detection, performance prediction in a fault-tolerant

system, and estimation of software reliability.

Faulty processor detection in a multiprocessor system can be

accomplished in several ways. A method that has been used for many
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years and has been the subject of much research is the testing of

computing processors by other computing processors [9], [10], [11], [12],

[13], [14], [15]. This method involves the use of the computing processors

themselves testing other computing resources in the system or a master

controller that tests all processors. The number of tests that are necessary

to test a given system is an issue of interest. Other issues are the topology

of the test graph to test effectively all computing resources and the validity

of tests given that a computing resource is identified as faulty by others

that may not all be healthy. For these methods to succeed,it is necessary

to design test algorithms for specific systems or architectures and

sometimes they are tied very closely to the interconnection network of the

computing resources. This approach is based in the work described in [10]

which is deterministic in principle. A more recent procedure of diagnosing

faulty processors is explained in [25]. This procedure deals with arbitrarily

connected processors providing faulty processor diagnosis for a wider

variety of connection networks. This approach is not deterministic but

involves probability theory and, therefore, provides diagnosis with high

probability instead that probability one as the methods directly derived

from [10].

Performance prediction in a fault-tolerant real-time system has been

addressed by Kant [16]. His model assumes that there are recovery blocks

(RB) and N-version programming (NVP) [17] involved in the design of the
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system. The model is a hierarchical one. Starting from the top level of the

program or main routine, it decomposesthe system into different levels of

complexity. The top level is designated as 1 and the subsequent levels are

labeled in increasing order. This model is stochastic and also addresses

somereliability measures of the system. It assumes a separate master

processor running the supervisor procedure. The analysis is performed on

the processesof the system instead of the processors. The processors are

assigned to processesbut someprocessescan be left dormant while other

processesare spawned in the system. This model specifically addresses the

software reliability of the system and not explicitly that of the hardware.

The model mentioned above is based on N-version programming [17]

which assumes that the different software versions are uncorrelated, i.e.,

statistically independent. A recent technique that addresses a correlated

set of software versions is explored in [26]. This technique uses the

mutation analysis to create a data set to test software modules. Mutation

analysis refers to the mutation of software modules. The idea is based on

the fault-injection techniques used to test hardware. Mutation is

performed by artificially introducing software errors in a module. A test

data set is produced that identifies the mutant modules as faulty. The

underlying assumption is that if a mutant module is not identified as

faulty, a potential software fault in in the original module. This method

has proven to provide better reliability than the N-version programming.
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1.4 Research Objective

The restrictions that apply to a real-time, fault-tolerant

multicomputer system make this class of systems stand out from the rest

due to the delicate balance of performance versus reliability. Increasing the

system's performance may impair its refiability and vice versa. The models

in the current research areas do not address the question of whether a

system ever restores to a state within specifications. This question is

important to real-time systems since a state that is reached after recovery

from a fault may be operational but not within the system specifications.

An example may be a computer which provides control for a given system.

After a fault occurs in the system, the computer performs the required

fault-tolerant phases and may continue evaluating input data and

delivering output data, but the system delay may not be within the

specified limits. This is an undesirable characteristic since, although the

system may take care of the damage caused by a fault, it may never reach

the desired operating point or state.

The problem domain of interest is that of systems executing single-

input single-output graphs, with or without recursive circuits, designed

under ATAMM. It is assumed that the system processes multiple data

packets, i.e., input data is presented to the system periodically. The

systems have a time limit to deliver their outputs; therefore, they are

considered real-time systems. It is also assumed that only one computing
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resource fails at a time and that no other computing resource fails before

the system fully recovers. The latter suggests that the system is fault-

tolerant to some extent.

The application of ATAMM to real-time computing systems has

opened the possibilities of predicting the requirements of a multiprocessor

system to meet data deadlines. Under steady-state conditions,

performance of an algorithm processing repetitive input data sets can be

predicted. By the argument explained above, there is a need for fault-

tolerant capabilities for a highly reliable real-time system. Therefore, a

system designed under the ATAMM rules should have fault-tolerant

capabilities added. If this is the case, the issues at stake are the behavior

of the system upon the occurrence of a fault; the time it takes to recover

and restore the system; and whether or not the system still meets the

deadlines it was designed for after the fault. Addressing these and other

issues are crucial in the design of fault-tolerant, real-time computing

systems [3].

An analysis procedure is necessary to predict performance during

transients due to faults and to define a minimum set of requirements of a

fault-tolerant real-time system designed to follow the ATAMM rules.

However, the ATAMM model has not been previously used to predict

performance during transient phases, although it has been used

successfully to predict performance in the steady-state phase of the system.



A candidate model and an analysis procedure are presented in this

dissertation.

Given that a multicomputer system is designed to comply with the

ATAMM design guidelines [8], and that a fault (death of a computing

resource) occurs during its normal steady-state operation, a model and an

analysis procedure are proposed as candidates to predict the performance

bounds of the system during its recovery and restoration phases.

Furthermore, the system requirements to comply with such bounds can be

assessed and system design specifications can be gathered. The bounds are

time to recover from the fault (trec), time to restore the system (tres), and

permanent or temporary delay of the output from its expected time.

The time to recover from the fault is related to the time to restart the

process or node that was not completed due to the fault occurrence. The

time to restore the system is the time from when the error is detected to the

time that the system reaches the target operating point. In the case of the

experiments presented in this dissertation, the target operating point is

the same as the operating point before the fault. The bound of temporary

or permanent delay injected to the system output is related to the bound of

time to restore the system. If the system is not able to restore to the target

operating point then the delay injected to the system is permanent and vice

versa.
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1.5 Dissertation Organization

The fundamental model and analysis procedure along with the

necessary theoretical background are presented in Chapter Two. This

model addresses the introduction and propagation of delay in the system

under study. An overview of the implementation of an ATAMM operating

system with the fault-tolerant attributes to test the model developed in

Chapter Two is explained in Chapter Three. This chapter is used to

expound the implementation of ATAMM Multicomputer Operating System

(AMOS) in the IBM Generic VHSIC Spaceborne Computer (GVSC).

Experiments to demonstrate the use of the model and the validity of the

ATAMM implementation are presented in Chapter Four. These

experiments are intended to compare the experimental results against the

calculated results obtained according to the procedures developed in

Chapter Two. Chapter Five contains conclusions and suggestions

concerning future research.



CHAPTER TWO

THEORY

The objective of this chapter is to extend the ATAMM model to

investigate the transient behavior a multicomputer system subject to a

fault and during the recovery process. Of interest is how delay introduced

by a node is propagated in the graph. When a computing resource fails

while working in a node in the graph, it is detected and the node is

reassigned to a healthy computing resource. The effect of this error

detection and reassignment of the node is to delay the output from the

faulty node. The propagation of this delay through the graph is examined

and a model is developed in this chapter. The extension to the ATAMM

graph model to study this behavior is presented in Section 2.1. Node model

definitions are presented in Section 2.2. The fault node model to describe

the introduction of delay in the graph is developed in Section 2.3. The

delay propagation model to describe how the delay propagates in the graph

is developed in Section 2.4. Section 2.5 contains general purpose

definitions. A summary of the chapter is presented in Section 2.6.

11



12

2.1 Graph Model

The ATAMM model consists of the Algorithm Marked Graph (AMG)

and the Computational Marked Graph (CMG). These graphs describe the

data dependency of nodes in an algorithm. The AMG is a dataflow

description of the algorithm and does not show control flow. The CMG

describesboth data flow and control flow [6]. The CMG is constructed with

the use of another graph that describes the internal behavior of a node in

the AMG. This graph is called the Node Marked Graph (NMG).

The AMG is described by two sets, a set of nodes N and a set of

directed edges E. The set of nodes N is

N={ni}, for i = 1.. k

where k is the number of nodes in the graph. The set of directed edges E is

E:{ei,j},for i,j = 1.. k

where eij is a directed edge from initial node i to terminal node j.

The CMG is constructed using the AMG and the NMG according to

[4], [7], and [27]. These graphs are used to obtain performance bounds as

explained below.

There are two performance bounds derived from this graph model.

These bounds are the maximum system throughput or Lower Bound of

Time Between Outputs (TBOLB) and the minimum system delay or the
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Lower Bound of the Time Between Input and Output (TBIOLB) [5]. The

first bound Time Between Outputs (TBO) refers to the minimum time

between outputs at which a given algorithm graph is capable of working.

This indicates the minimum Time Between Inputs (TBI) at which a graph

should be driven. This bound is calculated by finding the circuit with the

largest amount of time per token. This is done by first finding all circuits

in the CMG. For each one of the circuits, the execution times in the circuit

are added, and the sum is divided by the number of tokens in the circuit.

The secondbound (TBIO) refers to the time that a data packet or input

takes to be transformed by the algorithm and reach the output sink. This

bound is calculated by finding all paths from the source to the sink and

adding the execution times in each one of them. The path with the largest

time defines TBOLB.

An AMG shows the data flow and data dependency among the

computational nodes but it doesnot explicitly show data packet

interdependency. Every node processesevery input datum that is

presented for every data packet that is input to the graph. The AMG

explicitly demonstrates the data dependency of one data packet; it displays

the different stages or transformations a data packet goesthrough until it

is delivered at the sink node. Ideally, each node finishes executing in a

fixed amount of time. However, in the event of a node requiring a longer

amount of time, a transient occurs.



Figure 2.1. Example of an AMG
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2.1.1 XAMG

The following graph model is an extension of an AMG and is called an

eXtended Algorithm Marked Graph (XAMG). This graph model uncovers

the relationship that exists between data packets. Every node in this

graph is associated with one and only one data packet. The XAMG can be

obtained from the AMG by indexing the nodes of the AMG with the data

packet number.

The XAMG is described by two sets. The set of nodes N X and the set

of directed edges _¥. The set of nodes N X is

NX:{np,i},forp = 1..l,i = 1..k,

where l is the number of data packets and k is the number of nodes in the

set of nodes N that describes the AMG from which the XAMG is obtained.

The total number of nodes in N X is the product of l and k. The set of

directed edges E X is

E x={ev,,,_,j},forp,n = 1..l;i,j = 1..k

where the edge ep,i, nj is a directed edge from node np, i to node nnj.
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Therefore, node X in the AMG becomes an array of nodes indexed by

the data packet number i, so X becomes X i for all i in the XAMG. To

illustrate this, the AMG in Figure 2.1 can be transformed into the XAMG

in Figure 2.2. The latter graph shows the relationship between the data

packet i and the data packets i + 1, i + 2, i + 3 and so on.

The XAMG model requires the redefinition of some measures of the

AMG such as TBIO and the addition of new measures relating to the input

and output of different data packets. These measures will be presented in

Section 2.5. One feature worth mentioning here is that there are no

directed circuits in the XAMG, therefore most of the analysis is carried out

on directed paths instead. In fact, every circuit in the AMG unfolds as a

path that goes from data packet to data packet.

2.1.2 XCMG

An immediate extension of the XAMG is the XCMG (eXtended

Computational Marked Graph). The XCMG is an unfolded view of the

CMG and it provides a way to account for interpacket data and control

relationships. The XCMG does not have directed circuits as the CMG does.

For example, the directed circuit in every computational node of a CMG

does not exist in a XCMG. This directed circuit is transformed into a

directed path from the write transition for node X, data packet i to the read

transition of node X, data packet i +1, and so on. The XCMG is obtained
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similarly as in [27]. The XCMG related to the XAMG in Figure 2.2 is

shown in Figure 2.3.

Source 1 E

Source 2

Source 3

-7. © ._
)
\

] © © © I
r

] © © C
I

_Sink 1

Figure 2.2. Example of an XAMG
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Sink

Sink

Sink

Figure 2.3. Example of an XCMG
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2.2 Node Model Definitions

Of interest is the development of fault models for a system designed

with the ATAMM strategy. These models can be used to analyze the effect

of a fault on the system at run-time. The only fault that is considered in

this analysis is the death of a resource during the execution of a node.

Consider a node in an XAMG with index n in data packetp. This

node has two sets of edges associated with it. These sets are the input edge

set Ip, n and the output edge set Op, n, where and are given by

Ip,,, -- {e i is an input edge to Np,_

and

Op,,, = {e i is an output edge to Nv,,, }

respectively. Assume that the read and write times are zero, so that the

only time associated with a node is the process period Pp,n, which is the

time necessary to execute the node.

When fired, node np, n encumbers tokens from all edges in Ip, n and

enters the execution stage of the node. The time when this is done is

represented by the fire time fp, n. The node np, n deposits tokens in all edges

in Op, n after the execution of the node has been completed. This is

represented by the deposit time dp, n. By using the ATAMM design
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procedure it is possible to ensure that nodes fire as soon as all edges in Ip, n

have tokens.

input edges.

r ,o:

Thus the node is enabled when the last token arrives at the

The fire time can be calculated by

(2.1)

where dq, i, dqj, dq, k,... are the deposit times of the nodes nq, i, nqj, nq, k,...

which are the predecessor nodes to np, n.

Each node np, n in the graph has a predetermined execution time Pp,n.

Therefore, the deposit time dp, n can be expressed by

dp,_ = fp,n + Pp,_. (2.2)

The max{} operator in the expression for fp,n indicates that tokens in

the input edges may stay in the edges for a finite period of time before they

are encumbered. Only the last token to arrive will stay for zero amount of

time in its edge. The time a token stays in an edge can be represented by

"Cq,m,p, n. This expression represents the lifetime of a token in the edge

between node np, n and node ha, m and is calculated by

= fp,,,- dq,,,,. (2.3)



2O

2.3 Fault Node Model

In a very broad sense, computing systems may be classified into two

categories. There can be systems without fault detection and there can be

fault-tolerant systems, or systems with an error detection mechanism.

When a computing resource fails while executing a node, the node is called

faulty node. A faulty node requires different models for these two types of

computing systems mentioned above.

In a system without fault detection, if a resource is executing a node

and it fails prior to the deposit of the node output tokens, the process

periodpp, n can be estimated to be infinite. Thus, ifPp,n is infinite, then

dp, n is also infinite. Since there is no fault detection in the system, this

event of a resource failure will lock the graph because successor nodes to

rip, n will not receive input data. Hence, the model for a faulty node in a

system without fault detection is straightforward: the process period Pp,n

for the faulty node is estimated to be infinite.

In a fault-tolerant system, if a resource is executing node np, n and a

failure occurs prior to the deposit of the node's output tokens, it is desirable

that the process periodpp, n and hence dp, n be finite. Since this is a fault-

tolerant system, a fault detection mechanism is required to flag the fault

with attendant application of fault-recovery techniques. One of these

techniques is rollback which involves the restarting of the task that failed
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to complete. Another technique is to discard the process of that task and

declare a failure of the entire data packet. In this research it is desired

that there is to be no loss of data, thus only the first technique is of

interest. Once a node is restarted with a healthy resource and assuming

there are no more faults in the system, the node will complete its process in

time which will exceedthe original process periodpp,n ,. The resultant time

can be calculated by adding a delay to the original process period Pp,n.

This delay is represented by APp,n, and it is defined by

AP,n =Pp,,--P:,n (2.4)

Assuming there are no faults in a system, the fire time fp,n and

deposit time dp, n for every node may be determined. These times are

denoted by f*p,n and d p,n, respectively. However, if there is a delay in a

node, i.e., it is a faulty node, there is a difference between dp, n and the

actual d p,n. This difference is called the delay to finish np, n, (Adp, n), where

(2.5)

In conclusion, a faulty node can be modeled by expressing its deposit time

by considering the delay added to its execution time. Therefore a faulty

node can be characterized by the delay Adp, n.
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The delay to fire node np, n may be defined by

if,,,=fp,n-f;,,_, (2.6)

where Afp,n is called the delay to fire node np, n.

If there is no delay introduced in node np, n, hdn can be calculated by

A_ =dpn-d'_n=fp,, +Pp,,,-fT,,-Pp,, =fp.,,-f_:,, =Afp,n , , jn

or

/k_,_ =/_,,,. (2.7)

Therefore, a node that does not introduce any delay propagates the delay

that is applied to the firing of the node.

If a node introduces a delay APp,n in the process, then the delay to

deposit Ad, n is

A._,.:d_,°- _;,.: r_,.+p...+A_..-r;..-p_..: r...- r;. +A_,n: A',.+A_,_

or

Ad,n _- A_ n _- APp_n , (2.8)

where APp,n is the delay introduced in the process time.

The general assumption made in the treatment of faults in this

document is that there is only one fault at a time. This precludes the

possibility of 0 < A_,_ when AIp,. < /k_,_ . Therefore, for a node that



23

introduces a delay, the delay to deposit is restricted to

The node in which the delay is introduced is called the delay generator

node where

A_,n > A_,n (2.1o)

and any other node is a delay propagator node,such that

/_'_.n = A/,.,_ • (2.11)

2.4 Delay Propagation Model

Without considering the loss of the resource, the only damage

introduced in a system after a fault is the delay Adn ,. Although this delay

may be considered local to the node np,n, it may also affect other nodes in

the system. For example, if dp, n determines when nq, m fires, then a delay

in dp, n may cause a delay in the firing of nq, m. It is important to consider

how delay introduced by a faulty node propagates in a graph. A model of

delay propagation in a graph is presented in this section.

2.4.1 Fire-Equivalent Node Model

A fire-equivalent node model is developed in this section to facilitate

modeling of delay propagation through directed paths. Consider a node
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np, n with one input edge on the directed path of interest.

this node is

r; {d"_" d" }= DT, ax
,n q,i_ q,j_ q,k#''" •

The time to fire

(2.12)

It is assumed that only the edge associated with d ai is in the directed

path of interest. By the properties of the max{} operator, the set of input

edges Ip, n can be partioned such that

r; {_" {d" • }} (, _3)= max , ,max d •,n q i q,j _ q,k _" "

{d" " }= max q,i,dq,x (2.14)

where

(2.15)

This allows the time to fire the node to be decomposed into two terms. One

term representing the directed path of interest and another representing

the remaining input deposit times by the maximum of predecessor nodes

deposit times. Let dq. i > dq, i , so

f, = max{d d" },n q,i_ q,x (2.16)

where

fp,n > f£;n (2.17)
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Thus the time to fire a node on a directed path from the faulted node is

potentially delayed.

2.4.2 Delay Propagator Nodes and Delay Absorbant Edges

How delay is introduced in a system is discussed in Section 2.3. It

has been shown that the simplest element that propagates delay is a node.

This section is used to present how an edge and a node propagate delay. It

is shown that whereas a node propagates delay, an edge may absorb all or

part of the delay introduced or propagated by a predecessor node. In

Section 2.4.2, it is found how delay is propagated through the graph.

These developments eventually are extended to the entire graph in the

next sections.

It has been defined that if a delay propagator node np, n is such that

A%,n = A_,., (2.18)

then, the delay to deposit can be expressed by

A_,o = fp,n - f;:_. (2.19)

Using the concept of fire-equivalent node, this equation can be transformed

into

A { } •p,_ = max dq,i,dq, x - f_,_. (2.20)

Recall that the terms with * denote times that do not change between both

estimated and actual transition times.
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By the properties of the max{} operator, the term [*p,n can be brought

inside the max{} term, so that

/k_,,. : max{dq,, - f;:,,,d'q, x - f;:,. }- (2.21)

Transforming only the left term in the max{} operator:

A_,,_ =max{dq.,-max{d'q,i,d'q,x},d'q.x_f;,, }

:max{dq,, +min{-d'q,,,-d'q,x},d'q,x-f_,n }

=max{min{dq,i-d'q,,,dq,,-d'q,x},d'q,x-5_ }

=max{min{A_.i,/kdq.i+dq.i-d'q,x},d'q.x-f2.,_}

:max{A:,, +rnin{O,d;,,-d'q,x},d'q,_-f;.,,},

yielding,

A'p,,, : max{A_,,- max{d'q, x -d'q.,,O},d:, x - f/:,,}.

Solving equation (2.22) requires considering two cases.

Case 1:

(2.22)

Thus,

I • } -}h_,,, : max ,,- max dq, x - f;,,,O ,dq,x - f;,n

= max{A_, i -max{<O,O},<O},

so that,

A_,,, =/_,_. (2.23)



27

Case 2:

aL <,, r; r;> _ ,.= . _d._- ,o=0_Z',.,p,.:.0.

Thus,

/k_,,. : maxiAdi - max{/;,_ - d:..,0},0}

so that,

(r; ") }/k_._ = max ,i - ;_ -dq. i ,0. (2.24)

If f_,_ = d_,, in equation (2.24), then

dp_ n _ _d .
q_ •

Hence, case 2 contains case 1 and the general result is Equation 2.24.

This equation can also be written in terms of the static token lifetime as

follows:

A_..= max{A_,,- _.,,p,..0}. (2.25)

As it can be seen in this expression, the delay propagated by node

np, n can be less than or equal to the delay propagated by node nq, i. Thus

delay may be absorbed in between nodes or by the edges that connect them.

The delay that is absorbed is equal to the static token lifetime, I'c$i,p,n, of

the edge. Therefore, the token lifetime may also be called the delay

absorption property of an edge.
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2.4.3 Lifetime Equivalent Paths

The next step in understanding how delay propagates through

directed paths is to develop a model for two nodes in series. This model is

then generalized to an n-node series and the delay propagation model for

any directed path is presented.

Consider two fire-equivalent nodes nq, i and np, n connected in a

directed path as in Figure 2.4. Node nq, i is one predecessor to np, n and the

only directed path between nq, i and np, n is one edge.

L_, q,j -'_ L_ q.i

Id:,y

_d:,x

_'Cn p ol_

Figure 2.4. Nodes Connected in Directed Path.

By the results of section 2.3.2 and by using Equation 2.24, the delay

to deposit Ad, n is

{o *tL_d -(max(d*q,,,d*qx}-dq,,),
A_,, = max " ;

similarly, the delay to deposit Ad i is

Ad,i -- max ' " .

(2.26)

(2.27)
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By substituting Equation 2.27 into Equation 2.26,

d
p,n = max,

= max,

so that,

=-oxI t/-ax  d:/t- dq ,,dq x i ,
D'l, ax

0

[max{A_# -(max{dq# ,d$o. }- dq# ),0}-(max{dq,,,d$,x }- d:, i),[

0 J

I" ...... }max l - . , , - , ._(maxidq,i,dq.x}_dq.i )

0

A_ ( {..} .)( {..} .)]q,2- max dq,j,dq,_ -dq# - max dq,i,dq,_ -dq, i ,

[

{_0 _'j-(max{dSj'dq'`_}-d'q'j)-(max(dSi'dqx}-d:i) }.(2.28)
Ad,n = max ....

Equation 2.28 may be rewritten in terms of the static token lifetimes

as follows

Ad=ll_ax{Ad,j--(_q,j,q,i+_'_p,n q,i,p,n ) 90 } " (2" _'9)

In conclusion, the two-node series can be reduced to a one-node path

where the token lifetime at the input of interest of rip, n is equal to the sum

of the token lifetimes of the two-node series. In other words, the new one-

node path is said to be lifetime equivalent to the two-node series.

A similar procedure can be carried out for three, four or more nodes

connected by only one directed path in series. It can be shown by induction

that a one-node path is lifetime equivalent to an n-node path if the edge of
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interest to the node has a static token lifetime equal to the sum of all token

lifetimes of the edges in the path. This conclusion may be expressed as

follows. A node np, n connected to n-1 predecessor nodes in a series or

chain has a one-node lifetime equivalent path with

t
where

r_ = static token lifetime of edge e i _ n- node path, and

A_.j = delay introduced at the input of the n- node path.

This set of edges is the only path from the node nq, i that injected the

delay hdqj to the node np, n. The delay propagation model for a directed

path was presented in the last section. This result holds only when this

path is the only path between the nodes nq,) and np, n.

2.4.4 Dominant Lifetime Equivalent Paths

The delay propagation model for a set of parallel independent directed

paths between nodes np, r and np, n is developed in this section. The paths

are independent in the sense that there is no interconnection between

them except at the start and at the end of the paths. This discussion leads

to the definition of dominant lifetime equivalent paths.
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! dq.y

_,_ _ ,_..dq,x,_ p,n

i n q.j )

_a;,,z
Figure 2.5. Nodes Connected Through Parallel Paths.

Consider two nodes np, r and np, n that are connected by only two

lifetime equivalent directed paths as shown in Figure 2.5. Each one of

these directed paths contain only one node each, namely nq, i and nqj.

Employing Equation 2.24 and considering the input edges from nq, i and

nq,j into np,n, the fire equivalent model becomes

• ( } )q,i- max q,i,dq,i,dq,x -dq, i ,

( { }')= - * * * _ dq, j ,Adp,. max,/k dq,j max dq,i.dq,j,dq, =

0
(2.31)

In the same manner, the expression for the delay to deposit Adq, i and

Adqj are, respectively,

A_,,=max

and

A_,j=ma= . . ,r),.

(2.32)

(2.33)
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Substituting Equations 2.32 and 2.33 into Equation 2.31 the

expression for the delay to deposit Ad, n is

A%,,,. = max,

max ' " ' " * * "

max " ' " " " " _

0

Manipulating the internal max{} operators, the equation can be

transformed into

A%,n = max,

Ad t t t * ,I. t
p,r -- max . r t q y p,r - max - d• , q,i• q,j) q,x q,i

Aav. * -(max{d;.,•d:._ } - d;.,) - (max{d'q,i•dq,j•d:. _ } - dq,j)•

0

By further manipulation and extracting the common term Ad, r,the result is

f m _ -rain

A%,n = max
p,r

0

max dp,,,dq,_ -dp,_ + max dq,i,dq,j,dq, x -dq, i ,

( {" "} )( f } )J''''' " [
max dp,,.•dq,.,, dp, r + max dq,i•dqz,dq,,,: -dq,_ •

(2.34)

This equation can be expressed in terms of the static token lifetime

A a - min p,r,q,i q,i,p,n •
Aa,. n = max. p,r •r" + g,_,,,o

p,r,q,t

0
(2.35)
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It is indicated by this expression that the delay to deposit hdp, n can be

calculated based only on the delay to deposit A_,r and the path with the

minimum total token lifetime. It is said that the path with the minimum

total token lifetime dominates the other path. In conclusion, the path with

the minimum total token lifetime is called the dominant lifetime

equivalent path.

By a similar procedure, it can be shown that for k independent

parallel paths between nodes np, r and np,n, the delay to deposit Ad, n is

or

f0r tt/_d -rain _.*_,___ _.,...,_ _..kA. = max _ J • •

A%,n = max • ,

(2.36)

(2.37)

where vidora is the static token lifetime in the edge e i, and edge e i exists in

the dominant lifetime equivalent path of the set of k independent parallel

paths.
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2.4.5 Path Construction

Any loop-free network between two nodes np, r and np, n can be

constructed be connecting or concatenating series of nodes or independent

series in parallel. This section is used to demonstrate this construction

method. By using this method any loop-free network between two nodes

np, r and np, n can be reduced to a lifetime equivalent path (LEP). It will

also be shown how delay introduced at rip, r is propagated to np, n.

2.4.5.1 Concatenation

Consider two lifetime equivalent paths LEP 1 and LEP 2 with token

lifetimes r I and r2, respectively. If these two paths are concatenated,

following the procedure outlined in Section 2.4.3, it can be shown that the

resultant LEP c has lifetime Z-c,

Z'o= + Z'2

Concatenation of paths is indicated as follows:

LEPI: LEP_ ---LEP c .

It can be shown that the concatenation operator (:) is associative, i.e.,

( LEP_: LEP_): LEP_ - LEP_:( LEP_: LE_)

and, therefore, n number of paths can be concatenated and are lifetime
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equivalent to a single path LEP c with token lifetime vc

=_v_,
i=l

where r i is the lifetime of LEP i.

2.4.5.2 Parallel Paths

Consider two lifetime equivalent paths LEP! and LEP 2 with token

lifetimes r 1 and _'2, respectively. If these two paths are connected in

parallel, i.e., both have a common predecessor node and a common

successor node, following the procedure outlined in Section 2.4.4, it can be

shown that a resultant LEPp has lifetime rp:

rp = rnin{ rl, r2}.

Connecting paths in parallel is indicated as follows:

LEP1 LEP 2 - LEP c

It can be shown that the parallel operator (

(LEP_ LEP2) LEP 3 - LEP_ (LEP 2 LEFt)

) is associative, i.e.,

and, therefore, n number of paths can be connected in parallel and they are

lifetime equivalent to a single path LEPp with token lifetime

rp = min{ rl, r2,..., rn}
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where r I is the lifetime of LEP1, r2 is the lifetime of LEP2, etc.

be expressed as

LEPp : domLEP .

It can also

2.4.5.3 Distributivity and Commutativity

It can be shown that the concatenation operator distributes over the

parallel operator. Consider lifetime equivalent paths LEP1, LEP2, and

LEP 3 then

LEP_'( LEP2 LEPs) - ( LEP_: LEP2) ( LEP_: LEP_)

and

(LEP, LEP2): LEP_ =-(LEP,: LEP_) (LEP2: LEPs).

and

Both concatenation and parallel operators are commutative such that

LEP_: LEP 2 - LEP_: LEP_

LEP 1 LEP_ = LEP_ LEP 1.

These properties stem from the properties of the operator '+' in the

concatenation operation and the operator rain{} in the parallel operation.
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2.4.5.4 Identifying the Dominant LEP

By the use of these two operators, it is possible to identify the

dominant LEP between any two nodes np, r and np, n in an XAMG. These

operators can be applied to sections of the network to reduce it to a single

edge representing the dominant LEP between np, r and np, n. This is

demonstrated with a practical example as shown in Figures 2.6.a to 2.6.i.

Consider two nodes np, r and ap, n connected by a loop-less network. This is

a subgraph contained in another graph where edges going out or coming in

are not shown for simplicity. The only directed paths between np, r and

ap, n are the ones shown in Figure 2.6.a.

By applying the concatenation operator to the path that contains node

B, and to the path that contains node E, and applying the parallel

operator to node E results the graph as in Figure 2.6.b. Using the

distribution of the concatenation operator over the parallel operator to the

paths that contain the node A, it yields the graph in Figure 2.6.c. By

applying the parallel operator between node np, r and node C, the graph is

transformed as shown in Figure 2.6.d. By applying distribution of the

concatenation operator over the parallel operator to the paths that contain

node C, the graph is further reduced as shown in Figure 2.6.e. The

application of the parallel operator to the paths between the node np, r and

node D yields the the graph in Figure 2.6.f. By applying the concatenation
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operator to the path that contains node D, the graph is transformed as

shown in Figure 2.6.g. The application of the parallel operator to the paths

between node np, r and node F produces the graph in Figure 2.6.h. Finally

the use of the concatenation operator in the path that contains node F

reduces the graph as shown in Figure 2.6.i. It can be observed that the

path with vk is lifetime equivalent to the path between rtp, r and np, n with

the minimum token lifetime.

2.4.6 Alternate Method for Identifying the Dominant LEP

Another method to identify the dominant LEP between two nodes is

to identify the path with the largest sum of node process times. This

approach follows directly from the result of Section 2.4.5.4 and is developed

below.

Consider two nodes np, r and np, n connected by a network. Let the

time interval between the output of np, r and the output of np, n be

represented by T. Any path k between np, r and rip, n must comply with the

following equation:

i j

where ph i is the node process time of the i th node in path k and _j is the jth

token lifetime in path k.
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Regardless of the path that is traversed, the addition of the node

process times and token lifetimes is equal to T, i.e., T is a constant. If the

dominant LEP is the path with minimum token lifetime, it can be

concluded that the dominant LEP is also the path with the largest sum of

node process times. This path is also known as the time critical path

between nodes np,r and np,,.

In conclusion, the dominant LEP between np, r and np, n can be

identified by finding the time critical path between np, r and ttp, n.

2.5 Definitions

The subsequent definitions relate to the graph model in general.

They are used to aid the understanding of results in Chapter Four.

2.5.1 TBIOn, m

The definition of TBIO in the AMG is the time associated with the

path with the longest time between the input source and the output sink.

This is straightforward since there is only one source and one sink in the

graph. However, in the XAMG (XCMG), there are as many sources/sinks

as there are data packets. Therefore there can be many paths between

sources and sinks. If there are n number of data packets, there can be n

longest directed paths between source 1 and all sinks. To distinguish each

of these paths they need to be labelled according to the source and sink at
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both ends of the path. This can be accomphshed by subscripting TBIO

with the corresponding source and sink. That is, TBIOn, m is the time

associated with the longest directed path between source n and sink m.

The original TBIO of the AMG then becomes TBIOi, i, i.e., the time

associated with the longest directed path between the source i and its

corresponding sink i.

2.5.2 CPn, m

The path that characterizes TBIO in the AMG (CMG) is called the

Critical Path (CP). The path associated with TBIOrt,m is then called the

Critical Path between source n and sink m or CPn, m.

2.5.3 System Slack

The systems are assumed to work at a TBI > TBO_ Define the

difference between TBI and TBOLB as the system slack, a, where

= TBI - TBO_. (2.38)

2.5.4 TBIOLB(i,i+I)

In the AMG, the token lifetime of the edges in the CP, the longest

path between the source and the sink, is zero. However, in the XAMG,

that is not necessarily true for all CPi, i+l, the critical paths between the

possible source/sink pairs. Since the actual value of TBIOi, i+ 1 may be
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affected by the token lifetimes in the edges,there is the need to define a

lower bound for TBIOi, i+ 1. The lower bound for TBIOi, i+ 1 is defined by

TBIOLB(i,i + D:

TBIO_.,i.I _ = TBIO + TBO_. (2.39)

The value for TBIOi, i+ 1 in steady state is then

TBIOi,i.l = TBIO + TBI. (2.40)

By substituting TBI expressed in terms of the system slack, it results in

TBIO,i.I = TBIO + TBO_ + _. (2.41)

By further combination of TBIO and TBIOLB , the final result is

TBIOi,i. 1 = TBIO _.,i.I _ + _. (2.42)

In conclusion, the system slack a is the total token lifetime in the

path CPi, i+ 1.

It can be shown that for an arbitrary value of k, TBIOi, i+k

TBIOi,i÷ k = TSIOt2(i,i+k ) + k _, k = 1, 2, . . (2.43)

As a generalization, the total token lifetime in the path CPi, i+k is k times

the system slack a.
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2.6 Summary

The graph model to investigate the transient behavior of a

multicomputer system has been presented in this chapter. The transient of

interest is that of the effect of a delay introduced into one of the nodes of

the algorithm graph due to a fault. The model has been shown to be useful

to study the propagation of delay through a graph. A measure of

importance has been the token lifetime to be found in the paths between

any two nodes connected by at least one directed path. The existence of

token lifetime in a given path between two nodes expresses the amount of

delay that such path is able to absorb. When there is more than one path,

there is a dominant path with respect to the token lifetime. This path is

called the dominant lifetime equivalent path between two nodes. Two

methods to calculate the dominant lifetime equivalent path were shown.

These methods are to be used in Chapter Four in the testing of the model

against simulated system behavior. Finally some definitions were

presented to help in the understanding of the graph model. Some of these

definitions refer to the extension of measures of the steady state analysis.

Others pertain only to the transient model and donot have application on

the steady state model. The results of this chapter present the usefulness

of the model to start investigating the transient behavior of a

multicomputer system designed with the ATAMM strategy.



CHAPTER THREE

DEVELOPMENT

The theory to study the behavior of a multicomputer system in a

transient due to a fault is detailed in Chapter Two. This theory may be

exposedeither by system simulation or by real system implementation.

One way to simulate a system is by using a general purpose computer.

This method should simulate normal operation of the system along with

failure of computing resources and the recovery and restoration of the

system. Real system implementation, on the other hand, requires more

sophisticated hardware since it is used to test real-time software. An

available hardware system to validate the theory is the Generic VHSIC

Spaceborne Computer (GVSC). The implementation of a system that

complies with ATAMM in the GVSC as well as its fault-tolerant features is

described in this chapter. The development of the ATAMM Multicomputer

Operating System is described in Section 3.1. The fault-tolerant system

phases are presented in Section 3.2. In Section 3.3 the operating system

additions to make the system fault-tolerant are explained.

45
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3.1 ATAMM Multicomputer Operating System (AMOS)

One purpose of an operating system is to "allocate hardware resources

among tasks"[18]. The objective of this section is to identify the hardware

resources and the tasks in the system of interest. The system under

discussion is not a general-purpose computer but an embedded system for

applications such as control and signal processing, among others.

Therefore, this embedded system does not have all attributes of a general-

purpose computer. For example, an embedded system may not have

'human' users, i.e., the system processes a signal from a servo and passes

the results onto another system. Another attribute of the systems under

study is that they are real-time systems where the time to fulfill a service

request is as important as the data processing itself. These systems are

also multicomputer systems and, as such, impose another difficulty on

their design, namely how to obtain maximum system throughput.

Many computing systems have been designed from the point of view

of hardware needs. This perspective has imposed a handicap on the

software development for these systems. Software design around system

architecture in order to take full advantage of the system limits the

reusability of the software package. Often such software depends on a

given number of computing resources which are to be connected in a

certain fashion in the system. For example, if software is to be developed

for a hypercube computer, the software engineer considers the hypercube
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connection not only a feature of the system but a requirement for the

software to work as desired. If the software is to be used or moved to

another computing system that is not a hypercube computer, most probably

the package will have to be rewritten and retargeted to the new machine.

On the other hand, there are computing systems that are designed

from the point of view of software needs. This perspective imposes

restrictions on the hardware field. Achievement of optimization in the

hardware is not easy since software drives the hardware design and

development. Such systems ensure that the software for which they are

designed run optimally. A typical example of this kind of system is a

vector processor or math processor. The disadvantage is that these

systems are highly specialized and all too often not reusable for another

type of software.

3.1.1 AMOS Overview

The purpose of AMOS is to take a multicomputer system architecture

and a software system, both independently designed, and create a common

interface between them. The objective is that the system architecture

should look optimally designed for the software system and the software

system should look optimally designed for the system architecture. The

AMOS operating system becomes a common ground for the hardware

designer as well as for the software developer.
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The system architecture is the hardware factor in the overall system.

The different hardware elements of this system are the individual

computing resources, the communication channels and the memory

resources. These elements should be managed for efficient use in the

execution of the application program. The system architecture designer is

concerned with this set of components without necessarily knowing the

application software that will run in the system.

The algorithm graph is the software factor in the overall system. This

algorithm includes the graph node code and the data interdependency or

connection between the nodes. For each graph that the system is expected

to run, there is a set of nodes and their interconnection to each other that

constitute the data path, along with the appropriate node code to process

the data. The basic ATAMM system has the property that a node in the

algorithm graph becomesenabled when the following conditions are met:

all input edgescontain tokens ( data or control), the node is available or

not busy, and there are empty places on the output edgesto deposit the

output data (seeFigure 3.1). The software application designer is

concerned with the logical interconnection of the nodes (processes)through

data edges. This concern refers to the data flow of the algorithm and not to

how to map the algorithm to a given architecture. This feature an

architecture that is transparent to the software designer.
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Figure 3.1. An Enabled Node in a Marked Graph.

One attribute that is highly desirable in systems design is the

effective use of multiple processors or computers in a system. The AMOS

operating system becomes the multicomputer connection in that it

manages the interprocessor communications. Second, AMOS manages the

interprocess communications. Third, AMOS manages the communications

between the processes and the processors.

AMOS can be regarded as a two-way translator. It translates the

requests from the processes to the processors. One of those requests can be

'execute this node.' It also translates the requests from the processors to

the processes. Again, one of such requests can be 'code execution has

generated data.' This two-way translation posses a challenge since the

entities that should communicate are vastly different. On one hand, the

processors are physical units and they can be defined and located in space.

On the other hand, the processes are abstract entities and they cannot be

defined in physical terms as are the processors. Recall that the processes

are represented by the graph and its data interconnections and the code

that should be executed. For the processors and processes to communicate

there is a need for a common medium and to address this need concepts are

49
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borrowed from object-oriented programming (OOP) or object-oriented

systems (OOS). The following section is a very brief summary of OOP.

3.1.2 Object-Oriented Programming Paradigm

The object-oriented programming paradigm has grown in its

acceptance and application in the last few years. In simple terms, object-

oriented programming may be considered an extension of structured

programming and a programming philosophy in the sense that it imposes a

particular structure on the software development. This structure combines

data and code into one package where the code is optimized to manipulate

the accompanying data. Structured programming, the predecessor of OOP,

was developed with the idea of creating code that is generic enough to be

used in many applications. One disadvantage was that the code that was

generated was highly dependent on the data structure. If the data

structures had to be modified to enhance the capabilities of the system, the

routines that manipulated the data structures had to be modified as well.

Since the data structure was known throughout the program, all levels of

the software had to be modified also. The data dependency aspect can be

alleviated by using one of the attributes of OOP, namely, data

encapsulation. This is achieved by creating a more sophisticated data type

or data structure, one that contains not only the declarations of the

primitive data types but also the functions that directly manipulate such
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data. These functions are called member functions, the data variables are

called data members and the whole unit is called a class.

An instance of a data structure is called a variable, but an instance of

a class is called an object, hence the name object-oriented programming.

An object is then an instance of a class and contains a set of data variables

and member functions that manipulate the data. According to goodobject-

oriented programming practice, only the member functions should directly

manipulate the data in the object. When a member function is called or

invoked in an object it is said that a messageis passed to the object. This

messageindicates the type of data manipulation that is requested, either

read, write or initialize a given data member. This allows for programs

that are object-oriented to be more generic in the data manipulation, since

only the object knows how the data is represented internally. A simplified

view of an object is depicted in Figure 3.2. These principles are used to

explain which of the features were borrowed from OOP and placed in

AMOS.

The data encapsulation concept may be used to isolate the details of

how a specific piece either of hardware or software is manipulated. The

Code
Messages Methods Output

Data >

Figure 3.2. Simplified Structure of an Object.
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AMOS operating system should not be unnecessarily involved with the

direct manipulation of either one or another. Instead of directly

manipulating the data that represents the graph, AMOS should send a

'message' to the graph requesting a particular service. In the same

fashion, AMOS should send a 'message' to a computing resource to request

or assign a particular task. Changes in the internal behavior of any of

these objects, hardware or software, should not impact the general

behavior of AMOS. A set of message queues is implemented for this

purpose in AMOS, to isolate requests from one side of the system to the

other. The logical structure of AMOS is explained in the following section.

3.1.3 AMOS Organization

The AMOS operating system is targeted for a multiprocessor

environment, but the code may be used in a system with only one

processor. The system uses as many computing resources as the graph

requires for its designed operation. The status of the system at any

moment would be the status of the combination of all its computing

resources. This fact leads to an overwhelming task in explaining how the

system operates. Therefore, the point of view of the operation of a single

processor or computing resource is taken instead. An overview of the

resource logical structure is shown in Figure 3.3.

The different components can be divided into the following categories:

the message handier, the graph, the queues and the semaphore. The
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Figure 3.3. Resource Logical Structure.

Graph

message handler is the component that moves messages from one queue to

another. It may take a message from the 'Enabled Nodes Queue' to a

resource 'Public Message Queue'. The graph contains the representation of

the algorithm graph to be executed in the system. A description of the

internal graph representation or data structure is irrelevant at this level,

although it is important to say that it contains information such as the

connection of the nodes, from where each node input data are read, where

each node output data should be stored and what code should be executed

with what data, among others.

The queues are the pipeline connection to hold the messages or other

information for the systems components such as computing resources and

the graph. They are the abstract means by which the hardware and

software components communicate with each other. Finally, the
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semaphore is a logical variable which provides a means for arbitrating

accessto the graph. The semaphore is used to permit accessto the graph

since there may be multiple computing resources in the system, and for

redundancy purposes, a copy of the graph exists in each and every one of

the processors. Every time a messageis to be handled that affects the

status of the graph, the semaphore should be requested. Only by

possessing this semaphore (setting the variable to true), is a computing

resource is permitted to manage the graph and its queues. In practice, the

semaphore regulates accessto the communications channel of the system,

and hence to updating the copy of the graph in each and every other

computing resource. Because of the boolean nature of the semaphore, only

one computing resource can have accessto the graph at a time.

The Enabled Nodes, Sources and Sinks queues are the means through

which the graph requests a service from the system hardware. The

Enabled Nodes queue contains messageswhich have all the information

that identifies an enabled node to be executed. If a message exists in this

queue, there is an associated node in the graph which is enabled and ready

to be executed. Similarly, the Sources queue contains all the sources, or

system inputs, that are available to the system and each source in this

queue has a variable with a time relative to the global clock. This time

indicates when that source is ready to be executed and input data is ready

to be brought into the system. The Sinks queue contains all the sinks, or
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system outputs, that are ready to be executed. The Transition Firing

queue is the message input to the graph. This queue contains all the

transitions that should be fired in the graph. It is used to pass the

messages from the computing resources to indicate the activity that is

taking place with respect to the nodes assigned to them. It is used to

update the graph and reflect the state of the data and nodes in the system.

The Private Message and Public Message queues are used by the

computing resources to receive messages. The Private Message queue is

used exclusively for private or intraprocessor messages. These messages

are written to and read by the computing resource itself. This is for

consistency so that the computing resource is message driven even if the

messages are written by itself. The Public Message queue is used

exclusively for public or interprocessor messages. These messages may be

written by any of the computing resources in the system, but they are only

read by the computing resource for which the queue is intended. A

computing resource needs to obtain the semaphore to send a public

message, even if it is targeting its own queue.

The Available Resources queue contains the ID's of all computing

resources that are available for executing nodes in the graph. Every time a

computing resource starts executing a node, its ID is removed from this

queue. When the node is finished, the computing resource ID that

executed the node is placed at the bottom of the queue. When an enabled
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node is removed from the Enabled Nodes queue, it is assigned to the

computing resource that is at the top of the Available Resources.

3.1.4 AMOS Messages

The Service Messages queues are used to communicate messages to

and from the outside world. These are messages that are used for testing

purposes and to change certain parameters in the system. The messages

can be written or read only by the computing resource that possesses the

semaphore.

The messages that are passed among the elements in the system can

then be classified into private and public messages. These messages are

tabulated in Table 3.1. A brief explanation of the purpose of these

messages follows. The message 'None' is used to describe when no other

type of message is found in the private or public message queues. This

message is returned as the default message from the queue message

reader. The message 'Register' is used to inform the system that a resource

has become available for normal use. This initializes the private and

public queues of the computing resource and pushes the computing

resource ID into the Available Resource queue. The message 'Fire'

indicates that a node has been fired, that it has started the processing of

its input data. The message 'Data' indicates that a node has finished its

processing and has deposited its output data. The message 'Self-Test'
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indicates that the computing resource should start the self test routine.

This requires that the computing resource be removed from the system in

case it does not return from the self-test routine. There are more

parameters in a messagethat are not shown in Table 3.1 and are not

relevant to this overview.

Message

None*

First Parameter

N/A

Register* ID

Fire** Node

Data* Node

Second Parameter

N/A

N/A

Color

Color

Self-Test** Pass/No Pass N/A

* Private Message

** Public Message

Table 3.1. AMOS Messages.

3.1.5 State Diagrana

The behavior of any of the computing resources, being a finite-state

machine, can be described using a state diagram. This diagram is depicted

in Figure 3.4. The states are connected by arcs that indicates the

conditions or 'messages' by which the computing resource goes from one

state to the next. The following is a brief description of the states of the

diagram. The state 'System Init' is the state where the resource 'registers'
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itseff to the system by pushing its ID into the Available Resourcesqueue.

The state 'Graph Init' is where the graph is initialized for processing, all

initial tokens are placed in the appropriate data edges and the state of the

graph is brought to its initial conditions. The state 'Idle' is where the

computing resource reads its own message queues. According to every

messageread from the messagequeues, the computing resource moves to

another state. The message'None' takes the computing resource to the

'Bus Mgt' state where it scans the different graph or system queues,

Available Resourcesqueue, Sources queue and Service queue. If any of

these queues is non-empty, the computing resource tries to capture the

semaphore. If it succeeds,it moves onto the 'Graph Mgt' state to carry out

the duty indicated in the non-empty queue. If it fails, it goesback to 'Idle'

and starts the process again. The message'Fire' takes the computing

resource to the state 'Exec' where it will execute the appropriate node on its

input data. The message'Data' indicates to the computing resource to

jump to the state 'Bus Mgt' In this state it does not query the queues,

instead, it simply tries to capture the semaphore. If it succeedsin

capturing the semaphore, it goesonto the 'Graph Mgt' state, otherwise it

goesback to 'Idle' and tries again. The 'Serf-Test' messagetakes the

computing resource to the 'Serf Test' state. In this state, the computing

resource executes a predefined serf test program or routine. If the

computing resource passesits own test, it 'registers' again to the system. If
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it fails, it doesnot return to the system. Instead, it is considered a

malfunctioning computing resource and is not allowed to grab the

semaphore anymore.

3.2 Fault Tolerance Scope

A fault-tolerant system is such that the occurrence of a fault does not

lead the system to failure. This means that the system should be able to

deal with a well-defined class of faults. Anderson and Lee [19] describe a

suitable collection of elemental phases to provide fault tolerance to prevent

faults from leading to system failures. These phases are: error detection;

damage confinement and assessment; error recovery; and fault treatment

and continued system service. The succeeding sections are used to describe

these phases in somewhat more detail.

3.2.1 Error Detection

The first phase in a fault-tolerant system is error detection. Although

a fault cannot be directly detected by a computing system, the

consequences or effects of such an event can be tracked. After a fault has

taken place in a system, the system eventually enters an erroneous system

state. It is this erroneous state that can be detected and used to raise a

system exception. An erroneous state is a state that will lead to system

failure if it remains undetected and no action is taken to return the system

to a valid state [20].
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Figure 3.4. Resource State Diagram.

Measures and mechanisms need to be incorporated in a system for

proper error detection. Measures for error detection are system

components that help convey the necessary information for error detection.

Mechanisms are actual implementation techniques that use such measures

to raise exceptions in a system when an error is detected. The error

detection measures for a computer system can be broadly classified into the

following categories: replication checks; timing checks; reversal checks;

coding checks; reasonableness checks; structural checks; and diagnostic



61

checks. Of interest in this section are the replication checks, the timing

checks and the diagnostic checks.

Replication checks are among the most effective measures although

they are also among the most expensive ones. As their name suggests,

replication checks reproduce certain components in a system so that there

are multiple copies of such components in the system. The results from an

operation with the replicated components are compared against each other.

Discrepancy in the comparison indicates that there is an error in the

system. One common example of a replication check is Triple Modular

Redundancy (TMR). This check employs triplication of a subsystem to

provide detection of one or two errors in the subsystem. After a signal or

input is processedby these components, the individual results from each

replica are compared against each other. Any discrepancy in such a

comparison indicates an error in the subsystem. A more general example

of this measure is N-Modular Redundancy (NMR) which makes use of n

number of replicas instead of only three.

Timing checks are a class of limited replication checks. Limited

replication checks are checks that only verify the correct operation of

certain parts of a subsystem and from that limited knowledge the

operational health of the whole subsystem is determined. Timing checks

only provide verification that a certain component has accomplished an

operation or task within a time limit or restriction. They do not provide
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information as to whether the operation is correct, reasonable or within

specifications. These timing checks are also known as time-out checks.

The raising of an exception due to a nonpassing timing check indicates that

a fault of somekind has taken place in the system. However, the absence

of such exception rising doesnot indicate that the system is fault-free.

Diagnostic checks are used primarily to test the behavior of

subsystems under known and controlled inputs. Under these conditions, a

subsystem is examined and a particular reaction or output is expected.

Implementation of these checks have a tendency to be expensive in terms

of resources and time required to execute them. Due to these

characteristics, diagnostic checks are better used as secondary error

detection measures.

Error detection mechanisms are largely dependent upon the measures

used in the system. For duplication checks, for instance, a simple

comparator may be sufficient to accomplish the task and raise an

exception. With the timing checks a timer may be adequate to achieve the

error detection. Finally, the diagnostic checks are heavily contingent on

the system in which they are to be employed.

3.2.2 Damage Confinement and Assessment

After an error has been detected in a system, the damage caused by

the fault needs to be assessed. The nature of the damage that is assumed
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in this dissertation is that of unprocessed data and the loss of a computing

resource. Since there is a time delay between the arrival of the fault and

the detection of an error produced by the fault, the existent damage may be

more than the error detection indicates. How the damage is assessed

depends on the considerations taken by the system designer on damage

confinement. Damage confinement relates to the restrictions imposed on

the information flow in the system design. How these restrictions are

fulfilled in the system directly affects the damage assessment after error

detection [21].

Damage confinement measures are meaningful for choosing damage

assessment measures for a system. The information flow in a system

relates to the system structure and a practical concept to structure the

system activity is the notion of atomic actions [24]. Atomic actions refer to

actions or activities in a system that are said to be not divisible into

smaller units. Examples of atomic actions can be opening a file, closing a

file, reading from a file and writing to a file. This concept of atomic actions

is applied at a given level in the system. It is clear that the atomic action

of opening a file could be subdivided into other atomic actions such as

allocate memory buffers for file information, fill the buffers with

information about the file, associate buffer with a handle, and soforth.

Whenever a set of atomic actions is defined it is understood at what level
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they are defined and they are assumed to pertain to the same level of

complexity.

By defining atomic actions in a system, the designer breaks the

system down into modules which interact among themselves. When an

error is detected at run-time in a module it is possible to assume that the

fault has only affected the module where the error was detected. This is

true if the module has not interacted with any other module since it started

working. If the module has interacted with other modules prior to the

error detection, these other modules may be considered in error as well.

Structuring the system with atomic actions helps in the definition of the

damage assessment measures.

Damage assessment may be performed in two ways: static assessment

and dynamic assessment. Static assessment pertains to the assessment at

design time, i.e., the damage assessment is defined a priori based only on

the knowledge of the system at design time. Dynamic assessment involves

the exploration of the system at run-time. This exploration or examination

of the system should determine the extent of the damage caused by the

fault and hence affects the recovery of the system.
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3.2.3 Error Recovery

Error recovery techniques should be apphed after error detection and

damage assessment. These techniques bring the system from an erroneous

state into a valid and healthy state. The damage that was caused by the

fault is removed and the system is brought into a state from which it can

continue functioning normally. Observe that the phases of error detection

and damage assessment are passive in nature, i.e., they do not affect the

state of the system but collect information about the erroneous state. On

the other hand, the error recovery and the fault treatment phases are

active in the sense that they do change the state of the system. The system

removes errors during the error recovery phase and faults during the fault

treatment phase. Error recovery is one of the areas where much research

has been done due to its importance in restoring a system from an

erroneous state [22].

Error recovery may be broadly classified into two categories: forward

error recovery and backward error recovery. Backward error recovery

attempts to reverse time in that it tries to restore the system to a healthy

state prior to the fault. An example is that of resetting the system,

knowing that the initial state was healthy. This is carried out

disregarding the current state of the system, in other words, the portions of

the system state that are not erroneous are not taken into consideration

when the state is restored. Forward error recovery encompasses all types

of error recovery that are not backward error recovery. Forward error
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recovery techniques make use of the current state of the system and

change those portions that are erroneous in search of a valid and healthy

state.

Forward error recovery is dependent on damage assessment whereas

backward error recovery is independent of damage assessment. The

former is not appropriate to handle any arbitrary faults although its

implementation may be simple since the information about the present

state is used to recover the system. The latter is suitable for handling

arbitrary types of faults but application of the techniques may be

complicated since the entire system state is to be recovered. The use of one

type of recovery instead of the other is up to the system designer and is

also dependent on the system specifications and the specific application.

3.2.4 Fault Treatment and Continued System Service

After a system has undergone error recovery and has hence removed

all error from the system, it is necessary to identify the fault that caused

the erroneous state in the first place. Continued system service can only be

insured by removing the faulty component if it can be identified, otherwise

the fault may reoccur. This phase is partitioned into two stages, namely

fault location and system repair [23].

Once an exception has been raised due to an error, the error may be

removed from the system. The removing of the error doesnot necessarily

indicate where the fault is located. During fault location the system relies
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on information provided by the error exception. The disadvantage is that

the mapping of faults to errors may be many-to-one. Many faults may

generate the same error making it difficult to identify the faults based

solely on the error detection and damage assessment. Diagnostic checks

may be used to help locate the fault more accurately but often by taking

more time in the process and making it more expensive.

The system needs to be repaired once the fault has been located. The

system repair is carried out by reconfiguration. The system is reconfigured

so that the faulty component is not allowed to infuse any more faults in the

system. There are three kinds of reconfignrations: manual, dynamic and

spontaneous. The manual reconfiguration requires external or human

intervention in all stages of the reconfiguration. The dynamic

reconfiguration is accomplished by the system in response to external

signals. The spontaneous reconfiguration is done by the system under the

control of the system itself. The last two kinds of reconfiguration are the

most expensive and difficult to implement and are reserved mostly for

applications where there cannot be operator intervention.

3.3 Fault-Tolerant AMOS

The goal in designing AMOS with fault tolerance capabilities is to be

able to recover from the death of a computing resource while executing a

node in the graph. Death of a computing resource is defined as the state
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where the resource does not finish executing the task that was assigned

and hence does not report back to the system. In the succeeding sections

the development of each of the fault tolerance phases with respect to

AMOS is presented.

3.3.1 Error Detection in AMOS

Replication checks are inherently expensive. They require the use of

system resources as backups in case of faults. These checks are used in

AMOS only for the implementation of Triple ModuJar Redundancy (TMR).

The employment of this technique is at the graph level where nodes are

triplicated and their outputs are voted upon when read on the successor

nodes. At the AMOS level there is basically no intervention in the process.

The triplicated nodes are treated as any other node in a non-replicated

graph. The voting is performed in the node shell or just prior to calling the

node procedure code. This information is included here for completeness

only and it does not directly affect the detection of the death of a computing

resource in the system.

Timing checks on the other hand are relatively inexpensive in terms

of system resources. The system resources are used only ff an error is

detected and therefore the use of timing checks is very attractive to the

system designer. Among the input variables of the ATAMM design

procedure is the knowledge of execution node times. These node times can
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be used to time the nodes that are executed in the system and serve as as

time-out limits in timers for error detection. If a computing resource does

not complete the execution of its assigned node within the time limit, an

error exception is raised and proper action is taken. The following

paragraphs contain a description of how the timing checks are performed.

If timing checks are fulfilled by hardware timers, the system

hardware would limit how many nodes can work concurrently. Therefore

timing checks are carried out in AMOS by the use of a software timer

queue. A timer queue is defined as a queue that stores integers sorted by

magnitude. The sorting order requires the head of the queue to be the

lowest number and the tail of the queue the largest. Every time a node

gets assigned to a computing resource, the global clock is read and the node

execution time is added to it. This time value indicates when, with respect

to the global clock, the associated node is expected to be completed by the

computing resource. The value is then inserted in the timer queue and

sorted accordingly. When the computing resource concludes executing the

node, the associated queue entry is removed from the timer queue. This

timer queue can be checked by comparing the global clock against the the

head entry of the queue. If the head entry is less than or equal to the

global clock, the node is said to be within the proper time margin. If the

head entry is greater than the global clock, the node is said to be overdue

in its execution and an error exception is raised. The augmented AMOS
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Figure 3.5. Augmented Resource Logical Structure.

logical structure is presented in Figure 3.5. This structure has the new

timers queue incorporated in the system.

Due to the nature of the timers implementation, when the timers

queue is checked becomes important. Every time a computing resource

checks its private and public message queues and does not find a pending

message, the computing resource checks the timers queue. This

requirement takes advantage of the computing resource idle time.

Although this may be sufficient in many cases, there are instances when

the computing resources always find a message in their message queues

making it impossible to check the timers queue. As a protection against

these possible cases, a second requirement is imposed in the system. Every

time a computing resource completes execution of a node, it checks the



Figure 3.6. Augmented Resource State Diagram.

timers queue. This requisite ensures that the timers queue is examined at

least a number of times equal to the number of nodes in the graph in a

TBO period of time. The augmented resource state diagram is shown in

Figure 3.6. This diagram includes the new state of 'Timers Check'.

When an error is detected in the process of timers checking, an error

exception is raised by the means of sending a new private message. This

messageis the FAULT message as depicted in Table 3.2. This message

identifies the node that has not completed. Its information is important for

71
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the next phase of the fault tolerance process,namely 'Damage Assessment'.

The Color attribute refers to the mode of operation, as in the caseof TMR,

Duplex or Simplex. For all the experiments presented in this dissertation,

this parameter is a constant and hence irrelevant.

Message First Parameter Second Parameter

Fault* Node Color

*Private Message
Table 3.2. New AMOS Message.

Finally, diagnostic checks are used to detect errors in different

components in the computing resources. These diagnostic checks take the

form of test programs and are only called upon when a computing resource

receives the public messageSELF TEST. At this time, the computing

resource has been removed from the system and it returns back only on the

successful completion of its self-test. The messageSELF TEST is

originated outside the system and it is injected as a service message. Most

of the times that a computing resource is removed, the system performance

degrades accordingly as explained in Section 3.3.4 when a computing

resource fails. Hence, this self-testing is reserved for use under special

circumstances due to its penalty on the system performance.
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3.3.2 Damage Confinement and Assessment in AMOS

The graph model used in ATAMM is an ideal means for damage

confinement. The Algorithm Marked Graph (AMG) determines the data

flow and structures how information traverses the system. The input data

or data packets enter the graph by the source node. They are directed

through the nodes by data directed paths and leave the system by the sink

node. This arrangement allows the nodes in the AMG to be the system

atomic actions. Starting by its firing, a node does not interact with any

other node until it completes executing the code and delivers its output.

The damage is confined to a node ff the fault occurs after its firing and

before its completion.

The system damage confinement lends itself to static damage

assessment. After the system detects an error, a computing resource

generates a FAULT message. This message contains the information

about the node that did not complete its execution. The system damage

may be assessed as the partially processed data in the node since, after the

node firing, the assigned computing resource did not interact with any

other computing resource. The system uses this information in the 'Error

Recovery' phase to remove the error caused by the fault.

3.3.3 Error Recovery in AMOS

The technique used for error recovery is a forward error recovery

technique. The data that is partially processed in the node that did not
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complete is discarded. The node is considered as if it was not started and

gets reassigned to a healthy computing resource, in particular, to the one

at the top of the available resources queue. The input data to the node has

been kept in a reserved cache in the event of a fault. This data are then

read by the newly assigned computing resource as the data to be used in

the execution of the node.

This technique is called 'rollback' of the node. It basically restarts a

process anew, with all its conditions as they were in the first attempt. For

this reason, it may seem possible to classify the technique as a backward

error recovery technique, but the conditions that are restored pertain only

to the node and not to the entire system. The system is then placed into a

healthy state from which it continues to work and delivers its services.

3.3.4 Fault Treatment and Continued System Service in AMOS

The fault that is assumed is death of a resource during execution of a

node. The error detection technique chosen is sufficient to detect this fault.

Nevertheless, other types of faults may manifest in the same fashion. If

the code in a computing resource gets corrupted by any means, the

manifestation of this fault may as well be the same as the computing

resource death. This fact leads to the conclusion that the timing checks

used may detect errors caused not only by the death of a computing

resource but also by other types of faults that lead to the same erroneous

state. Regardless of this expansion in the types of faults that are covered,
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the only assumption when an error is detected is that the computing

resource has ceased to function. Trying to single out the specific fault that

caused the error is out of the scope of this dissertation and out of the

original specifications of the system. Although it is possible to perform a

detailed examination of the resource that has failed, it is not exercised in

the current implementation of AMOS.

After the location of the fault, the resource that was originally

assigned to the node that did not complete is identified and its ID is

removed from the healthy resources queue. By doing so, the fault is

purged from the system and the computing resource cannot engage in any

interaction with the semaphore to gain access to the graph. The computing

resource is not allowed to participate in any global updates to the system.

Under the ATAMM design procedure, a system has different

operating points that depend on the number of computing resources

present. Since the number of resources changes after an error is detected,

an appropriate change in the operating point is carried out. This operating

point change is applied to the graph so that the graph works optimally

with the new number of computing resources. All operating points are

precalculated and downloaded along with the graph. There exists a table,

known as the operating point table, that contains all the necessary

information to take the graph from one operating point to another. This
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process of changing the operating point is the last stage of the

reconfiguration required for the system to return back to service.

As the foregoing description suggests, the reconfiguration used in

AMOS is spontaneous as explained in Section 3.2.4. The system initiates

the reconfiguration after the fault has been removed. It accomplishes the

reconfiguration prompted totally by the internal event of error detection. It

prepares the system to go back to service by using data available already in

the system. This feature is valuable in the design of highly reliable

computer systems. Hence it is desirable in such applications as space

probes, real-time control systems and deep-seaunmanned submarines.

3.4 Summary

This chapter has been used to present the development of the

multicomputer operating system AMOS. This development targeted the

IBM GVSC system developed for NASA Langley Research Center. This

operating system is message based and highly modular.

An overview of the different phases for a fault-tolerant computer

system was presented. These phases are error detection, damage

confinement and assessment, error recovery and fault treatment and

continued service. AMOS was upgraded to a fault-tolerant system by

adding these phases to the system kernel. The addition was relatively

simple due to the operating system architecture and modularity.



CHAPTER FOUR

EXPERIMENTS

This chapter is intended to demonstrate the application of the theory

developed in Chapter Two relating to the transient behavior of an ATAMM

system under a fault. In this chapter experiments are run in which delay is

introduced into the system by means of a fault. The evaluation is carried

out by both simulation and actual GVSC hardware implementation.

This chapter is divided into five sections. The simulation development

is explained in Section 4.1. Demonstration of the simulation is presented in

Section 4.2. Performance and behavior corresponding to the hardware

system when there are no faults introduced is presented. Two graphs are

examined to evaluate the steady state behavior of the GVSC and

simulation. The transient operation of the simulation is tested in Section

4.3 and compared to that of the hardware behavior. There is only one

graph used in the testing and there are three faults introduced in the

system. The simulation is also subjected to the same conditions and the

output of both systems are compared. The comparisons performed in

Section 4.2 and Section 4.3 are of two types: micro and macro. The micro

comparison deals with the ordering of individual events in the execution of

77
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the graph. The macro comparison uses the information at a more global

level. This comparison is at the level of TBO and TBIO for each data packet

that the systems generate. Section 4.4 is used to present twelve

experiments which are used to test the theory developed in Chapter Two. A

comparison between the theoretical and simulated experimental results is

shown at the end of Section 4.4. A summary of the chapter is presented in

Section 4.5.

4.1 Simulation Development

The objectives of this section are to present the features of the

simulation for the GVSC AMOS. These features should help in the

simulation of systems that use the ATAMM design approach, in particular

the GVSC. A useful characteristic of the simulation is that of using the

same information input as the hardware system, i.e., the simulation and

the hardware use a common graph or information language. This helps to

quickly use an algorithm of interest to go from operating the hardware to

using the simulation. Along with this feature is the reporting of the system

actions in a tractable format by both the hardware and the simulation with

the prospect of comparison of both outputs.

Another feature of the simulation is that of investigating the behavior

of algorithms that require more computing resources than available on the

hardware. Under the ATAMM design procedures there can be graphs
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optimized to work with many more computing resources than available in

an implementation of AMOS. Thus, it is useful to have a simulator that

does not have the limitations of expensive hardware. In a simulation, the

adding of more computing resources does not impose a high price tag; it

simply requires more computing power in simulating the large number of

necessary computing resources.

The GVSC AMOS code was required to be implemented in the ADA

language. This requirement did not necessarily imply that the unique ADA

language features or ADA run-time module had to be used. With this

prerequisite in mind, the original code was generated in ANSI PASCAL.

The choice of PASCAL derives from the fact that ADA is a superset of

PASCAL, therefore, PASCAL is a common minimum denominator between

both languages. Originally the code was translated into ADA as it was

generated or updated. Near the end of completion of the code, it was

decided that only the ADA version be used as the fully working code. This

implied that all the changes had to be made directly to the ADA version. As

a by-product of this arrangement, a working PASCAL version of the system

was available to be used as an integral part of the simulation. This version

was surrounded by objects in the sense of object-orientation. The version

was moved to Turbo Pascal for Windows by Borland, which is a hybrid

language. A hybrid language, as it is the case here, is a procedural

language with object-oriented features.
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Essentially the AMOS logic and data structures were preserved. The

code that handles the messagepassing, the data structures and bus

management were left intact. The addition to the AMOS code has been the

simulation of a multicomputer environment in a single-processor system.

This simulation has been achieved by creating window objects that contain

the original AMOS code.These window objects are run one at a time by

executing a method by the name 'run'. The parameter that is passed down

to the method is the value of the global clock. The window object has the

same basic states as a computing resource and it moves from one state to

another according to internal parameters and the value of the global clock.

The internal parameters that are used are the estimated times that the

computing resource should spend in the different states and on the various

operations in the system. Examples of these operations are the bus request,

graph update and timers checking.

As part of the NASA contract, which was to integrate the AMOS code

into the IBM GVSC hardware, IBM was required to generate a build tool.

This tool creates the graph data structures as well as links the node codeto

be downloaded into the GVSC computers. This program takes a graph file

and generates the AMOS internal data structures that represent the graph

in the file. It also links the pieces of node code to the data structures. The

node codeis not necessary for a simulation, but the generation of the data

structures is extremely useful. The build tool source codehas been used to
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create a modified build tool for the simulation. It creates the same data

structures as the original build tool does from the same graph file. This has

becomeanother advantage of using the original AMOS code and helped the

quick development of a reliable simulation.

The main purpose of a simulation is to explore the behavior of a

system without using the system itself. Another use is to be able to change

parameters in the simulation, an otherwise expensive or lengthy process in

the hardware counterpart, and to observe the effect on the system output.

One of these parameters is the number of computing resources accessible to

the system. The expenseof adding computing resources in the hardware is

high, whereas in the simulation it is a matter of changing a parameter and

using additional computing power in the simulation host system. This

benefit allows the simulation of large graphs and the examination of the

performance predictions derived from the ATAMM design procedure.

As a whole, the simulation has the potential to be used as a generic

simulation for a multicomputer system executing a version of AMOS.

There are parameters that are unique to the GVSC environment but they

can be adjusted to simulate other different environments. The types of

systems that can be simulated with this program are those that use the

same logical structure and the same state diagram as explained in Chapter

Three. This is considered potentially useful since currently there is only

one AMOS implemented in a multicomputer system.
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One added use of the simulation was as a debugging tool for helping

in the hardware integration. During development, pieces of code were

integrated one at a time. The codeto change the operating point was

integrated last. This codeinvolves the changing of the graph at run-time

and therefore is critical to the fault tolerance phase of bringing the system

back to service. The simulation was used to debug the operating point

change code that eventually went into the GVSC system. The complexity of

debugging this piece of codein the target system would have been an

arduous and long enterprise becauseit is an embedded system. Debugging

the codewith the simulation was user-friendly because it could be run

instruction by instruction through the operating point change. A particular

feature was programmed for this purpose. The entire graph data structure

can be examined any time during simulation. Also a snapshot of these data

structures can be written or appended to a file any time. With this

property, it was possible to examine the graph data structures before and

after an operating point change was carried out. As a result of this

simulation process the codewas highly debugged when it was integrated

into the hardware system code.

4.2 Simulation Validation Experiments

The objective of this section is to validate the simulation of the GVSC

system running under normal conditions, i.e., no fault is injected to the



83

system. The validation process is carried out by taking output from the

hardware system and comparing it to the output from the simulation

running under the same conditions. Two graphs are used to accomplish

this task and are shown in Figures 4.1 and 4.2. The first graph is referred

to by the name of 'Intermediate Graph' and the second by the name of

'Application Algorithm', as they were used internally at NASA.

The process of comparison is accomplished by comparing the output

file of both hardware and simulation. The output files from both systems

are called fdt files. These files contain the sequence of events that took

place in the system while executing an algorithm graph. These events refer

to the firing of transitions in the graph. A typical event is:

10904 Fire Task4 1 Procl 4.

 ,oo ,,oo
• _) 3100

Figure 4. t. Intermediate Graph.

The first number is the value of the system clock when the event took

place. The 'Fire' keyword is the name of the event. The word 'Task4' refers

to the name of the node in the graph where the event was carried out. The

following number is the position or color designation in a TMR (Triple
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Modular Redundancy) configuration. The word 'Proc1' identifies the name

of the processor that executed the event. The final figure identifies the data

packet number.

_--_ _ 8000 -_----_

3000 j/J 5200
_'_" 'I 6000

Figure 4.2. Application Algorithm Graph.

The events that concern the nodes are Fire, BeginNode, EndNode,

SentOutData and Data. There are other events that signal the request and

release of the communications channel. Other events are Fault and Retire

which are used in the process of detecting a faulty processor and restarting

the affected node.

There are two types of comparison, micro comparison and macro

comparison. The micro comparison is the comparison that is carried out at

the event level. The macro comparison is the one that is performed at the

performance level by comparing TBO and TBIO for each data packet. For

the micro comparison a program was written to compare two fdt files at the

event level. For the macro comparison, the Analyzer, written by Rob Jones

from NASA Langley Research Center, was used to measure the system

performance at every data packet.

The micro comparison is performed with the help of a C program that,

by using an fdt file as a reference and disregarding the time, reads an
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event and tries to find the same event in the subject fdt file. For each event

in the reference file an output is generated that specifies the relative

position of the same event in the subject file. For example, if the event X

is found at position 52 in the reference file and the same event is found at

position 52 in the subject file an output of 0 is generated for that event. If

the event were to be found in position 53 then the output would be 1;if it

were in position 51, it would be -1 and so on. The range that the events are

searched on the subject file is limited to ±5 for the first two comparisons of

nonfault conditions and to ±20 for the comparison in a faulted condition. If

an event is not found within the specified range it is considered a miss. The

match of events should be perfect, i.e., everything, except the time, should

be identical. If an event is carried out in the reference file by processor 1

but on the subject file is carried out by processor 2, it is considered a miss.

A looser comparison is performed in the next section. The processor

assignment is made a don't care condition. The reason for such a

comparison is explained in the next section.

The macro comparison is done with the help of the Analyzer. This

comparison is performed at the performance level of the system for each

data packet. The measures used are TBO and TBIO for each data packet.

TBO is measured with respect to the predecessor data packet, i.e., the

difference between a data packet output time and the output time of the

predecessor data packet. The data is tabulated per data packet in an Excel
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worksheet and graphed in an Operating Point Plane Figure. The

Operating Point Plane Figure has TBIO as the x axis and TBO as the y

axis. For each data packet a point is plotted at the intersection of the

values of TBO and TBIO. A line is traced from that plotted point to the

next point until all points are plotted. This Figure shows the dynamic

nature of the system as it moves from data packet to data packet in the

operating point plane.

4.2.1 First Comparison

The first comparison is performed using the Intermediate Graph of

Figure 4.1 as the testing graph. The fdt file from the hardware is named

interlc and the one from the simulation is named interlcs. There are only

281 events present and 6 data packets are output from the system. The file

interlc was generated when the IBM GVSC system was under test. The

simulation was set with the same graph and the same time values as the

hardware test. In the following sections the two comparisons are explained,

first the macro comparison and then the micro comparison.

4.2.1.1 Micro Comparison

In the micro comparison, the file interlcs was compared against

interlc. The results of the comparison are shown in Table 4.1 and a graph

of the data is shown in Figure 4.3. It should be noted that there were no

misses in the comparison. This means that all events in the reference file
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Positio

-5
-4

-3
-2
-1

Ol
1
2
3
4
5

Number Percent

0 0.00%
0 0.00%
0 0.0O%

8 2.85%
18 6.41%

235 83.63%
11 3.91%

6 2.14%
2 0.71%
0 0.00%
1 0.36%

Table 4.1. Results of Micro Comparison #1.

Comparison of Hardware and Simulation #1

Intermediate Graph

90.00_

8ooo_ L

6oo_ ____ I ___ _
,.,cent5°°_ "A----__ - I _-_ _

,o.oo__.____ I L_
o.o_____ r k_ _ -

-5 -4

[Reference file: interlc.fdt_i Position Dlfferenc 2 3_
[Subject file: interlcs.fdt •
[Total # of events - 281 • 5
[Total #" of misses - 0 •

Figure 4.3. Results of Micro Comparison #1.

were found in the subject file within the specified range of +5 positions.

Almost-84% of the events were found in the same position in both files.

Another 10% of the events were found in the -1 and + 1 positions. Another

5% of the events were found in the -2 and +2 positions. In summary, 99% of

the events were located in the +2 range. This comparison indicates that the
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simulation is extremely close to the hardware in the order that the events

are generated. The difference lies in that for a given set of events, they

may take place in certain order in the hardware and in another order in

the simulation program. For instance, if two or more nodes are assigned to

computing resources in a graph update, the nodes may start executing in a

different order in time in the hardware compared to the nodes in the

simulation program. This can be observed in the fact that the differences

are mostly in one or two positions.

4.2.1.2 Macro Comparison

The macro comparison involves the comparing of the values of TBO

and TBIO at every data packet produced by the systems. The Table 4.2

contains the performance measures for both files. The Figure 4.3 shows the

plotting of the values of TBO and TBIO. It should be noted that for the

very first of the data packets the difference is large due to initialization

differences. The hardware was programmed to start injecting input data at

10000 clock ticks, whereas the simulation started at 0 clock ticks. After the

first data packet the largest difference is in the order of only 1.38%. The

comparison yields a great similarity of the output of the simulation to that

of the hardware.

After these two comparisons it can be seen that the simulation results

are in very close agreement to the results from the hardware. It does so at
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Interlc Interlcs
Packet TBI TBO TBIO TBI TBO TBIO

1

2

3

4

5

6

10258 16855 6597 351 6891 6540

3054 3019 6562 3012 2983 6511

3053 3050 6559 3042 3042 6511

3059 3061 6561 3027 3027 6511

3060 3058 6559 3042 3042 6511

3061 3063 6561 3027 3027 6511

Table 4.2. Results of Macro Comparison #1.
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Figure 4.4. Results of Macro Comparison #1.

both the micro and the macro levels for the intermediate graph. The files

b ave been generated without introducing any faults into the system.
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4.2.2 Second Comparison

The second comparison is performed using the Application Algorithm

as the testing graph. The fdt file from the hardware is named aatest2 and

the one from the simulation is named aatest2s. There are only 224 events

Positio Number Percent

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.00%

0 0.00%

0 0.00%

2 0.89%

5 2.23%

215 95.98%

0 0.00%

1 0.45%

0 0.00%

0 0.00%

0 0.00%

Table 4.3. Results of Micro Comparison #2.

Percent

ToReferencefile: aatest2.fd_-
SubJectfile: aatest2s.fdt •
Total # of events - 224 •

tal # of misses - 1 •

Comparison of Hardware and Simulation #
Application Algorithm
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60007*-
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20"00_ _5 _4

I0 00_-

0,00_,

3 2 1 0 1

5

Figure 4.5. Results of Micro Comparison #2.
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present and 8 data packets are output from the system. The file aatest2

was also generated when the IBM GVSC system was under test. The

simulation was set with the same graph and the same time values as the

hardware test. In the following sections the two comparisons are explained,

first the macro comparison and secondthe micro comparison.

4.2.2.1 Micro Comparison

In the micro comparison, the file aatest2 was compared against

aatest2s. The results of the comparison are shown in Table 4.3 and a graph

of the data is shown in Figure 4.5. It should be noted that there was only

one miss in the comparison. This means that of all events in the reference

file only one was not found in the subject file within the specified range of

+5 positions. Almost 96% of the events were found in the same position in

both files. Another 2% of the events were found in the -1 position. Another

1.15% of the events were found in the -2 and +2 positions. In summary,

Packet

1

2

3

4

5

6

7

8

Aatest2

TBI TBO TBIO

10288 27098 16810

6033 5884 16661

6035 6036 16662

6037 6037 16662

6040 6041 16663

6034 6031 16660

6035 6040 16665

6038 6036 16663

Aatest2s

TBI TBO TBIO

351 17001 16650

6018 5995 16627

6004 6004 16627

6039 6039 16627

6004 6004 16627

6039 6039 16627

6004 6004 16627

6039 6039 16627

Table 4.4. Results of Macro Comparison #2.
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Figure 4.6. Results of Macro Comparison #2.

over 99% of the events were located in the +2 range. This comparison

indicates that the simulation is extremely close to the hardware in the

order that the events are generated.

4.2.2.2 Macro Comparison

The macro comparison involves the comparing of the values of TBO

and TBIO at every data packet produced by the systems. Table 4.4 contains

the performance measures for both files. Figure 4.6 shows the plotting of

the values of TBO and TBIO. It should be noted that for the very first of

the data packets the difference is large due to initialization differences.

The hardware was programmed to start injecting input data at 10000 clock

ticks, whereas the simulation started at 0 clock ticks. After the first data
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packet the largest difference is in the order of only 1.89%. The comparison

yields a great similarity of the output of the simulation to that of the

hardware.

After these two comparisons it can be seen that the simulation

generates very close results to the hardware. It does so at both the micro

and the macro levels for the intermediate graph. The files have been

generated without introducing any faults into the system.

4.2.3 Summary

The two comparisons presented in this section validate the simulation

program as a close simulation of a system with a multicomputer operating

system such as AMOS. The results were very close considering the many

variables that are used to represent the system's behavior. The maximum

difference was in the order of less than 2% in the macro comparison and

99% of the events were in the range of+2 in the micro comparison. This

only validates the program for the normal conditions where there is no

fault introduced into the system during execution.

4.3 Fault Transient Validation

The objective of this section is to validate the simulation under

transient conditions as those encountered during fault detection and

correction. The procedure is similar to the preceding section. There is a

micro comparison and a macro comparison. The only difference is that
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there is only one graph compared due to lack of suitable data at the

present. The graph to be used is the Application Algorithm and there are

three faults introduced in the system. The system executed for 35 data

packets. The first fault was introduced in node 2 at data packet 10. The

second fault was introduced also in node 2 at data packet 15. The third and

last fault was introduced in node 1 at data packet 25. There were a total of

1167 events.

The original test was executed in the hardware to debug the code to

detect and recover from a fault. The original file is named aatest and the

simulation output is named aatests. The system had an optimized

operating point table that was generated by the team at NASA. Each one of

the operating points was optimal for the given number of processors

present. The system underwent an operating point change each time a

resource failed and was removed from the system. The system started with

4 resources and dropped down to 1 resource after the third fault.

The simulation was set with the same graph and timing information

as the hardware. It also contained the same operating point table the

hardware had during the test. This test is more critical since it validates

the transient behavior of the simulation.
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4.3.1 Comparison

After the first fault, assignment of processors to nodes changed with

respect to that in the hardware experiment. This is not considered as

critical since the assignment is performed dynamically and on-line. It

should not make a difference which process gets assigned to what processor

since what is important that the nodes get executed in the same way as in

the hardware. For this reason the micro comparison disregards the

processor assignment and seeks only the sequence of the firing of the

transitions in the graph.

Comparison of Hardware and Simulation #

Application Algorithm

Reference file: aatestfdtl_

ubject file: aatests,fdt •

oral • of events - 116 •

tal • of misses - 0 •

60 00% -

5000%

40.00%

Percent 30.'0C_

20.00%-

1000_-

000%-

20191 g_ZI61 _1 tl ]1 ;_I

4_S 4

Position diff z 3 ,I

Figure 4.7. Results of Micro Comparison #3.
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Position

-20
-19
-18
-17
-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

0

1

2

3

4

5

6

7

8

9

10

11

121

13

14

15

16

17
18
19
20

Number Percent

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%
0 0.00%

0 0.00%

3 0.26%

1 0.09%

1 0.09%

9 0.77%

1 0.09%

1 0.09%

6 0.51%

594 50.90%

20 1.71%

32 2.74%

460 39.42%

9 0.77%
4 0.34%

0 0.00%

1 0.09%

9 0.77%

4 0.34%

5 0.43%

7 0.60%

0 0.00%

0 0.00%

0 0.00%

0 0.O0%
0 0.00%
0 0.0O%

0 O.O0%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

0 0.00%

Table 4.5. Results of Micro Comparison #3.
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4.3.1.1 Micro Comparison

In the micro comparison, the file aatest was compared against aatests.

The results of the comparison are shown in Table 4.5 and a graph of the

data is shown in Figure 4.7. It should be noted that there were no misses in

the comparison. This means that all events in the reference file were found

in the subject file within the specified range of+20 positions. Almost 39.5%

of the events were found in the same position in both files. Another 3.5% of

the events were found in the -1 and + 1 positions. Another 2% of the events

were found in the -2 and +2 positions. Another 50.9% of the events were

found in the -3 position. In summary, 96% of the events were located in the

+3 range. This comparison indicates that the simulation is extremely close

to the hardware in the order that the events are generated in spite of the

three transients introduced in the form of faults. The difference is found

mostly in the sections of events close to the time of the faults. Accurate

simulation of when the fault is detected and when other processor finish is

critical. While a processor is changing operating point and removing the

faulty processor from the system, other processor may have finish

executing assigned nodes. These other processors cannot access the graph

since the semaphore has been acquired by the processor that responded to

the FAULT message. Which processor grabs the semaphore is released,

affects the order in which the events are registered in the system. These

displaced events may upset the order of the events on the simulation with
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respect to the hardware behavior. After this phenomenon takes place, the

difference will remain through the rest of the execution since there is no

resetting of the ordering while comparing both files. This may be observed

in Table 4.5, position -3.

4.3.1.2 Macro Comparison

The macro comparison involves the comparing of the values of TBO

and TBIO at every data packet produced by the systems. Table 4.6 contains

the performance measures for both files. Figure 4.8 shows the plotting of

the values of TBO and TBIO. After the first data packet and the last data

packet the largest difference is on the order of only 3.47%. The comparison

yields a great similarity of the output of the simulation to that of the

hardware.

The simulation is validated by this comparison since, after being

subject to three transients, the performance measures are still in very close

agreement with the hardware. These tests are enough for the purposes of

this dissertation because the Application Algorithm graph is the one to be

used in the section where the experiments are carried out. The simulation

follows the behavior of the hardware even under faults.

Figure 4.6 contains an additional line and set of points. This line is

identified as Theoretical. These points are the operating points

theoretically calculated to generate the operating point table that went into
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Packet

1
2

3
4

5

10288

6033
6035
6037

6040
6034

6035

6038
6037

aatest
TBO

27098
5884

6036
6037
6041

TBI

6031

6040
6036

6036
14892

TBIO

10 6035

11 6041
12 11108

13 8038

14 8040
15 8043
16 8O39

17 8040

18 17067
19 11654

20 11661
21 11653
22 11661

23 11653
24 11661
25 11502

26 11809
27 26167

28 22912
29 22912

30 22912

5466

8188
8688

8190
17620

6132
11653

11661

11653
11661
11653

11678
11633

11783
26036
22912

22912
22912

22912
22912

16810
16661

16662
16662

16663
16660

16665
16663

16662

25519
24944

22024

22674
22824
32401

30494
34107

28701

28700
28700

28700
28717

28697
28819
43353
54456

51201
51201

51201
51201!

31 22912 22912 51201

32 22912 22912 51201
33 22912 22911 51200

34 22912 22870 51158
35 22912 19754 48000

TBI
aatests
TBO TBIO

351 17001 1665(
6018 5995 1662_

6004 6004 1662_
6039 6039 1662_

6004 6004 1662_
6039 6039 1662_

6004 6004 1662'
6039 6039 1662_

6004 6083 1670E

6039 14654 25321,
6004 5435 2475_,

10722 8160 2219C
8009 8646 22827

8008 8160 22979
8038 17382 32323

8020 6059 30362

8106 11572 33828
16896 11572 28504

11572 11572 28504
11572 11572 28504

11572 11572 28504
11572 11572 28504
11572 11572 28504

11572 11572 28504
11572 25978 42910
11572 22842 54180

25978 22842 51044
22842 22842 51044

22842 22842 51044
22842 22842 51044

22842 22842 51044

22842 22842 51044
22842 22842 51044 I
22842 22842 51044
22842 22842 51044

Table 4.6. Results of Macro Comparison #3.
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Figure 4.8. Results of Macro Comparison #3.

the hardware and the simulation for these tests. As it can be observed, the

behavior of the hardware as well as that of the simulation deviated

drastically from the desirable operation. It is important to highlight that

this is a good example of the significance of the findings in this

dissertation. The system did not operate as it was expected because it did

not have the means to absorb the delays introduced by the faults into the

graph and hence did not reach the target operating points. As explained in

Section 4.4, there are ways to alleviate this anomalous operation and is

demonstrated with examples how the delay can be absorbed in the system.

It should be pointed out that in the examples in Section 4.4 there is no

change of an operating point to another operating point with less
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resources. The operating point is maintained between faults to highlight

the effect of the delay introduced by the fault and the effect of the token

lifetimes in the graph.
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4.4 Simulation Examples

4.4.1 Overview

The objective of this section is to present examples of a graph

undergoing a single fault, recovering from the fault, and continuing with

the execution of the algorithm. The comparison of calculated and

simulated results are performed at a macro level, i.e., at the TBI, TBO and

TBIO level. Therefore, lifetime dominant paths are found by the means

developed in Chapter 2. The paths are found from the node where the

fault occurs to every single sink in the XCMG to calculated delay to fire the

sinks. With the values of the lifetime of these paths the values for TBO

and TBIO for every subsequent data packet are calculated. Since these

computations are rather involved to be presented in this section, an

example is detailed in Appendix A. All experiments were run under the

same conditions and the actual TBO and TBIO were retrieved with the

help of the Analyzer. These values are compared against the calculated

values and conclusions are drawn from the comparisons.

The graph used in the experiments is the Application Algorithm.

There are twelve experiments where the system is operated at TBI = 7000

TBI

7000

6200

8000

Failure @

Node2 Node3 Nodel Node4

Exp. #1 Exp. #2

Exp. #5 Exp. #6

Exp. #9 Exp. #1

Exp. #3 Exp. #4

Exp. #7 Exp. #8

Exp. #1 Exp. #1

Table 4.7. Summary of All Experiments.
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for the first four, at TBI = 6200 for the second four, and at TBI = 8000 for

the third four. A different node is made to fail in each one of the

experiments in the groups of four. Table 4.7 is a summary of the

conditions of all the experiments.

All experiments are run for thirty data packets and all faults are

injected at data packet ten. An overview of the experimental results is

presented in a table in Section 4.4.2. For each one of the experiments there

is a chart showing the experimental values of TBI, TBO and TBIO for each

data packet. Also, a table is presented with experimental and calculated

values of TBI, TBO and TBIO, and the percentage of error of the calculated

with respect to the experimental for each one of the experiments.

There are three comparison charts of all experiments with the same

input rate or TBI. These charts are placed after all the charts and tables

for the experiments. These comparison charts show the Operating Point

Plane of all four experiments with the same TBI. These figures show the

behavior of the system under the fault and the recovery process. There are

also comparison charts of all experiments with the same faulty node.

These charts present the individual data packets plotted in an Operating

Point Plane for the system.

The value of TBOLB of the system is 6200 which was found

experimentally. It was necessary to know this bound so that the system

would be driven at a higher or equal TBI. The resolution of the parameters
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for source time in the hardware as well as in the simulation is in hundreds

of units. The actual value of TBOLB is between 6100 and 6200. Thus for

the purpose of these experiments TBOLB is considered at 6200.

The experimental value of TBIOLB of the system is 16650. The

amount of delay that is introduced into the system is approximately equal

to the process time of the faulty node plus 500. The 500 units extra is the

timeout delay that every node is allowed before it is declared faulty. Thus

the delay introduced by a fault at node 1 is 3500, by a fault at node 2 is

8500, by a fault at node 3 is 6500, and by a fault at node 4 is 5700.

4.4.2 Experiment # 1, an Example

This experiment is explained in detail to show the general process

that was followed for each one the experiments. Although the actual

numbers may be different for each experiment, the procedure followed to

calculate the values of TBI, TBO and TBIO are the same. The tables in the

experiments contain the values of TBI, TBO and TBIO that were measured

with the help of the Analyzer for each data packet. They also contain the

calculated values for TBI, TBO and TBIO, followed by a percentage of

error of the calculated versus the experimental values.

In experiment #1, node 2 fails executing data packet 10 and

introduces a delay of 8500. As it can be observed in Figure 4.7, both TBO

and TBIO are increased for that data packet. After the data packet 10, the
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Application Algorithm,
Fault at Node 2, Data packet I
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Figure 4.9. TBI, TBO and TBIO for Experiment #1.

system delivers outputs at a lower TBO than the TBI that is being used in

the system. This behavior continues for 6 data packets and the system

returns back to a TBO equal to the system TBI. From here on, this lower

TBO is referred to by the name of recovery TBO. TBIO decreases on each

data packet by the difference between the system TBI and the recovery

TBO. The value of TBI is 7022 and the recovery TBO is approximately

5385 which gives a reduction on TBIO of 1637 per data packet. This

response may be interpreted as the recovery process the system goes

through to reduce the delay introduced by the fault. Both TBO and TBIO

eventually return to the original values they had before the fault was

injected.



106

Packet

Experimental

TBI TBO TBIG

1 351 17001 16650

2 7030 7033 16653

3 7013 7010 16650

4 7030 7030 16650

5 7010 7013 16653

6 7033 7030 1665G

7 7010 7010 1665(

8 7033 7033 1665{

9 7010 7010 1665(

l0 7033 15676 25293

11 7010 5409 23691

12 7038 5386 22040

1_' 7010 5383 20413

14 7061 5386 18738

15 7010 5383 17Ill

16 7006 6548 16653

17 7014 7122 16761

18 7029 6921 16653

19 7034 7034 16653

20 7009 7009 16653

21 7037 7034 16650

22 7006 7009 16653

23 7037 7037 16653

24 7006 7006 16653

25 7037 7037 16653

26 7006 7006 16653

27 7040 7037 1665(

28 7003 7006 1665:

29 7040 7040 16653

30 7003 7003 16653

Table 4.8.

Calculated

TBI TBO TBIO

0 16650 1665C

7022 7022 1665G

7022 7022 16650

7022 7022 16650

7022 7022 16650

7022 7022 16650

7022 7022 16650

7022 7022 16650

7022 7022 16650

7022 15665 25293

7022 5385 23656

7022 5385 22019

7022 5385 20382

7022 5385 18745

7022 5385 17108

7022 6564 16650

7022 7022 16650

7022 7022 16650

7022 7022 1665C

7022 7022 1665G

7022 7022 16650

7022 7022 1665(

7022 7022 16650

7022 7022 16650

7022 7022 16650

Differencein %

TBI TBO TBIC

100.00% 2.06% 0.00oA

0.11% 0.16% 0.02'A

-0.13% -0.17% 0.00OA

0.11% 0.11% O.OOeA

-0.17% -0.13% 0.02_

0.16% 0.1 !% 0.00%

-0.17% -0.17% 0.00%

0.16% 0.16% 0.00%

-0.17% -0.17% 0.00%

0.16% 0.07% 0.00oA

-0.17% 0.44% 0.15%

0.23% 0.02% 0.10%

-0.17% -0.04% 0.15%

0.55% 0.02% -0.04%

-0.17% -0.04% 0.02%

-0.23% -0.24% 0.02%

-0.11% 1.40% 0.66%

0.10% -1.46% 0,02%

0.17% 0.17% 0.02%

-0.19% -0.19% 0.02%

0.21% 0.17% 0.00%

-0.23% -0.19% 0.02%

0.21% 0.21% 0.02%

-0.23% -0.23% 0.02oA

0.21% 0.21% 0.02eA

7022 7022 16650 -0.23% -0.23% 0.02%

7022 7022 16650 0.26% 0.21% 0.00%

7022 7022 16650 -0.27% -0.23% 0.02%

7022 7022 16650 0.26% 0.26% 0.02%

7022 7022 16650 -0.27% -0.27% 0.02%

Experimental and Calculated Values

TBO and TBIO for Experiment #1.
of TBI,

In order to calculate the values of TBI, TBO and TBIO, the paths

between node 2 and all sinks were identified and their token lifetimes were

computed. The value of TBI was estimated to be the mean value of the

experimental values of TBI. TBIO for each data packet was calculated by

first estimating the delay to fire each one of the sinks in the XCMG and

adding this delay to TBIOLB. The values of TBO were calculated by



107

finding the difference between the times when the sinks fired using the

first data packet before the fault as reference. An example of this

procedure is detailed in Appendix A. The experimental and calculated

values and the percentage of error of TBI, TBO and TBIO are tabulated in

Table 4.8. Discarding the error for packet one, the maximum difference is

about 1.46% and most of the values are below 0.5%.

4.4.3 Experimental Results

A summary of the experimental results is tabulated in Table 4.9 and

Table 4.10. Table 4.9 contains, for each one of the experiments, the node

that failed; the average value of TBI, the recovery TBO; the delay

introduced by the fault and the delay to the first output after the fault.

Table 4.10 contains, for each one of the experiments, the node that failed;

the reduction on TBIO per data packet; the number of packets the system

Exp.
Number

1
2

3

4
5

6

7

8

9

10

11

12

Faulty TBI
Node

Recovery Introduced First

TBO Delay Output

Delay
5385 8643 8643

6198 6520 4720

5385 3577 3577

5385 5811 5811

2 7023

3 7023

1 7023

4 7023

2 6236 5385

3 6236 6236

1 6236 5385

4 6236 5385

8727 8727

6614 4814

3628 3628

5846 5846
8659 8659

6455 4655

3569 3569

5831 5831

2 8036 5385
3 8036 6185

1 8036 5385

4 8036 5385

Table 4.9. Summary #1 of Experimental Results.
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takes to recover; the value of a permanent delay after reaching steady

state; and the time to restore the system to the target operating point.

The recovery TBO values in Table 4.9 refer to the TBO at which the

system delivered outputs while it was recovering from the fault. After

faults at all nodes, except at node 3, the recovery TBO reflects

approximately the value of process time for node 4, which is 5200. This is

because the lifetime dominant path for faults at these nodes is the path

that traverses node 4 through several data packets in the XCMG. The

lifetime dominant path when node 3 fails traverses node 3 and the recovery

TBO is higher; its value is TBOLB.

The introduced delay, as shown in Table 4.9, is the effective delay

introduced into the system by the fault at the node. As can be seen, it is

approximately the value of the process time for the node that failed plus

Exp.
Number

1
2

3
4
5

6

7

8

9

10

11

12

Faulty TBIO Recovery Permanent Time to

Node Reduction Packets Delay Restore

2 1638 6 0 42138

3 825 6 0 42138
1 1638 3 0 21069
4 1638 4 0 28092

2 851 N/A_) 2083 N/A(6560)

3 0 N/A(0) 4720 N/A_)

1 851 N/A(3) 1432 N/A(2460)
4 851 7 0 43652

2 2651 4 0 32144

3 1851 3 0 24108

1 2651 2 0 16072

4 2651 3 0 24108

Table 4.10. Summary #2 of Experimental Results.



500 units. Any difference can be attributed to the effective timeout at 

execution time. It is possible that an error may have been detected but the 

communications channel was being used at the time and the actual time to 

operate on the graph may have been longer. This effectively adds delay to 

the estimated time. 

The column of first output delay in Table 4.9 reflects the delay on the 

first data packet or the data packet 10 in which the fault occurred. In all 

nodes and TBI, except for node 3, the first output delay is equal to the 

introduced delay. The difference in the rows of node 3 is due to a token 

lifetime of approximately 1800 units in the path from node 3 to the sink for 

data packet 10. The theoretical value of this token hfetime in the path is 

2000 units. 

The TBIO reduction column in Table 4.10 indcates the amount of 

delay reduction that is applied to the TBIO for each data packet while the 

system is in recovery. This value can be calculated by subtracting recovery 

TBO from TBI. 

The column of recovery packets in Table 4.10 denotes the number of 

packets that the system requires to reach the target operating point. This 

target operating is the initial operating point before the fault, i.e., the same 

values of TBO and TBIO. For faults a t  nodes 2 , 3  and 1, and TBI of 6236 

there is no value in this column. This is because the system never reaches 



the target operating point. Instead it reaches an operating point with an 

offset in TBIO, hence a permanent delay in TBIO. The system does absorb 

some of the delay that is introduced by the fault, but the path that contains 

node 3 becomes Metime dominant after a given number of data packets. 

This number of data packets is expressed between parentheses. 

The column of permanent delay inhcates the amount of delay that 

exists in TBIO after the system has reached a steady state. Most of the 

entries are zero, except for the related entries denoted by NIA in the 

column of recovery packets. 

The time the system takes to restore the target operating point is 

indicated in the column of time to restore. The entries indicated by NIA 

are the ones where the system never reaches the target operating point. 

Instead the value between parentheses is the time the system took to reach 

steady state. 

As has been shown, the model can be used to predict the behavior of a 

multicomputer system under recovery and restoration. The issues that 

have been raised in the Introduction of this dissertation can be addressed. 

These issues are whether a system fully recovers when it undergoes a 

fault; the time it takes to recover (tre3 from the fault and to restore the 

system (tres); and the existence of a permanent delay in the system after it 

reaches steady state. 
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The data from experiments #2 to #12 are graphed and tabulated in

figures and tables in the rest of this section. The last seven charts are

Operating Point Planes of the experiments grouped by TBI or by faulty

node. They serve to highlight different aspects of the system under study.

By observing these charts and tables, some conclusions may be drawn

that highlight performance aspects of the system. The first conclusion is

that if

TBI > TBO _

the system recovers from the fault and reaches the target operating point.

The token lifetime in the paths from the faulty nodes to the sinks is used to

absorb the delay introduced by the fault.

Another conclusion is that is if

TBI = TBO_

the system may not recover from the fault and may not reach the

target operating point. If it does not reach the target operating point, there

is a permanent delay added to TBIO.

The value of the recovery TBO depends on the node that fails and not

on TBI. This value is related to the time in the nodes in the paths and not

to the token lifetime as it is the case of the TBIO reduction. It may also be

observed that the higher the TBI, the faster the system recovers. This

information may be easily observed in Figures 2.21 to 2.27.
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Figure 4.10. TBI, TBO and TBIO for Experiment #2.
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Packet
Experimental Calculated

TBI TBO TBIO TB! TBO TBIO

1 271 16924 1665:

2 7030 7027 16650

3 7016 7016 16650

4 7027 7030 16653

5 7016 7016 16653

6 7030 7027 16650

7 7016 7016 1665C

8 7027 7030 16653

9 7016 7016 16653

10 7030 11750 21373

11 7016 6212 20569

12 7004 6209 1977:

13 7020 6186 18940

14 7007 6183 18116

15 7035 6200 17281

16 7025 6368 16624

17 7019 7022 16627

18 7042 7042 16627

19 7019 7045 16653

2C 7042 7042 16653

21 7004 7001 16650

22 7039 7042 16653

23 7004 7004 16653

24 7042 7042 16653

25 7004 7004 16653

26 7039 7039 16653

27 7007 7004 16650

28 7036 7039 16653

_' 7007 7007 166537039 7039 16653

0 16650 16650

7023 7023 16650

7023 7023 1665G

7023 7023 1665(

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 11743 21370

7023 6198 20545

7023 6198 19720

7023 6198 18895

7023 6198 18070

7023 6198 17245

7023 6428 16650

7023 7023 16650

7023 7023 16650

7023 7023 1665C

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650,

7023 7023 1665!

7023 7023 1665(

7023 7023 16650

7023 7023 16650

Difference in °0

TBI TBO TBIq

100.00% 1.62% 0.02¢

0.10% 006% 0.00h

-0.10% -0.10% 0.00o_

0.06% 0.10% 0.02",t

-0.10% -0.10% 0.02°A

0.10% 0.06% 0.00oA

-0.10% -0.10% 0.00%

0.06% 0.10% 0.02%

-0.10% -0.10% 0.02%

0.10% 0.06% 0.01%

-0.10% 0.23% 0.12%

-0.27% 0.18% 0.27%

-0.04% -0.19% 0.24%

-0.23% -0.24% 0.25%

0.17% 0.03% 021%

0.03% -0.94% -0.16%

-0.06% -0.01% -0.14%

0.27% 0.27% -0.14%

-0.06% 0.31% 0.02°_

0.27% 0.27% 0.02%

-0.27% -0.31% 0.00°a

0.23% 0.27% 0.02%

-0.27% -0.27% 0.02%

0.27% 0.27% 0.02%

-0.27% -0.27% 0.02%

0.23% 0.23% 0.02%

-0.23% -0.27% 0.00°A

0.18% 0.23% 0.02%

-0.23% -0.23% 0.02%

0.23% 0.23% 0.02°A

Table 4.11. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #2.
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Figure 4.11. TBI, TBO and TBIO for Experiment #3.
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Packet

Experimental

TBI TBO TBIO

1_ 351 17001 16650

2 7030 7033 16653

3 7013 7010 1665C

4 7030 7033 16653

5 7013 7013 1665:

6 7033 7033 16653

7 7013 7010 16650

8 7030 7033 16653

9 7013 7013 16653

10 7033 10610 20230

ll' 7002 5386 18614

12 7040 5383 16957

13 7028 6698 16627_

14 7014 7014 16627

15 7003 7029 16653

16 7014 7014 16653

17 7035 7032 16650

18 7011 7011 16650

19 7032 7035 16653

201 7011 7011 16653

21 7032 7032 16653

22 7011 7011 16653

23 7038 7035 1665C

24 7008 7008 16650

25 7035 7038 16653

26 7008 7008 16653

27 7035 7035 16653

28 7008 7008 16653

29 7041 7038 16650

30 7005 7005 16650

Calculated

TBI TBO TBIO

Difference in %

TBI TBO TBI(

0 16650 16650 100.00% 2.06% 0.009

7000 7000 16650 0.43% 0.47% 0.029

7000 7000 16650 0.19% 0.14% 0.009

7000 7000 16650 0.43% 0.47% 0.029

7000 7000 16650 0.19% 0.19% 0.02"

7000 7000 16650 0.47% 0.47% 0,02o/_

7000 7000 16650 0.19% 0.14% 0.00_

7000 7000 16650 0,43% 0.47% 0.02%

7000 7000 16650 0.19% 0.19% 0.02°,_

7000 10577 20227 0.47% 0.31% 0.01%

7000 5385 18612

7000 5385 16997

7000 6653 16650

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 1665C

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 16650

7000 7000 1665C

7000 7000 16650

7000 7000 16650

7000 7000 16650

0.03% 0.02% 0.01_

0.57% -0,04% -0.24o/¢

0.40% 0.67% -0.14%

0.20% 0.20% -0.14%

0.04% 0.41% 0.02%

0.20% 0.20% 0.02%

0.50% 0.46% O.OO°,_

0.16% 0.16% 0.00%

0.46% 0.50% 0.02%

0.16% 0.16% 0.02°/_

0.46% 0.46% 0.02%

0.16% 0.16% 0.02%

0.54% 0.50% 0.00%

0.11% 0.11% 0.00%

0.50% 0.54% 0.02%

0.11% 0.11% 0.02%

0.50% 0.50% 0.02%

0.11% 0.11% 0.02%

0.58% 0.54% 0.00%

0.07% 0.07% 0.00%

Table 4.12. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #3.
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Figure 4.12. TBI, TBO and TBIO for Experiment #4.
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Packet

Experimental

TB1 TBO TBIO

1 351 17001 16650

2 7030 7033 16653

3 7013 7010 16650

4 7030 7033 16653

5 7013 7013 16653

6 7033 7033 16653

7 7013 7010 1665(

8 7030 7033 16653

9 7013 7010 16650

10 7033 12844 22461

ll 7010 5386 20837

12 7033 5383 19187

13 7028 5383 17542

14 7003 6114 16653

15 7008 7008 16653

16 7035 7035 16653

17 7011 7011 16653

18 7035 7032 16650

19 7011 7011 16650

2G 7032 7035 16653

21 7011 7011 1665ff

22 7032 7032 16653

23 7014 7014 16653

24 7032 7029 16650

25 7014 7014 16650

26 7029 7032 16653

27 7014 7014 16653

28 7029 7029 16653

29 7017 7017 16653

30 7029 7026 1665G

Calculated

TBI TBO TBIO

0 16650 16650

7023 7023 1665_

7023 7023 1665G

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 1665C

7023 12834 22461

7023 5385 20823

7023 5385 19185

7023 5385 17547

7023 6126 16650

7023 7023 16650

7023 7023 16650

7023 7023 1665C

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 1665C

7023 7023 1665G

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

7023 7023 16650

Difference in %

TBI TBO TBIq

100.00% 2.06% 0.00.,

0.10% 0.14% 0.02*,

-0.14% -0.19% 0.00 °,

0.10% 0.14% 0.02'_

-0.14% -0.14% 0.02 °,

0.14% 0.14% 0.029

-0.14% -0.19% 0.009

0.10% 0.14% 0.029

-0.14% -0.19% 0.00°A

0.14% 0.08% 0.00',!

-0.19% 0.02% 0.07'_

0.14% -0.04% 0.01°A

0.07% -0.04% -0.03°A

-0.29% ,0.20% 0.02%

-0.21% -0.21% 0.02%

0.17% 0.17% 0.02%

-0.17% -0.17% 0.02%

0.17% 0.13% 0.00%

-0.17% -0.17% 0.00%

0.13% 0.17% 0.02%

-0.17% -0.17% 0.02o,_

0.13% 0.13% 0.02%

-0.13% -0.13% 0.02o_

0.13% 0.09% 0.00%

-0.13% -0.13% 0.00',/

0.09% O. 13% 0.02%

-0.13% -0.13% 0.02%

0.09% 0.09% 0.029

-0.09% -0.09% 0.02%

0.09% 0.04% 0.009

Table 4.13. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #4.
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Figure 4.13. TBI, TBO and TBIO for Experiment #5.
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Packet

Experimental

TBI TBO TBIO

1 351 17001 16650

2 6238 6284 16696

3 6221 6149 16624

4 6237 6240 16627

5 6240 6237 16624

6 6237 6240 16627

7 6243 6240 1662,

8 6237 6240 16627

9 6240 6237 t662_

10 6237 14964 25351

11 6240 5412 24523

12 6231 5412 23704

13 6220 5409 22893

14 6213 5383 22063

15 6241 5386 21208

16' 6204 5383 20387

17 6214 5386 19559

18 6237 5563 18885

19 6330 6212 18767

20 6227 6215 18755

21 6230 6206 18731

22 6209 6209 18731

23 6215 6215 18731

24 6206 6206 18731

25 6212 6212 18731

26 6212 6215 18734

27 6209 6206 18731

28 6209 6209 18731

29 6215 6215 18731

30 6206 6206 18731

Calculated

TBI TBO TBIG

0 16650 1665(

6236 6236 16650

6236 6236 16650

6236 6236 16650

6236 6236 16650

Difference in %

TBI TBO TBIC

100.00% 2.06% 0.00aA

0.03% 0.76% 0.280A

-0.24% -1.41% .0.16°A

0.02% 0.06% -0.14'/t

0.06% 0.02% -0.16°A

6236 6236 16650 0.02% 0.06% -0.14%

6236 6236 16650 0.11% 0.06% -0.16%

6236 6236 16650 0.02% 0.06% -0.14%

6236 6236 16650 0.06% 0,02% -0.16%

6236 14963 25377 0.02% 0.01% -0.10%

6236 5385 24526

6236 5385 23675

6236 5385 22824

6236 5385 21973

6236 5385 21122

0.06% 0.50% -0.01%

-0.08% 0.50% 0.12%

-0.26% 0.44% 0.30%

-0.37% -0.04% 0.41%

0.08% 0.02% 0.41%

6236 5385 20271 -0.52% -0.04% 0.57%

6236 5385 19420 -035% 0.02% 0.71%

6236 5549 18733 0.02% 0.25% 0.80'/c

6236 6236 18733 1.48% -0.39% 0.18°A

6236 6236 18733 -0.14% -0.34% 0.12°A

6236 6236 18733 .0.10% -0.48% -0.01%

6236 6236 18733 -0.43% -0.43% -0.01%

6236 6236 18733 -0.34% -0.34% -0.01%

6236 6236 18733 -0.48% -0.48% -0.01%

6236 6236 1873; -0.39% -0.39% -0.01%

6236 6236 18733 -0.39% -0.34% 0.01%

6236 6236 18733 -0.43% -0.48% -0.01%

6236 6236 18733 -0.43% -0.43% -0.01%

6236 6236 18733 -0.34% -0.34% -0.01%

6236 6236 18733 -0.48% -0.48% -0.01%

Table 4.14. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #5.
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Figure 4.14. TBI, TBO and TBIO for Experiment #6.
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Packet

Experimental

TBI TBO TBIO

1 351 17001 1665C

2 6238 6284 16696

3 6221 6149 16624

4 6237 6240 16627

5 6240 6237 16624

6 6237 6240 16627

7 6243 6240 16624

8 6237 6240 16627

9 6240 6237 16624

l0 6237 11051 21438

ll 6240 6212 21410

12 6214 6212 21408

13 6237 6209 2138C

14 6220 6209 21369

15 6212 6209 21366

16 6209 6212 21369

17 6209 6212 21372

18 6209 6212 21375

19 6212 6209 21372

20 6212 6209 21369

21 6212 6209 21366

22 6209 6212 21369

23 6209 6212 21372

24 6209 6212 21375

25 6212 6209 21372

26 6212 6209 2136£

27 6212 6209 21366

28 6209 6212 21369

29 6209 6212 2137_

30 6209 6212 21375

Calculated

TBI TBO TBIO

0 16650 16650

6236 6236 16650

6236 6236 16650

6236 6236 16650

6236 6236 16650

6236 6236 16650

6236 6236 1665G

6236 6236 16659

6236 6236 1665(

6236 11050 2146_

6236 6236 2146_

6236 6236 21464

6236 6236 2146_

6236 6236 21464

6236 6236 21464

6236 6236 21464

6236 6236 21464

6236 6236 21464'

6236 6236 21464

6236 6236 2146,

6236 6236 21464

6236 6236 2146_

6236 6236 2146_

6236 6236 2146_

6236 6236 21464

6236 6236 21464

6236 6236 21464

6236 6236 21464

6236 6236 21464

6236 6236 21464

Difference in %

TBI TBO TBIC

100.00% 2.06% 0.009

0.03% 0.76% 0.28°/

-0.24% -1.41% -0.16°/

0.02% 0.06% -0.14°A

0.06% 0.02% -0.16_

0.02% 0.06% -0.140_

0.11% 0.06% -0.16°A

0.02% 0.06% -0.14°a

0.06% 0.02% -0.16°A

0.02% 0.01% .0.12°_

0.06% -0.39% -0.25°A

-0.35% -0.39% -026°4

0.02% -0.43% -0.39_

-0.26% -0.43% -0.44%

-0.39% -0.43% -0.46%

-0.43% -0.39% -0.44%

-0.43% -0.39% -0.43%

-0.43% -0.39% -0A2%

-0.39% -0.43% -0.43%

-0.39% -0.43% .0.44%

-0.39% -0.43% -0.46%

-0.43% -0.39% -0.44%

-0.43% -0.39% -0.43%

-0.43% -0.39% -0.42%

-0.39% -0.43% -0A3%

-0.39% -0.43% -0.440A

-0.39% -0.43% -0.46%

-0.43% -0.39% -0.44%

-0.43% -0.39% -0.43%

-0.43% -0.39% -0.42%

Table 4.15. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #6.
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Packet

Experimental

TBI TBO TBIO

Calculated

TBI TBO TBIO

Difference in %

TBI TBO TBI(

1 351 17001 16650

2 6238 6284 16696

3 6221 6149 16624

4 6237 6240 16627

5 6240 6237 16624

6 6237 6240 16627

7 6243 6240 16624

8 6237 6240 16627

9 6240 6237 16624

I0 6237 9865 20252

ll 6240 5386 19398

12 6214 5383 1854:

13 6237 5838 18157

14 6220 6209 18136

15 6212 6212 18105

I_ 6209 6209 18080

17 6209 6212 18080

18 6209 6212 18083

19 6212 6212 18086

20 6212 6209 1808:

21 6212 6212 18083

22 6209 6209 18080

23 6209 6212 18080

24 6209 6212 18083

25 6212 6212 18086

26 6212 6209 1808:

27 6212 6212 18083

28 6209 6209 18080

29 6209 6212 18080

30 6209 6212 18083

0 16650 16650 100.00% 2.06% 0.00_

6236 6236 16650 0.03% 0.76% 0.289

6236 6236 16650 -0.24% -1.41% -0.169

6236 6236 16650 0.02% 0.06% -0.14_

6236 6236 16650 0.06% 0.02% -0.167_

6236 6236 1665G 0.02% 0.06% -0.14e,_

6236 6236 1665( 0.11% 0.06% -0.16°A

6236 6236 16650 0.02% 0.06% .0.14oA

6236 6236 16650 0.06% 0.02% -0.169_

6236 9864 20278 0.02% 0.01% -0.13%

6236 5385 19427 0.06% 0.02% -0.15%

6236 5385 18576 -0.35% -0.04% -0.19%

6236 5742 18082 0.02% 1.64% 0.41%

6236 6236 18082 -0.26% -0.43% 0.30%

6236 6236 18082 -0.39% -0.39% 0.13%

6236 6236 18082

6236 6236 18082

6236 6236 18082

6236 6236 18082

6236 6236 1808_

-0.43% -0.43% -0.01%

-0.43% -0.39% -0.01%

-0,43% -0,39% 0.01%

-0.39% -0.39% 0.029

-0.39% -0.43% 0.01%

6236 6236 18082 -0.39% -0.39% 0.01%

6236 6236 18082 -0.43% -0.43% -0.01%

6236 6236 18081 -0.43% -0.39% -0.01%

6236 6236 18082 -0.43% -0.39% 0.01%

6236 6236 1808_ -0.39% -0.39% 0.02%

6236 6236 18082

6236 6236 18082

6236 6236 18082

6236 6236 18082

6236 6236 18082

-0.39% -0.43% 0.01%

-0.39% -0.39% 0.01%

-0.43% -0.43% -0.01%

-0.43% -0.39% -0.01°,t

-0.43% -0.39% 0.01%

Table 4.16. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #7.
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Packet

1'

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

lfi'

2(J

21

22

23

24

25

26

27

28

Experimental

TBI TBO TBIO

351 17001 16650

6238 6284 16696

6221 6149 16624

6237 6240 16627

6240 6237 1662_

6237 6240 16627

6243 6240 16624

6237 6240 16627

6240 6237 16624

6237 12083 22470

Calculated

TBI TBO TBIG

0 16650 16650

6236 6236 16650

6236 6236 16650

6236 6236 16650

6236 6236 16650

6236 6236 16650

6236 6236 1665(

6236 6236 16650

6236 6236 1665(

6236 12082 22496

6240 5438 21668 6236 5385 21645

6237 5383 20814' 6236 5385 20794

6217 5386 19983 6236 5385 19943

6237 5383 19129 6236 5385 19092

6213 5383 18299 6236 5385 18241

6214 5386 17471 6236 5385 1739(

6240 5487 16718 6236 5496 16650

6204 6113 16627 6236 6236 16650

6232 6229 16624 6236 6236 16650

6204 6204 16624 6236 6236 16650

6232 6232 16624' 6236 6236 16650

6204 6207 16627 6236 6236 16650

6229 6229 16627 6236 6236 16650

6204 6204 16627 6236 6236 16650

6229 6226 16624 6236 6236 1665{

6207 6207 1662_ 6236 6236 16650

6229 6229 16624 6236 6236 16650

6204 6207 16627 6236 6236 16650

6229 6229 16627 6236 6236 16650

6204 6204 16627 6236 6236 16650

Difference in **

TBI TBO TBI(

100.00% 2.06% 0.00_

0.03% 0.76% 0.289

-0.24% -1Al% -0.16_

0.02% 0.06% -0.14_

0.06% 0.02% -0.167'

0.02% 0.06%

0.11% 0.06%

0.02% 0.06%

0.06% 0.02%

0.02% 0.01%

-0.14°_

-0.16_

-0.14°,1

-0.16°A

-0.12_

0.11°A

0.10%

0.20%

0.19°/

0.32%

0.06% 0.97%

0.02% -0.04%

-0.31% 0.02%

0.02% -0.04%

-0.37% -0.04%

-0.35% 0.02% 0.46%

0.06% -0.16% 0.41%

-0.52% -2.01% -0.14%

-0.06% -0.11% -0.16%

-0.52% -0.52% -0.16%

-0.06% -0.06% -0.16%

-0.52% -0.47% -0.14%

-0.11% -O. ll% -0.14%

-0.52% -0.52% -0.14%

-0.11% -0.16% -0.16%

-0.47% -0.47% -0.16%

-0.11% -0.11% -0.16%

-0.52% -0.47% -0.14%

-0.11% -0.11% -0.14_

-0.52% -0.52% -0.14%

Table 4.17. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #8.
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Figure 4.17. TBI, TBO and TBIO for Experiment #9.
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Packet

Experimental

TB! TBO TBIO

1 351 17013 16662

2 8042 8037 16657

3 8037 8030 1665(

4 8034 8037 16653

5 8033 8034 16654

6 8037 8037 1665:

7 8034 8034 16654

8 8037 8037 16654

9 8034 8037 16657

1G 8037 16696 25316

ll 8034 5383 22665

12 8003 5386 20041

13 8033 5420 17435

14 8041 7259 1665:

15 8026 8031 16658

16 8044 8037 16651

17 8034 8037 16654

18 8034 8037 16657

19 8037 8037 16657

20, 8037 8031 16651

21 8037 8037 16651

22 8034 8037 16654

23 8034 8037 16657

24 8037 8037 16657

25 8037 8031 16651

26 8037 8037 16651

27 8034 8037 1665_

28 8034 8037 16657

29 8037 8037 16657

301 8037 8031 16651
I

Calculated

TBI TBO TBIO

0 16650 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

Difference in %

TBI TBO TBI(

100.00% 2.13% 0.079

0.07% 0.01% 0.04_

0.01% -0.07% 0.009

-0.02% 0.01% 0.020/

-0.04% -0.02% 0.020,

8036 8036 16650 0,01% 0.01% 0.02_

8036 8036 1665{ -0,02% -0,02% 0.02_

8036 8036 16650 0.01% 0,01% 0,02_

8036 8036 16650 -0.02% 0.01% 0.04_

8036 16695 25309 0,01% 0,01% 003_

8036 5385 22658

8036 5385 20007

8036 5385 17356

8036 7330 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650i

8036 8036 16650

8036 8036 16650

8036 8036 16650

-0,02% -0,04% 0.03°A

-0.41% 0.02% 0,20_

-0.04% 0,65% 0.459

0.06% -0.98% 0.02%

-0,12% -0.06% 0,05%

0.10% 0.01% 0.01%

-0,02% 0,01% 0.02%

-0.02% 0.01% 0,04%

0.01% 0,01% 0,04%

0.01% -0.06% O,OI°A

8036 8036 16650 0.01% 0.01% 0.01%

8036 8036 16650 -0.02% 0.01% 0.02%

8036 8036 16650 -0,02% 0,01% 0.040A

8036 8036 16650 0.01% 0.01% 0.04%

8036 8036 16650 0.01% -0.06% 0.01%

8036 8036 16650 0.01% 0.01% 0.01%

8036 8036 1665C -0,02% 0.01% 0.02%

8036 8036 1665( -0.02% 0.01% 0.04%

8036 8036 16650 0,01% 0.01% 0.04%

8036 8036 16650 0.01% -0.06% 0.01%

Table 4.18. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #9.



128

Application Algorithm,

Fault at Node 3, Data packet 10

Relallve
Time

Experiment # 1C_

2 5000

_oooo_)___._____
,_ooo____ 1',oooo 
_ooo_ __

Number "' 22 23 2'4._-__ TUlO

_ 25 26 2P7_ TRO

Figure 4.18. TBI, TBO and TBIO for Experiment #10.

_TBO i



129

Packet

Experimental

TBI TBO TBIO

1 351 17013 16662

2 8042 8037 16657

3 8037 8030 16650

4 8034 8037 16653

5 8033 8034 16654

6 8037 8037 16654

7 8034 8034 16654

8 8037 8037 16654

9 8034 8037 16657

10 8037 12692 21312

11 8034 6183 19461

12 8072 6186 17575

13 8034 7113 16654

14 8034 8037 16657

15 8037 8037 16657

16 8034 8034 16657

17 8037 8034 16654

18 8037 8037 16654

19 8034 8037 16657

20 8037 8037 16657

21 8034 8034 16657

22 8037 8034 16654

23 8037 8037 16654

24 8034 8037 16657

25 8037 8037 16657

26 8034 8034 16657

27 8037 8034 16654

28 8037 8037 16654

29 8034 8037 16657

30 8037 8037 16657

Calculated

TBI TBO TBIO

0 16650 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 12691 21305

8036 6185 19454

8036 6185 17603

8036 7083 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 166501

8036 8036 16650_

Difference in %

TBI TBO TBIG

100.00% 2.13% 0.07%

0.07% 0.01% 0.04%

0.01% -0.07% 0.00%

-0.02% 0.01% 0.02%

-0.04% -0.02% 0.02%

0.01% 0.01% 0.02%

-0.02% -0.02% 0.02%

0.01% 0.01% 0.02%

-0.02% 0.01% 0.04%

0.01% 0.01% 0.03%

-0.02% -0.03% 0.04%

0.45% 0.02% -0.16%

-0.02% 0.42% 0.02%

-0.02% 0.01% 0.04%

0.01% 0.01% 0.04%

-0.02% -0.02% 0.04%

0.01% -0.02% 0.02%

0.01% 0.01% 0.02%

-0.02% 0.01% 0.04%

0.01% 0.01% 0.04%

-0.02% -0.02% 0.04%

0.01% -0.02% 0.02%

0.01% 0.01% 0.02%

-0.02% 0.01% 0.04%

0.01% 0.01% 0.04%

-0.02% -0.02% 0.04%

0.01% -0.02% 0.02%

0.01% 0.01% 0.02%

-0.02% 0.01% 0.04%

0.01% 0.01% 0.04%

Table 4.19. Experimental and Calculated Values of

TBI, TBO and TBIO for Experiment #10.
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Packet

Experimental Calculated Difference in %

TBI TBO TBIO TBI TBO "FBIO TBI TBO TBIC

351 17013 16662

8042 8037 16657
8037 8030 16650

8034 8037 16653

5 8033 8034 16654

6 8037 8037 16654

7 8034 8034 16654

8 8037 8037 16654

9 8034 8033 16653

10 8037 11606 20222!

11 8003 5383 17602

t2 8028 7079 16653

13 8023 8023 16653

14 8003 8003 16653

15 8023 8023 16653

16 8003 8003 16653

17 8020 8020 16653

18 8003 8003 16653

19 8023 8023 16653

20 8003 8003 16653

21 8020 8023 16656

22 8003 8000 16653

23 8023 8023 16653

24 8003 8003 16653

25 8023 8023 16653

26 8003 8003 16653

27 8020 8020 16653

28 8003 8003 16653

29 8023 8023 16653

30 8003 8003 16653

0 16650 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 11605 20219

8036 5385 17568

8036 7118 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

100.00% 2.13% 0.07°/,

0.07% 0.01% 0.04°_

0.01% .0.07% 0.00°A

-0.02% 0.01% 0.020/_

-004% -0.02% 0.020_

0.01% 0.01% 0.02°A

-0.02% -0.02% 0.02°A

0.01% 0.01% 0.02°_

-0.02% -0.04% 0.02%

0.01% 0.01% 0.01%

-0.41% -0.04% 0.19%

-0.10% -0,55% 0.02%

-0.16% -0.16% 0.02%

-0.41% -0.41% 0.02%

-0.16% -0.16% 0.02%

-0.41% -0.41% 0.02%

-0.20% -0.20% 0.02%

-0.41% -0.41% 0.02%

-0.16% -0.16% 0.02%

-0Al% -0.41% 0.02%

-0.20% -0.16% 0.04%

-0A 1% -0.45% 0.02%

-0.16% -0.16% 0.02%

-0.41% -0.41% 0.02%

-0.16% -0.16% 0.02°/*

-0.41% -0.41% 0.02%

-0.20% -0.20% 0.02%

-0.41% -0.41% 0.02%

-0.16% -0.16% 0.02%

-0.41% -0.41% 0.02%

Table 4.20. Experimental and Calculated Values of

TBI, TBO and TBIO for Experiment #11.
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Packel

Experimental

TBI TBO TBIO

1 351 17013 16662

2 8042 8037 16657

3 8037 8030 16650

4 8034 8037 16653

5 8033 8034 16654

6 8037 8037 1665,

7 8034 8034 16654

8 8037 8037 16654

9 8034 8037 16657

10 8037 13868 22488

II 8034 5386 19840

12 8033 5383 17190

13 8009 7472 16653

14 8026 8034 16661

15 8044 8034 16651

16 8034 8040 16657

17 8034 8030 16653

18 8037 8037 16653

19 8033 8034 16654

20 8037 8034 16651

21; 8034 8040 16657

22 8034 8030 16653

23 8037 8037 16653

24 8033 8034 16654

25 8037 8034 16651

26 8034 8040 16657

27 8034 8030 16652

28 8037 8037 16652

29 8033 8034 16654

30 8037 8034 1665

Calculated

TBI TBO TBIO

0 16650 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 13867 22481

8036 5385 19830

8036 5385 17179

8036 7507 16650

8036 8036 16650

8036 8036 1665G

8036 8036 1665G

8036 8036 1665G

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

8036 8036 16650

Difference in %

TBI TBO TBIC

100.00% 2.13% 0.07°A

0.07% 0.01% 0.04°,t

0.01% -0.07% 0.00°A

-0.02% 0.01% 0.02%

-0.04% -0.02% 0.02°A

0.01% 0.01% 0.02%

-0.02% -0.02% 0.02%

0.01% 0.01% 0.02%

-0.02% 0.01% 0.04%

0.01% 0.01% 0.03%

-0.02% 0.02% 0.05%

-0.04% -0.04% 0.06%

-0.34% -0.47% 0.02%

-0.12% -0.02% 0.07%

0.10% -0.02% 0.01%

-0.02% 0.05% 0.04%

-0.02% -0.07% 0.02%

0.01% 0.01% 0.02%

-0.04% -0.02% 0.02%

0.01% -0.02% 0.01%

-0.02% 0.05% 0.04%

-0.02% -0.07% 0.02%

0.01% 0.01% 0.02%

-0.04% -0.02% 0.02%

0.01% -0.02% 0.01%

-0.02% 0.05% 0.04%

-0.02% -0.07% 0.02%

0.01% 0.01% 0.02%

-0.04% -0.02% 0.02%

0.01% -0.02% 0.01%

Table 4.21. Experimental and Calculated Values of TBI,

TBO and TBIO for Experiment #12.
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135

18000

16000 i

14000 !

12000

10000

8000

60O0

4000

1SO00

Operating Point Plane

Application Algorlth

I

17000 19000 21000 23000 2S000

TBIO

I

27000

Fault at node

Fault at node

Fault at node

Experiments #5, #6, #7,
rill - 6200

Figure 4.22. Operating Point Plane, TBI = 6200.



136

18000

16000

14000

12000

10000

8000

6000

4000

15000

Operating Point Plane

Application Algorith

.'_ =lg

./Q
!

_: ,,.,,: .... ,'I
_._ ....... A

I F

li j

/

l

Faul¢ at node mI.... o.,- Fault at node

" "_" ° Fault at node

-_ _" _ Fault at node

17000 19000 21000

TBIO

23000 25000 27000

Figure 4.23. Operating Point Plane, TBI = 8000.



137

Operating Point Plane

Application Algorithm

Fault at node 2, data packet 1 0

18000 -

16000 -

14000 -

12000 -

I0000 -

8000 -

6000

4000 i

.t

q I I f t I q i I I

16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000

TBIO

_TBI=6200 I

me-,-- T81-7000

" "_ " TBI-8000

Figure 4.24. Operating Point Plane, Fault at node 2.



138

Operating Point Plane

Application Algorithm

Fault at node 3, data packet I 0

18000 !

16000 -

14000 -

12000 -

10000 -

8000

6000 -

_""il.._...._.___......_I

4000 '

16000 17000

I i I i t I I d

18000 19000 20000 21000 22000 23000 24000 25000 26000

TBIO

_TBI=620G

_'_"" TBI-7000

" "" " TBI=8000

!I

Figure 4.25. Operating Point Plane, Fault at node 3.



139

Operating Point Plane
Application Algorithm

Fault at node 1, data packet 10

18000 -

A

16000 -

14000 -

12000 --

IOOOO
O

8000 - _'_

6000 - d, __, _ _ ,_ _

4000 _ _ I I I I t I _ I

16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000

TBIO

•_-'-T81-6200 I

T81-7000

T81-8000

Figure 4.26. Operating Point Plane, Fault at node 1.



140

18000

16000

14000

12000

I0000

8000

6000

4000

16000

Operating Point Plane

Application Algorithm

Fault at node 4, data packet 10

_8

( i i t i i t t i I

17000 18000 19000 20000 21000 22000 23000 24000 25000 26000

TBIO

_TBI-6200

_- TBI=7000

- -_ - TBI-8000

Figure 4.27. Operating Point Plane, Fault at node 4.



141

4.5 Chapter Summary

The following objectives have been accomplished in this chapter. The

development of the simulation program has been explained to demonstrate

its validity as an AMOS simulation. Furthermore, the validation of the

simulation by comparison with hardware experiments has been attained in

two phases. The first phase was to validate the simulation under normal

conditions, i.e., no fault introduced in the system. This is called the steady

state validation of the simulation. The second phase was to validate the

simulation under the effects of a fault in the system. This is called the

fault transient validation of the simulation. Lastly, having the simulation

validated as a sound means to test the theory developed in Chapter Two,

twelve experiments were carried out. Along with these experiments, all

calculations and paths were found to retrieve the token lifetimes in the

paths of the graph. These calculations were compared against the

experimental data and were found to be, for all practical purposes,

accurate within 1%. Considering that the execution time of the nodes and

sources are not exactly the same for every data packet, the calculated data

should be valid for the study of these systems. The data show that the

model can be used as a tractable and a valid method to investigate the

behavior of these systems under any transient conditions due to delays in

the system and to delays due to faults in particular.
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The dissertation objectives to provide a model that should furnish the

time to recover from a fault and whether it recovers at all have been

reached. Also the answer to whether a permanent delay has been

introduced into the system can be answered with the model presented in

this dissertation. It has been shown that the model is adequate for the

analysis of the transient behavior of a fault-tolerant multicomputer system

under recovery and restoration. An example of how to use the analytical

model developed in Chapter Two to generate the data shown in this

chapter is presented in Appendix A. The process is rather involved and

detailed to be shown in this chapter.



CHAPTER FIVE

CONCLUSIONS

Since the inception of computers, there has been a drive to make

computer systems faster. At the verge of physical limitation, although not

for the only reason, there has been an interest in speeding up computation

by dividing the work among more than one computer. Instead of loading a

single computer with all the tasks that have to be executed, multiple com-

puters are set out to work on separate portions of the work.

With the advent of fast systems, real-time systems have come of age.

Computers have come to play an important role in situations where

operators alone could not handle. Real-time systems have benefited with

• the coming of multicomputer systems. The added performance from the

multicomputer systems is well used in real-time systems due to the

demand on faster and more intelligent systems.

One added advantage of multicomputer systems is that they are suit-

able to be implemented as fault-tolerant systems. The redundancy in the

number of processing units is an asset that can be used to increase the sys-

tem's reliability. This leads to the idea of graceful degradation, i.e., if a

computing resource fails, the system does not shut down completely.

143
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By combining all three aspects,multicomputer systems, real-time sys-

tems and fault-tolerant systems, the resulting system is greater than the

sum of all its parts. The complexity of a system in this category may only

be compared to the complexity of the tasks that it is required to handle.

This area requires an extensive study to provide analysis methods and

tools to understand the behavior of such systems. One set of such tools has

been provided by Old Dominion University in the body of knowledge of

ATAMM. This model has been used to study the behavior of real-time

multicomputer systems in steady state operation. It has been successful in

uncovering performance bounds and operation strategies. It has also

provided a route to follow in caseof failure of computing resources. It

provides a set of operating points suitable to be used for different numbers

of computing resources available in the system at run time. Although the

model has been available for someyears, it has not been used to study the

transient behavior of a system in the event of a fault.

When a fault occurs in a system, there is a transient in the system's

performance. The error detection and error recovery phases require time to

repair the system and to bring it back to a steady state. There are certain

issues that should be addressed. The behavior of the system while it is

recovering from a fault is of interest to system designers. The time the

system takes to return to a steady state is important in the design of real-

time systems. The question of whether the system ever reaches the target
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state after a fault occurs is of importance in evaluating the system's relia-

bility. These questions have been answered in this dissertation as it is

explained in the following paragraphs.

The objective of this dissertation is to develop a method to estimate

the time a system takes to recover and to restore the system to an opera-

tional state after a fault has occurred. It is also of interest to find whether

the target operational state is reached at all. This objective has been

attained successfully and the process is outlined next.

ATAMM for steady state was used as a starting point. The AMG

(Algorithm Marked Graph), which expresses the data flow within one data

packet, was unfolded to uncover the data flow dependency across data

packets. This unfolding provides a view of the data flowing not only from

source to sink but also across subsequent data packets. This unfolded

AMG is called XAMG (eXtended Algorithm Marked Graph). Also the CMG

(Computational Marked Graph), which expresses the data and control flow

within one data packet, was unfolded in the same manner to obtain a view

of the data and control flow across data packets. This unfolded CMG is

called XCMG (eXtended Computational Marked Graph).

Based on these unfolded graphs, the times when the nodes fire and

deposit were defined. These times were used to develop the concept of

token lifetime. The token lifetime of an edge is the time a token spends in

the edge. It is the time from when the token is deposited by the initial
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node connected to the edge to when is encumbered by the terminal node

connected to the edge. This token lifetime is of importance since it is time

that data or control tokens spend without being processed by the successor

node and it was used to estimate the amount of delay that could be

absorbed in the edge. The notion of delay was introduced to express the

effect caused by a fault at a given node. The delay introduced in the

process time period effectively increases the time a node takes to process

the data at the input. This delay is introduced due to the fact that a node

that has failed has to be restarted after the error is detected. This delay is

transformed in a delay to deposit the node's output data.

Once delay has been introduced into the graph, it is important to

study how it propagates to other nodes and it effectively delays the time to

deposit of other nodes. A fire-equivalent node model was developed to

express a node's delay to deposit in terms of introduced delay and token

lifetime. The notion of lifetime equivalent paths was introduced to

characterize one path between nodes by their token lifetime. This was

further developed to find dominant lifetime equivalent paths when there

are more than one path connecting two nodes. The construction of paths

between two nodes was used to show that the paths connecting any two

nodes can be reduced to a dominant lifetime equivalent path.

The benefit of this model is that it may be used to find the effect of the

delay to deposit of a node r on the deposit time of another node p. If there
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exists one or more directed paths from node r to node p, the dominant life-

time equivalent path can be found and the delay to deposit of node p can be

expressed in terms of the path's token lifetime and the delay to deposit of

node r. Since this can be performed between any two nodes, the

propagation of delay from the faulted node to any node in the graph may

be determined. The delay to deliver system outputs at the expected time

may be calculated by finding the dominant paths between the faulted node

and the sinks in the XAMG or XCMG. This model may used to predict

system performance during recovery by calculating the delays to deposit of

the nodes in the graph.

The drawback of the model is that it is computationally intensive. In

order to estimate the delay that propagates to a node, all paths need to be

searched between the node that generates the delay and the node of

interest. After this is performed, the token lifetimes are to be calculated

and a dominant lifetime equivalent path is to be found. This is no small

task even in the case of a simple graph since an exhaustive search has to

be performed every time.

The purpose of the model was to evaluate the behavior of ATAMM

based systems undergoing a fault. The target system that was developed

was the Generic VHSIC Spaceborne Computer (GVSC). The system

required the design of an operating system to follow the ATAMM design

guidelines and to be fault-tolerant. This operating system was written for
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an IBM GVSC host system developed for NASA Langley Research Center.

ATAMM requirements allowed the system to be designed in a modular

fashion. The main entities of interest were the computing resources and

the nodes to be executed in the graph. The implementation requires the

communication between computing resources, which are hardware entities,

and nodes in the graph, which are software entities. The idea of data

encapsulation in object-oriented programming was used to isolate the

communication between these two types of entities. A message passing

scheme was used to relay a uniform type of message between nodes and

computing resources. This allowed the system's structure to be highly

modular and provided a better setting for testing and debugging as well as

for software updates and modifications. The hardware dependency was

restricted to low level software modules so that the system may be easily

portable to other platforms. This makes the system hardware architecture

independent at the highest level of operation, i.e., at the message handling

level.

A simulation was developed from the same code used for the target

GVSC system. This simulation was written to run under the Microsoft

Windows environment on the IBM PC and compatibles. It was designed by

surrounding the code from the GVSC system with objects as in object-

oriented programming. The data structure that was used in the hardware

system was also used in the simulation so that both systems may be
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initialized by the same data file. This also allows updates to the hardware

to be moved to the simulation more easily.

The simulation was the ideal tool to test the new model since the

hardware was not available at the time of experimentation. Furthermore,

the simulation is easier to use since it only requires an MS DOS system

running Microsoft Windows. Therefore, the simulation needed to be vali-

dated to be used as an authoritative tool to test the model. This validation

was performed in two phases. First it was validated to simulate steady

state behavior of the hardware system. Second it was validated to simu-

late transient behavior of the hardware system.

Two graphs were used to validate the steady state behavior. Using

these graphs, two types of comparison were performed between the hard-

ware and the simulation, namely micro and macro comparison. The micro

comparison involved the comparison of the sequence of internal events that

both systems go through while executing a graph. This comparison was

performed directly at the fdt files generated by the systems. An fdt file is a

log of all the firing of the internal transitions in the graph. The macro

comparison implied the calculation of the the values of TBI, TBO and TBIO

for individual data packets for both systems. Values from both, the hard-

ware and the simulation, were compared data packet by data packet. The

micro comparison for the first graph indicated that 99% of the events in the

fdt from the simulation were in the ±2 positions range with respect to the
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fdt from the hardware. The macro comparison for the first graph showed

that the maximum difference between the values of TBI, TBO and TBIO

from both systems was of 1.38%. The micro comparison for the second

graph indicated that 99% of the events in the fdt from the simulation were

in the ±2 positions range with respect to the fdt from the hardware. The

macro comparison for the second graph indicated that the maximum differ-

ence between the values of TBI, TBO and TBIO from both systems was of

1.89%. These results denoted the deterministic nature of a system

designed along the ATAMM guidelines. This also validated the simulation

for steady state of the hardware.

One graph was used to validate the transient behavior. The system

was subject to three faults while executing this graph and degraded from

four computing resources to one computing resources. There were 35 data

packets executed during the test. The simulation was set up to execute the

same graph for the same number of inputs. It was also subject to faults on

the same nodes at the same data packets as the hardware system was. The

actual processor assignment was disregarded in the micro comparison

since after the first fault the actual processor assignment was different in

both systems. The micro comparison yielded a 96% of the events in the +3

positions range. The macro comparison presented a maximum difference of

3.47% in the values of TBI, TBO and TBIO. These comparisons validated
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the simulation in the transient behavior of the simulation with respect to

the hardware system.

With the simulation validated, it was possible to run twelve experi-

ments to validate the model presented in Chapter Two. This model was

developed to describe the transient behavior of a multicomputer system.

There was only one graph used for all the experiments. Each experiment

was run for 30 data packets. All faults were injected at the data packet

ten. Three different TBI were used: 7000, 6200 and 8000. For each one of

the experiments in the groups of common TBI a different node was set to

fail. The results were gathered in tables showing the values for TBI, TBO

and TBIO for each of the data packets. The paths between the faulted

node and the sinks were identified, their token lifetimes were computed

and the dominant lifetime paths were identified. The delays to the sinks

were computed for each one of the data packets in each of the experiments.

With these delay values, the TBO and TBIO for each data packet were

calculated and gathered along with the simulated experimental values.

The calculated values of TBO and TBIO were mostly in the 0.5% difference

with respect to the experimental values. The number of individual com-

parisons is near 700. These results show that the model is extremely accu-

rate in predicting the transient behavior of a multicomputer system

designed along the ATAMM guidelines. This accuracy shows the high
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performance predictability of the ATAMM model which now extends to the

transient behavior of the system.

One conclusion that can be drawn from the collected data is that if the

system is driven at a TBI above TBOLB, the system recovers and reaches

the target operating point. In three out of four experiments where the

system was driven at TBI equal to TBOLB, the system did not reach the

target operating point and a permanent delay was added to TBIO in

subsequent data packets. It can be seen that if the system is driven at

TBOLB, the system doesnot have enough token lifetime to absorb the de-

lay introduced by the fault.

Another conclusion is that depending on which node the fault is

injected, the value of recovery TBO is different. This is a value that

depends not on TBI but exclusively on the node where the fault is injected.

It can be seenin the results that when nodes 1, 2 or 4 fail the recovery

TBO is of approximately 5385. When the fault is at node 3 the recovery

TBO is of approximately 6200. These values are dependent on where the

fault is injected and not on the value of the system's TBI. The same

conclusion can be reached for the values of introduced delay and first

output delay as well.

It is interesting to note that the value of TBIO reduction, i.e., the

value by which TBIO is reduced while the system is recovering, depends on
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the value of TBI and which node failed. This TBIO reduction is equal to

TBI minus recovery TBO. It should be noted that when the fault is at node

2 the TBIO reduction is equal to the system slack as defined in Chapter

Two.

Another conclusion is that the higher the TBI, the faster the system

reaches the target operating point. For example, when node 4 fails, the

system reaches the target operating point in 24,108 time units for a TBI of

8000, whereas it takes 43,652 time units for a TBI of 6200. This is an

important factor to consider when designing systems to withstand faults

and to reach an operating point within certain critical time. The penalty

that is paid by increasing the TBI is that the system doesnot operate at

optimal steady state throughput. The model helps in the decision making

at design time by allowing the designer to choosethe most suitable solution

for the application at hand, with the full knowledge of advantages and

disadvantages of a given operating point. The designer is able to balance

steady state performance versus transient state performance.

As a final conclusion, it should be observed that the objectives of the

dissertation were successfully achieved. The model has been used to

estimate the time the system takes to recover from a fault and reaches the

target operating point. It has also been used to determine whether the

system reaches the target operating point at all. If the system does not

reach the target operating point, it can be determined what operating point
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it reaches. If a permanent delay is introduced into the system's TBIO, its

value can be calculated as well. The determinism of the original steady

state ATAMM modeI has been carried over to the transient state ATAMM

extension.

The research presented in this dissertation is original and it has not

been pursued before under the conditions exposed here. ATAMM had been

used only to predict steady state performance in a multicomputer data flow

system. With the extension to ATAMM, this research adds to the

multicomputer systems analysis the capability of predicting the transient

behavior of a system during recovery and restoration. It adds to the fault-

tolerant computer the ability to evaluate whether a particular fault-

tolerant technique applied to the system yields the expected results of

bringing the system to the target state.

5.1 Future Research

The model presented in this dissertation has opened other avenues to

explore multicomputer systems designed with the ATAMM model. In

particular, the transient behavior of the systems can be explored to design

and deliver highly reliable and robust multicomputer systems. The model

may not be only used to highlight potential problems but it may also be

used to solve them.

The delay propagation model may be applied not only to this kind of

problem but also to project management. This application to project
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management is restricted to projects with the characteristics of the systems

analyzed here. The projects should be of iterative nature for this model to

be successfully applied. Another area where the model may be applied is

to assembly-line type of systems as is the case of car factories. This

generality makes the model powerful and versatile.

The analysis may be easily extended to accept more than one fault at

a time. The assumption throughout the dissertation has been that there is

only one fault present in the system until the system reaches a steady

state. If two faults were assumed to occur close to each other in time, such

that the effect of the first has not disappeared from the system before the

second arrives, the effect of both faults may be said to be overlapping. If

the faults do not overlap, the analysis is simplified since each one can be

explored individually as has been presented. If both faults overlap, it

might be possible to estimate the effect of each fault separately and the

effects might be combined to obtain the overall effect. This combination

might be performed at points of interest such as the sinks. For a given

sink in the graph, the value of delay caused by the first fault and the value

of delay caused by the second fault may be compared by a given function

determine the effective delay to the sink. This method might also be

extended to study more than two faults that overlap.

The model may be used to characterize systems in their transient

behavior. As it can be seen in the data presented in Chapter Four, systems
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may be studied based on their characteristics to recover from a fault. The

graph's topology and time information determine how a system responds to

the introduction of delay into one of its nodes. Previous research in the

ATAMM model has been focused on the system's steady state behavior.

The model presented in this dissertation extends the usefulness of the

ATAMM model into the analysis of the system's transient modes.

It has been shown that when the systems are used at top performance

the system may not reach the target operating point after a fault. A

solution to this problem is to drive the system at a higher TBI as in some of

the experiments, providing extra token lifetime throughout the graph.

This solution gives a goodrecovery time but the steady state performance

is not optimum. If steady state system performance were at premium, it

may be possible to discard one or more data packets at the input and to

artificially increase the token lifetime but only in the event of a fault. This

might provide goodperformance during steady state but it would be a

performance degradation during recovery in the form of data loss. This

might be a viable solution depending on the specific application and the

model provides an avenue to explore alternative strategies to solve the

potential problems, providing the knowledge of the trade-off if one or

another solution is implemented.

One possible use of the model is to help in the investigation of the

dominant paths in the graphs. The search of all paths and their corre-
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sponding token lifetimes is tedious and time consuming. Therefore, it is

desirable to explore the possibility of formulating theorems that would help

in finding the token lifetime between two nodes in the system without

having to do such an exhaustive search and computation. The formulation

of such theorems will help in the study of graphs and implementation of

efficient research software tools. It was observed during the calculations in

the experiments in Chapter Four that there are patterns and cyclic

behavior due to the unfolding nature of the model. These characteristics

can be further explored using this model as a the main tool and to help

classify graphs by their topology, node times and recovery behavior.

The model may also be useful to explore the variable time node

problem. As is, the model helps in the understanding of the propagation of

delay in a system. This delay is not restricted to beproduced by a fault in

a node. The delay may be normal to the operation of a system as is the

caseof a variable time node graph. If every node in the graph were to have

a different time every instance it is run, this variation may be considered

as a delay introduced with respect to a mean value of the process time of

the nodes. Since in such a scenario a node may not only introduce a delay

but also introduce a speedup in the process, an extension to the definition

of token lifetime might be performed. The idea of speedup propagation

might be pursued as a symmetric measure to delay propagation. It was

observed that, in parallel paths, the path with the minimum process time
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would have the maximum token lifetime. In the case of a node that

finishes earlier than expected, it adds token lifetime to the path. If the

node is in the lifetime dominant path between two nodes it effectively

increases the token lifetime and the ability to absorb delay increases

between the two nodes. These ideas might be worth exploring using the

model presented in this dissertation.

In the case of variable time nodes, the values for the node's process

times might be expressed by random variables. In such instance, the

values for token lifetime in the paths would also become random variables.

These values of token lifetime would be dependent of several other random

variables so their probability density functions become dependent on the

pdfs of the node's process times. The lifetime dominant path between two

nodes would be expressed by a random variable dependent on the various

token lifetimes of the paths between the nodes. Among the questions that

could be addressed is that of whether a system is stable under certain

conditions such as being driven at a given TBI. As an example, if the

system is intended to be run at best average performance there might be a

probability that the system become unstable once a certain value of

internal delay has been reached. The value of the probability that this

critical delay is reached may be found by extending this model to include

variable time nodes. These and other questions may be addressed by the
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model by extending its usefulness beyond the deterministic value of the

node's times.

Considering the behavior under the conditions of variable time nodes,

it is also possible to expect that the system's operating point would not be

contained in a region about a stable point in the operating point plane. It

may be of interest to know if there are unstable regions that a system's

operating points would fall into under these conditions. The question of

whether there is a strange attractor in the data derived from these

operating points is of interest to dynamical systems analysts.

The study of the multicomputer systems as dynamical systems may be

achieved by extending this performance model. Although the systems are

deterministic in nature, under certain conditions the systems may seem

unpredictable and of random behavior. It is these cases where it is inter-

esting to study the possibility that a system may be stable within a region,

i.e., chaotic or unpredictable about sequence of instantaneous operating

points but predictable about the confined region within which all operating

points would fall. This may be used to broadly classify systems as either

stable or unstable.
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APPENDIX A

This appendix is used to illustrate how TBO and TBIO are calculated

for the experiments in Section 4.4 using the material developed in Chapter

Two. The values of the token lifetime used in this illustration do not

necessarily reflect a particular experiment. The XCMG for the 'Application

Algorithm' is shown in Figure A. 1. The values shown on someedges are

the values for the corresponding token lifetime. The node denoted with the

letter A is where the delay is introduced. The sink denoted with the letter

B relates to the data packet for which the values of TBO and TBIO are to

be calculated. LEP1, 2 indicates the edge between nodes 1 and 2.

The first step is to identify all the directed paths from node A to sink

B. These paths are highlighted in Figure A.2. These are the paths that

are of interest in the computation of the dominant equivalent path from

node A to sink B.

The concatenation operator is applied to edges e lo ' 11 and e11,8; e2,12,

ei2,13, and e13,8; and es, 9 and e9, B. The resultant graph is shown in Figure

A.3. The operations are

LEPlo,ll + LEPll,s = LEPlo,8,

LEP2,12 + LEPl_,13 + LEPI3,s = LEP2, s

LEPs, 9 + LEPg, _ = LEPs, B.
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Distribution of the concatenation operator over the parallel operator

is applied to edges e2,3, e3, 4 and e3,5; e5,6, e6, 7 and e6,8: and e1,1o, e2,1o and

elo,8. After the operations

LEP_,¢ + LEP_,_IILEP_._ = LEP_.7[ILEP_,8,and

5EP,,loHLEP_,o + LEP, o.8 = LEP,,sHLEP.,8

the graph in Figure A.4 is obtained.

The dominant path between 2 and 8 is obtained. Distribution of the

concatenation operator over the parallel operator

zEe ,,+L P,, IILEP , : LEt' , IIZEP.

is applied; and the graph in Figure A.5 results.

The dominant path between 2 and 5 is obtained. Distribution of the

concatenation operator over the parallel operator is applied,

LEP1,2 + LEP2,_ LEP_.,7 LEP:, 8 = LEP,,_ LEP1, 7 LEP1, 8

resulting in the graph shown in Figure A.6.

The dominant path between 1 and 8 is obtained. Distribution of the

concatenation operator over the parallel operator is applied,

LEPI,_ + LEP_,s]LEP_,7 = LEPI,8 LEP1,7

resulting in the graph in Figure A.7.
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Dominant paths between 1 and 8, and 1 and 7 are found.

Distribution of the concatenation operator over the parallel operator is

applied,

LEP,.7 + LEPT,s LEPT,B = LEPI.8 LEP,.B

resulting in the graph in Figure A.8.

The dominant path between 1 and 8 is found. Concatenation operator

is applied,

LEPI, a + LEPa, B = LEPlw,

resulting in the graph in Figure A.9.

The dominant path between 1 and B is found. The dominant path is

shown in Figure A. 10.

The token lifetime between node A and sink B is equal to 3358.

Assuming that the delay introduced is 8643, the delay to fire the sink is

8643 - 3358 = 5285. If the value for TBIO is normally 16650, the value of

TBIO for that particular data packet to be delivered at sink B is 16650 +

5285 = 21935.

Assuming that the delay to fire the sink prior to sink B is 8643 - 1679

= 6994, the value for that data packet TBIO is 16650 + 6994 = 23644.

Assuming that the sink prior to sink B should have fired at time tB-1,
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and that sink B should have fired at time tB, the value of TBO between

these two sinks is calculated by

Q

Figure A.9

®

Figure A. 10
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7"BO : ts + 5285- (t,_l +6994)

= ts + 5285 - ts_l - 6994

= ts - ts_ 1 + 5285 - 6994

= 7023 + 5285 - 6994

=5314,

where tB - tB_ 1 = 7023 or TBI under normal operation.

By using this procedure for each one of the 30 sinks in the XCMG,

each TBO and TBIO can be calculated. Every entry in the tables in Section

4.4 were calculated this way.
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