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This article discusses ways in which failure can occur in reduced-order, orbit-

determination filter, error covariance calculations. In the context Of this article,

reduced-order filters denote nonoptimal filters which include fixed levels of uncer-

tainty in some parameters of the measurement models or in the spacecraft dynamical
model which are not explicitly estimated in the filter equations. Failure is defined

herein as an increase in the orbit determination covariance with the addition of

data or as an unreasonable growth in the covariance with time, i.e., nonasymp-

totic behavior of the covariance. Some simple, known cases of failure are discussed

along with their traditional remedies. In addition, more modern remedies are dis-
cussed which are currently under development at the Jet Propulsion Laboratory.
The article first describes the known problems of reduced-order filters when they

are employed for orbit determination, and their traditional remedies. Then, having

detlned these, the relevancy and desirability of the more modern remedies are made

apparent.

I. Introduction

As the terminology used for reduced-order filters, which
are sometimes called consider filters, is not uniform, it is

important that the definition of the consider filter used
herein be understood from the outset. What is called the

consider filter is actually known as the consider option in
JPL's orbit determination software system. In this ap-

proach, which is commonly used in spacecraft navigation

at JPL, the relevant estimated state parameters (space-

craft position and velocity, etc.) are determined using only

knowledge of other estimated state parameters; the filter is

closed upon itself. It is acknowledged, however, that there

are other parameters which may not be known exactly and
which have an effect on measurements made of the state

and on the dynamics of the state.

For a variety of reasons it is sometimes not desired to

estimate these parameters. These reasons may be that

there are no adequate models for the evolution of these

parameters, that estimating them would require excessive

computation time, or that, if estimated, the computed un-
certainty in these parameters would be reduced far below

34



the level warranted by model accuracy. Instead, in order
to gauge how uncertainties in these parameters manifest

themselves as uncertainties in the state estimates, the esti-

mation error covariance of the state (the computed covari-
ance) is modified to account for these errors in some way.

It should be noted that this modified covariance, called the

consider covariance, is not fed back into the filter. Thus

the filter knows nothing about the consider contribution to

the uncertainty in the state estimate. The mathematical
definition of these filters is reviewed later in the article.

In this article a consider filter is defined to have failed

when the addition of data yields an increase in the con-

sider covariance, and hence less confidence in the estimate,

or when the consider covariance begins to grow unreason-
ably large as time increases. These types of failure are

usually alleviated by artificially increasing, or deweight-
ing, the measurement noise variances of one or more data

types so that additional data yield a smaller or equiva-

lent consider covariance. Data weights are, ideally, the

inverse of the noise variance for the measurements being

employed. They also can serve, however, as free parame-

ters with which one may emphasize or deemphasize certain

data types. If this does not alleviate the failure, then the

data arc may be restarted, essentially discarding old data.

Two general modes of failure for consider filters are dis-

cussed. In analyzing these modes it becomes evident why
and how a filter should be tuned. The ramifications of a

consider filter that needs substantial tuning are also dis-
cussed. It is hoped that the reader can develop an intuitive
feel for the modes of failure of consider filters from this ar-

ticle, and that it will shed light on some of the seemingly

nonintuitive behavior that can be exhibited by this type
of estimation scheme.

A special effort is made to discuss a more sophisti-

cated sequential orbit-determination filter model being de-

veloped at JPL, the Enhanced Filter [1,2]. The use of this
filter alleviates many problems associated with more tra-

ditional consider filters. At various points in this article

mention is made of this approach.

II. Modes of Failure

The modes of failure discussed below correspond to two

extreme conditions in which a reduced-order filter may op-

erate. It is hypothesized that generic cases of failure are a

combination of these modes. There may exist, of course,

possible modes not discussed here. In the first case, pro-

cess noise is not assumed to be present in the filter model.

This is called the batch mode. This case corresponds to

a simplified covariance analysis or, in a limiting case, to a
situation where the frequency of the data measurements is

large enough (or the characteristic time of the process noise

is long enough) to render the process noise component es-

sentially constant. In this case, the filter is modeled as a

batch filter. The second mode is the converse of the first,

namely, it is the case where process noise effects dominate

the filter behavior. This is called the sequential mode. In

this case, the filter is said to be saturated, and the uncer-

tainty in the filter parameters has reached a quasi-steady

state. The filter is modeled as a sequential Kalman-Bucy
filter in this case.

III. Batch Mode

To begin, the classical results of batch covariance anal-

ysis with consider parameter effects are restated.

A. Batch Consider Covariance Definitions

Assume the state model to be

zk = ,l,(t_, tk-l)zk-1

and the measurement model to be

(1)

zk = H._ xk + vk (2)

with E(viv T) = R_Sii. The term zk is the state at time tk;
• (ik,tk-1) is the state transition matrix; zk is the mea-

surement at time tk; vk is the measurement noise; Ri is

the variance of the measurement noise, and/_q is the usual
Kronecker delta function. Then the classical approach to

covariance computation, in the absence of process noise,

can be stated as [3, p. 27]:

[i_0 )] -1

N

Pk = A(t i , tk (3)

where Pk is the state-estimation error covariance matrix

at time t,, the A(tj,tk) are information matrices propa-

gating measurements taken at time tj to time tk, and N

is the total number of measurements. Essentially, the fil-

ter reduces all measurements to the same epoch and then

applies a weighted least-squares estimation process. Here

the time at j = 0 may either be an initial measurement or
an a priori information matrix.
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Explicitly, the information matrices are defined as

A(tj,tk) = cT(tj,tt)HTjR-iHxj¢(tj,ik) (4)

where R is the covariance of the measurements at time tj

(often assumed to be diagonal and constant), H_ i is the

partial derivative of the observation vector with respect to

the state at time tj, and (I)(tj,tk) is the state transition
matrix which describes the linear evolution of state per-

turbations about the nominal trajectory from time tk to

tj.

Note that the information matrices A(t/, tk) are at least

positive semidefinite, and if the proper types of measure-

ments (including possible a priori information) are taken,
the sum of the information matrices will be positive defi-

nite for some j >_ 0; thus the inverse of the sum will exist

if enough measurements are taken. As the information

matrices are positive semidefinite, it is obvious that ad-
ditional measurements will always cause the size of Pk to

decrease or remain constant. Thus, to minimize the trace

of the Pk matrix, or tr(Pk), a common measure of the size
of the covariance matrix, it is useful to increase the num-

ber of measurements N over any given data arc. Due to

the nature of the dynamics of the state, the size of the

information matrix will often vary with I tj - tk ] depend-

ing on the specific dynamics of the state (governed by the

state transition matrices).

A consider parameter is a parameter whose exact value

is not known, which has some influence on the measure-

ments or dynamical environments of the state, and is not

estimated. If such parameters are present, then the co-

variance of the state must be augmented to account for

the uncertainty of the consider parameters. The resultant
covariance matrix is called the consider covariancel:

p. = + s iIS[ (5)

where Pk is the computed state covariance matrix as de-

fined above, II is the covariance matrix of the consider

parameters, and Sk is the sensitivity matrix. The sensi-
tivity matrix can be defined as the partial derivative of
the estimated state with respect to the consider parame-

ters. For this discussion, it is useful to view it in a more

elemental form:

x S. C. Wu, W. I. Bertiger, J. S. Border, S. M. Lichten, R. F. Sunseri,

B. G. Williams, P. J. Wolff, and J. T. Wu, OASIS 3[athemaficol

Description, Version 1.0, JPL D-3139, Jet Propulsion Laboratory

(internal document), Pasadena, California, pp. 6-11, April 1, 1986.

N

Sk = -Pk E oT(tj , t_l._j_xrrTo-' [Ht, O(t 1, tk) + He_ ] (6)
./=0

The repeated quantities are defined as before. The new

quantities are defined as follows: Hc_ is the partial deriva-
tive of the observation vector with respect to the consider

parameters at time t j, and O(tj,tk) represents the influ-
ence that the consider parameters have on the evolution

of the state. The term O(tj, tk) is defined as the particular

solution to the nonhomogeneous equation

O(t, tk) = A(t)O(t,tk) + B(t) (7)

o(tk, tk) = o (s)

where 0 is a matrix of size n × p where n is the number

of elements in the state and p is the number of consider

parameters. A(t) is the partial derivative of the equations
of motion with respect to the state and B(t) is the par-

tial derivative of the equations of motion with respect to

the consider parameters. The solution of this equation ex-

presses the influence the consider parameters have on the

state, and can be stated in terms of the state transition
matrix:

ft fO(t,tk) = ¢(t, r)B(r)dr (9)
k

O(tk,t) = t)O(t,tk) (10)

Thus the sensitivity matrix may be expressed as

Sk = Mk + 0_ (11)

where two new quantities are defined. These are

N

Mk=-pkEd_T(tj,tk)H_R-'Hc, (12)
j=0

-1
0k = A(tj, tk) __.A(t¢,tk)O(tk,tj) (13)

./=0

The term Mk denotes the effect of the consider pa-

rameter uncertainty as the uncertainty acts through the

measurement alone; this term is called the measurement
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consider contribution. The effect of this term is usually to

add a nearly constant uncertainty to the consider covari-
ance. Its effect may dominate over 0k in many situations

where the consider parameters do not enter strongly into

the state dynamics, yet this term will in general not lead

to unbounded growth in the consider covariance.

The matrix/_k represents the effects of the consider pa-

rameters on the state dynamics. This term may lead to

covariance divergence and some of the counterintuitive or-
bit determination results which are associated with the

use of consider filters. As the information matrices A are

positive semidefinite, they may be viewed as analogues to

masses or to weights, hence 0k may be viewed as analo-

gous to the center of mass of the accumulated information
matrix:

j=0

(14)

Alternatively it may be viewed as an average or mean of

the function O(tk,tj) weighted by the information matri-
ces. This is especially clear if the number of measurements

becomes large, leading to

[/? ]lf?AO',tk)O(tk,,-)d," (15)

which is a classical definition of averaging. The term 0k is

called the dynamic consider contribution.

B. General Properties of the Sensitivity Matrix

The sensitivity matrix with its measurement and dy-

namic contributions has some properties that may be

stated without recourse to specific example. Some of these
are listed below.

1. Performance Characterization. The perfor-

mance of the consider covariance may be characterized by

tr(P_) = tr(Pk) + tr(S_HS_'k). If the consider param-

eter covariance H is diagonal, as is often the case, then

tr(SkIIST) = _-_=l IIilIS_,II 2, where II- ]1is the usual Eu-

clidian norm, Hi is the ith consider parameter variance,

and S_, is the ith column of the sensitivity matrix. As
noted previously, tr(Pk) always decreases with additional

data. As will be shown, II&ll may increase with additional
data, implying that the consider filter has failed. Note that

in this formulation (diagonal H matrix) the consider pa-

rameters may be discussed independent of each other.

2. Data Weighting Properties. A classical result

associated with the sensitivity matrix is its invariance with

respect to a common scaling of the weights (noise vari-

ances) of all data types. Note that in the definition of both
the measurement and dynamic consider contributions, the

inverse of the data noise matrix, R-t, appears in both the

numerator and denominator (or their matrix generaliza-

tions). Thus, should the data noise matrix R be scaled by

some factor, the sensitivity matrix will be invariant with

respect to this scaling. This implies that if there is only one

data type being used, the consider contribution is indepen-

dent of the data noise (assuming no a priori information).

Thus for single-data-type consider filters the tuning strat-

egy of artificially deweighting the data cannot be used to
alter the sensitivity matrix, and data editing must be used

instead. This will not be the case when process noise is
added to the filter.

If there are two or more data types present, then the

consider contribution may be altered by scaling the data

weights relative to each other. This may be a useful proce-

dure if one data type induces a large consider contribution

with respect to the other data types. Then by deweighting
that one data type, the consider contribution of this data

type is reduced relative to the other data types. Unfortu-

nately, in performing the deweighting, the computed co-

variance of the state will grow. If the data type in question

is essential to the performance of the filter, then deweight-

ing that data type may lead to poorer performance.

3. Measurement Consider Contribution. The

measurement contribution Mk [Eq. (12)] is related to the
uncertainty of the measurements with respect to the con-

sider parameters. It has no terms that generically in-
crease with time. While its magnitude may be large

for effects such as the tropospheric-calibration-error or

station-location-error contribution for the radio Doppler

data type, or a range bias uncertainty for the radio range

data type, it tends to remain at a fixed level.

4. Dynamic Consider Contribution. The dynamic

contribution 0k [Eq. (13)] is related to the uncertainty in-

duced in the state dynamical model by the consider param-

eters. As discussed earlier, it may be viewed as an average

of the quantities O(t_,tj) weighted by their respective in-

formation matrices A(tj,tk). Recalling the definition of

the 0 [Eq. (9)], note that it is an integral over the time

interval t_ - tj. Hence, if this time interval grows large

(and the information content of the matrix h does not de-
crease as the time from the measurement increases) these
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individualtermsmay grow large. Thus, if conditions are

right, the mean value of these terms will begin to grow,

leading to an increase in the size of the consider covari-

ance if the computed covariance does not decrease swiftly

enough. Some specific instances where such a failure may
occur are discussed in the next subsection.

C. Some Batch Failure Modes and Their Remedies

The usual remedy for a large consider covariance, as

discussed above, is to deweight the data type with the

largest consider contribution. This approach will usually
allow one to reduce the consider covariance somewhat, yet

may not always be the most insightful remedy. It also

requires tuning by the navigator, often a difficult and im-

precise procedure.

1. High Information Content Divergence. One

particular failure mode often encountered in practice is due
to measurement data with both a dynamic consider con-

tribution and a large information content. The immediate
result of such data is to improve the computed covariance

and to have only a small effect on the dynamic consider

contribution, as the integral time spans will be short. If

the subsequent data have a smaller information content,

then the averaging process in computing the dynamic con-

sider contribution will emphasize the terms related to the

large-information-content data. As time progresses, these

terms will grow at least linearly in time due to the inte-

gration effects and may cause the consider covariance to

grow in an unbounded manner.

A simple example of this is a planetary (or planetary

satellite) flyby navigation scenario, in which the ephemeris
errors of the planet are considered and not estimated.

While the spacecraft is flying by the planet the informa-

tion content of data tends to be very large due to the

increased dynamics of the spacecraft. However, the con-

sidered position errors of the planet will translate directly
into an uncertainty in the model of forces acting on the

spacecraft. At closest approach the dynamic consider con-
tributions may be negligible, but soon after they will grow

with time, as the post-flyby data will contain relatively
less information.

The usual remedy to this failure mode is to restart the

data arc using the minimized consider covariance at (or

soon after) flyby as the a priori covariance matrix. Another
remedy is to use the flyby information to estimate the

planet position and reduce the otherwise fixed uncertainty

in these parameters.

2. Flat-Information-Content Divergence. An-

other failure mode may be identified with information ma-

trices having a uniformly constant information content. In
this instance the dynamic consider contribution weights all

its terms equally. Thus the older data will begin to domi-

nate the mean as they grow at least linearly with time.

An example of this effect would be a spacecraft in an

outer solar system cruise period, where the nongravita-

tional accelerations acting on the spacecraft are treated as

consider parameters. In such a system, without new data

with a larger information content to increase the relative

size of the information matrices, the consider covariance

will grow.

There are several remedies to this mode of failure, the

simplest being to discard old data after some time span.

Unfortunately, this remedy also discards potentially useful
information. Remedies that are more modern are either

to model nongravitational accelerations as process noise

terms in the dynamics, which forces the filter to give new

information relatively greater weight, or to estimate the

deterministic model parameters which represent the non-

gravitational accelerations.

D. Implications of Failure Modes

The fact that, in some cases, the sensitivity matrix may

become large due to either the measurement or dynamic

contribution indicates something more: that there is a sig-
nificant information content in the measurements concern-

ing the state estimate which could be exploited if it were

not for the effects of the consider parameters. In fact, this

is often why these parameters were considered in the first

place, as they were estimated too quickly and too well with
conventional filters and simplified models.

Some recent investigations into improved filter model-

ing have turned this fact into a useful strategy [1,2]. This

improvement entails building a more sophisticated model

for the consider parameter effects, especially the random

components, and estimating this expanded parameter set,
most of the members of which are treated as stochastic

parameters. If appropriate noise variances and correlation
times are chosen, the estimation process may not yield

significant improvement in the knowledge of these param-
eters, yet may extract much of the information contained

in the measurement partials of these parameters.

That the stochastic parameter uncertainties do not im-

prove significantly in this approach is not an inherent

problem, and can be understood in the following con-

text. It is usually the case that these consider parameters

are better determined by various intensive, off-line cali-

bration techniques. With regard to station locations, for
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example, these techniques would take the form of many

careful very long baseline interferometry measurements of

quasars. Thus, if the current filter's information matrix

with respect to these parameters is weighted against the

accumulated data (which defined the a priori uncertainties

in these parameters), the current information will have a

negligible impact on the uncertainty. The introduction of

stochastic parameters to account for modeling imperfec-
tions serves as a way to introduce such effects while ex-

ploiting the current measurement information to improve
the state covariance.

IV. Sequential Mode

Now the case where process noise has been added into
the filter is discussed. This alters the covariance computa-

tion scheme to a Kalman-Bucy approach. The basic defi-

nitions for this type of computation are briefly reviewed.

A. Sequential Consider Covariance Definitions

Assume that the state model is given by

Zk = (_k,k-lZk-1 -_- rt,__lU__l (16)

and that the measurement model is the same as in the

batch mode [Eq. (2)]. Then computation of the state co-
variance when process noise is present is defined as follows:

Pk = [I- KkH_k] P_ (17)

K_ = pkHTh [H_kDkHT, + Rk] -1 (18)

The quantity Pk is the state (or computed) estimate er-

ror covariance computed at time t_ as before. Note that

Eq. (17) is only valid when the gain Kk is the optimal

gain matrix. The quantity H_ k is the partial derivative of
the observation vector at time tk with respect to the state.

The quantity Kk is the Kalman gain matrix computed at

time tk, and Rk is the measurement noise covariance. Fi-
nally, the matrix Pk is the computed covariance from time

tt-1 mapped to the present time. Involved in the mapping
are both the dynamics of the state and the uncertainty due

to process noise in the intervening period:

Pk (_k,k-IRk-1 ¢_T T (19)= k,k-_ + rk,k-lQk-]r_,k-t

Equations (17), (18), and (19) define the matrix Riccati

equation for the discrete filter [4]. In Eq. (19) the matrix

Ok,k-1 is the state transition matrix from time fk-1 to time
tk, and Pk-1 is the computed covariance at time tk-1. The

matrix Fk,k-i maps the process noise state uncertainty

from time fk-1 to time tk. The matrix Qk-1 is generally
the covariance of a Gaussian white noise sequence ui where

E [u,u_'] = Q,6,j (20)

The term _fij is the usual Kronecker delta function. The
process noise model may also be correlated in time.

The definition of the I'k,_-1 matrix is very similar to

the 0(tk, tk-1) function defined previously. Explicitly

j(tk k
rk,_-I = ¢(tk, r)B,(r)dr (21)

--1

In this equation Bn(r) is the partial derivative of the state

dynamics with respect to the process noise parameters.

As before, the consider covariance at time tk is simply

P_k =Pk+SkHS/ (22)

The formula for the covariance Pk is given by Eqs. (17),

(18), and (19). The definition of the sensitivity matrix is

now given as [3, p. 177]

St = [I- K_Hk] Sk - KkH,k (23)

,_k = _k,_-iSk-i + 0k,k-1 (24)

In the above formulae, Hch is the partial derivative of the
observation vector with respect to the consider parame-

ters at time tk, and 0k,k-1 represents the sensitivity of the
spacecraft dynamics due to possible errors in the consider

parameters. Both of these terms were defined in the previ-
ous section. Note that there is not uniform agreement on

the calculation of S_. Slightly different forms for this map-

ping may be derived depending on whether the consider

covariance is first computed and then propagated forward

in time, or the state estimates are first mapped in time
and then the consider covariance is computed. The reason

for this difference, which does not exist for the computed

covariance, is due to the peculiarities of the consider co-

variance when mapped. This article follows Ref. [3] and

Footnote 1 and uses the first definition given, that the con-

sider covariance is first computed and then mapped. This
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definition is more in line with the use of the Kalman-Bucy

filter. Note that if no process noise is present in the dy-

namics (Qi - 0), then the above definitions are equivalent

to the definitions given in Section III.A.

B. General Properties of the Filter and Sensitivity

Matrix

The Kalman-Bucy sequential filter with process noise

exhibits some significant differences in behavior versus the

batch filter without process noise. The major difference is

that in the sequential filter old data are forgotten as time

goes on, as the accumulated effect of process noise is to
render measurements made some time ago not valuable.

This occurs because the current covariance is continually

made relatively larger by the process noise terms in the

filter model, and hence the gain matrix If is increased to

rely more heavily on the current data.

Some implications of this forgetting process for the sen-

sitivity matrix follow. First of all, this process implies

that the sensitivity matrix is no longer invariant under

uniform scaling of measurement noise. Thus, data may be

deweighted to influence the sensitivity matrix, even if only

one data type is used. This was not the case with the batch
mode. Another implication is that the dynamic consider

contribution, which could lead to unbounded growth of

the consider covariance in the batch mode, has a reduced

effect. This is related to the forgetting property of the
filter. As the time from the measurement increases, and

as the potential dynamic consider contribution increases,

the relative importance of this measurement is effectively

deweighted automatically by the filter. Thus the addi-

tion of process noise to the dynamics largely eliminates
the dynamic consider contribution, as the filter deweights

old data autonomously. The dynamic contribution may

still influence the covariance, but its effect should not be

as pervasive or long lasting as in the batch mode.

In the sequential mode the major consider contribu-
tion comes from the measurement errors or the measure-

ment consider contribution, as described earlier in Sec-

tion III.B.3. This is seen from the update equation for

the sensitivity matrix, Eq. (23), where the measurement
partial derivative with respect to the consider parameters

is directly scaled by the gain matrix, with no other atten-

uations acting on this term until it is mapped to the next

time step.

C. Saturation of the Sequential Filter

One of the unique features of a sequential filter which

contains process noise terms is that after enough measure-

ments have been processed, a quasi-steady state condition

will be achieved in which the variances of the estimated

parameters reach a lower bound and do not decrease fur-
ther. This is not the case for a batch filter in which no

process noise is present. Assuming that the process noise

effects are fairly large, then the elements of the mapped

computed covariance,/sk, may be significantly larger than

the corresponding elements of the computed covariance
Pk-x. If the filter has reached a quasi-steady state, which

is assumed, then the update of the mapped computed co-

variance/sk to P_ must reduce the size of Pk to the same

order as the previous computed covariance, Pk-_. This

implies that the gain matrix Kk is relatively large, or that

the update matrix I- Kk H_ h is relatively small. In this

instance, increasing the data weight (decreasing the as-

sumed measurement noise variance) will reduce the size of

the current computed covariance, Pk-1, yet will have lit-
tle effect on the computed covariance as mapped forward

in time, P_. Thus, while increasing the data weight may

yield reduced state uncertainties at the measurement time,
it will not reduce the uncertainties after they are mapped

forward in time, i.e., the filter is insensitive to the data

noise. Of course, if the data weight were decreased by a

sufficient amount, a significant degradation would eventu-

ally be observed.

D. A Possible Failure Mode

Now consider a case where the process noise is large.

From the above discussion, the gain Kk is relatively large

and the update matrix I-KkH,:_ is relatively small. Thus,

an approximate result for the form of the sensitivity matrix
at time tk is

Sk ._ -KkHck +"" (25)

leading to a consider covarianee of

r: tr nHT K T (26)P_k _'Pk+nk_¢k" ck k +""

The neglected terms are of negligible size for a first-order

analysis. It is clear now that if the filter places too much

emphasis on the current measurement, i.e., increases the

size of K,, then the consider contribution may become

unreasonably large. This behavior is due entirely to the
measurement consider contribution. Some specific physi-

cal effects that would lead to this type of uncertainty when

treated as consider parameters would be transmission-
media calibration errors or unknown biases in the measure-

ments. The traditional remedy for this failure mode is to

deweight the current measurement data. As noted above,
in this case it is p_sible to decrease the consider contribu-

tion by deweighting even if only one data type is present,
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an option not available in the batch mode. Again, if more

than one data type is present, a better choice would be to

deweight each measurement datum relative to the others

in an attempt to retain precision.

E. Implications of the Failure Mode

One remedy of the failure mode that was discussed in

Section IV.D is to deweight the current data, a process

which must usually be accomplished through trial and er-

ror, especially when multiple data types are present. It

would be highly desirable, though, to weight the mea-
surements at their inherent accuracy and employ a filter

model which accounts for error sources which are otherwise

treated as consider parameters; such a filter will then au-

tomatically place the proper amount of emphasis on each
measurement, which is determined by the assumed behav-

ior of the modeled error sources. This is the approach be-

hind the enhanced filter model, mentioned earlier, which

employs stochastic and deterministic parameters to ap-

proximately represent the error sources affecting the mea-
surements.

As an example of the potential benefit of enhanced fil-

ter modeling, an error covariance analysis was performed

using an enhanced filter to reduce radio Doppler and rang-

ing data in interplanetary orbit determination scenarios
derived from the Mars Observer and Mars Environmental

Survey Pathfinder missions [2]. In this study, the enhanced
filter used to reduce the measurements contained stochas-

tic process models to approximately represent the princi-

pal error sources affecting the measurements. The results

predicted that orbit-determination accuracy improvement
of factors of 2 to 4 could be realized over a conventional

approach using a reduced-order filter, in which the mea-
surement error sources were treated as consider param-

eters. Again, appropriate process noise terms must be
added into the estimated-measurement error parameters

to represent the actual random and uncertain nature of

these error sources, and to prevent the filter from develop-

ing an unrealistic knowledge of them.

V. Summary and Conclusion
In this article some of the classical failure modes of

reduced-order (consider) orbit-determination filters were
discussed. By developing an informal description of these
failure modes in terms of the information content of mea-

surements, their error sources, and associated uncertain-

ties, some relatively fundamental aspects of the well-

known problems associated with the use of consider filters
were established. A detailed description of specific fail-

ures of these types of filters is normally given in terms
of mission-specific parameters and events; thus, it is diffi-

cult to go into greater detail about failure modes without

recourse to specific examples.

The traditional motivation for the use of consider pa-

rameters was to simplify and speed up the filtering pro-

cess in an age when computer runs often took hours, and

computational efficiency and model simplifications were

significant driving conditions on orbit determination pro-
cedures. The drawbacks of consider filters, i.e., the non-
intuitive behavior and failure modes that were sometimes

encountered, were accepted as the cost of using simpli-

fied models to increase efficiency. The recent advent of

low-cost, high-speed computer workstations makes it pos-
sible to eliminate these undesirable consider contributions

through the use of more sophisticated filter modeling (i.e.,

the enhanced filter), an important development. Enhanced

filters may yield substantial improvements in orbit deter-

mination accuracy, with both existing data types and new

data types proposed for future use. In particular, this

makes it possible to achieve greater accuracies with sim-

pler data types (such as those generated by the DSN's

Doppler system) in future small, low-cost interplanetary

missions, for which minimizing the resources and effort

needed to support navigation is highly desirable. In the
future, enhanced filters may enable very high accuracies

for more ambitious missions in which relatively complex

navigation techniques and data types may be employed.
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