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RESEARCH OBJECTIVE

The three--year program of research had the following technical objectives: the

development of probabilistic methods for micromechanics-based constitutive and failure

models, application of the probabilistic methodology in the evaluation of various composite

materials and simulation of expected uncertainties in unidirectional fiber composite

properties, and influence of the uncertainties in composite properties on the structural

response. The first year of research was devoted to the development of probabilistic

methodology for micromechanics models. The second year of research focused on the

evaluation of the Chamis-Hopkins constitutive model and Aboudi constitutive model using

the methodology developed in the first year of research. The third year of research was

devoted to the development of probabilistic finite element analysis procedures for

laminated composite plate and shell structures.

TECHNICAL APPROACH AND RESEARCH ACCOMPLISHED

To simulate variations and uncertainties in constituent properties and

manufacturing nonuniformities, as they would apply to high-temperature, metal-matrix

composite materials and structures, the nonlinear behavior of the constituents was

considered. The first phase of the research dealt with the linear micromechanics relations

for metal-matrix composites using reference temperatures and zero load values.

The second phase involved the nonlinear characteristics (i.e. use of the power--law

relations) and cyclic degradation effects. A Monte Carlo simulation routine has been built



around the METCAN program. The METCAN program (METal matrix Composite

ANalyzer) uses the Chamis-Hopkins semi--empirical micromechanics equations in

conjunction with a constituent based nonlinear power law to perform nonlinear analysis of

fiber reinforced metal matrix composites. The research of the second phase was divided

into three parts. The first part dealt with the linear studies, the second concerned with the

nonlinear studies, and the third included comparisons between the Chamis-Hopkius

micromechanics model and the Aboudi model.

The third phase of research involved application of the research performed in the

first two phases to the analysis of laminated composite plates and shells. A 3--D

degenerated shell element formulation, incorporating the first--order shear deformable

kinematics, is used in conjunction with the first--order second moment technique for

probabilistic analysis. Linear elastic composite behavior is modeled as well as nonlinear

material behavior using the micromechanics theory of Aboudi and the classical

rate-independent incremental plasticity, Random variables include: the ply stiffnesses,

orientation angles, ply thicknesses, as well as the constituent micro properties such as the

fiber and matrix stiffnesses and volume ratios. The probabilistic finite element model is

used to quantify the variability and uncertainty in the response of composite shell

structures. The computational procedure is then used to perform reliability analysis of

composite shell structures.

SIGNIFICANCE OF THE RESEARCH

The probabilistic micromechanics approach and probabilistic finite element analysis

computational procedures developed during this research are the first ones for laminated

composite plates and shells. The procedures can be used in the analysis and design of high

temperature, metal-matrix and ceramic composite materials and structures. The results of
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this research play a crudal role in the establishment of increased performance

durability limits of high-temperature composite structures.
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TECHNICAL DISCUSSION

1. Introducticm

The current emphasis for computational analysis of high temperature metal matrix

composites involves micromechanics theories with nonlinear behavior occurring at the

constituent level. Interphase regions are included in these models, as studies have shown

that residual stresses that occur in the composites can be controlled by appropriate choice

of an interphase material and thickness. Both ply and constituent level failure theories are

employed in the resultant schemes. The procedures, due to the use of constituent level

material properties as the primitive variables, can be used to predict the qualitative

behavior of new composites prior to any experimental measurements. Material properties,

strengths, and stress-strain data are useful predictions. However, since uncertainties are

present in the constituent properties, volume ratios, and fabrication variables, the results

lack the variability that is always present in experimental data (see [1-4]).

A previous study by Stock [4] proposed that constituent level uncertainties be

modeled using statistical distributions and the resultant composite micromechanics models

and laminate theories be used to predict the statistical scatter in experimentally observed

composite properties. A computer code developed at NASA Lewis, called ICAN

(Integrated Composite Analyzer), for comprehensive linear analysis of multilevel fiber

composite structures was the deterministic basis of the simulation model. Monte Carlo

simulation methods were used to model the probabilistic distributions in the primitive

variables, and distribution results for material properties and strengths of a graphite-epoxy

ply were presented. The probabilistic micromechanics model proved quite useful in

predicting the experimental scatter of these linear composite structures.

Advanced composites such as the metal matrix composites are used in aerospace

structures where operating temperatures exceed the limits of organic matrix composites.

Therefore, researchers have focused on the development of suitable constitutive theories for

these materials. Dvorak and Bahei-E1-Din [5-9] introduced a computationally simple
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micromechanics model based on what they refer to as a "vanishing fiber diameter model".

The model has been used in the analysis of a variety of laminated composites [10-12].

The power-law model of Hopkins and Chamis [1] is based on the assumption of

strain compatibility and stress equilibrium. In this model the representative volume

element is subdivided into several distinct phases. The different phases are used to

represent the fiber, an interphase region and three matrix subregions. The matrix

subregions were introduced to characterize the through-the-thickness variation of the

matrix phase.

The "periodic hexagonal array" (PHA) model of Teply and Dvorak [13,14] is

developed by considering a hexagonal fiber array as the representative cell. This leads to

the use of a triangular representative volume element which is analyzed utilizing the finite

element method. Both displacement and equilibrium formulations are examined to

establish upper and lower bounds on the instantaneous properties of the composite.

Aboudi [15-20] developed a comprehensive micromechanics theory which has its

origins in the work of Achenbach and his colleagues [21,22]. The theory is applicable to

several types of composites, such as particulate, short-fiber or continuous-fiber

reinforcement. Unlike most micromechanics theories, the Aboudi theory is not restricted

to the assumption of perfect fiber/matrix bonding. Instead, an infinitely thin elastic

interface is assumed which allows the simulation of fiber/matrix damage or an interphase

region. The Aboudi micromechanics theory can be viewed as a variational formulation of

the displacement or stress boundary value

[23--25]).

Another approach taken by many

problem at the micromechanics level (see

researchers when modeling metal matrix

composites does not involve micromechanics level analysis. They attempt to model the

material nonlinearity using macroscopic yield criteria to account for the anisotropic

behavior. Many authors have made contributions in this area; however, only a few are

discussed here for brevity. Hill's anisotropic theory of plasticity [26] has received much
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attention. This theory wasbasedon a generationof the yon raisesyield criterion which

assumed yielding was independent of hydrostatic stress and that plastic flow was

incompressible. Whereas these assumptions are standard and experimentally validated for

metals, they have been shown to be incorrect for some composite materials. A recent yield

function was introduced by Sun et al. [27,28], which was selected for this work. The

function is quadratic in stresses and, in general, excludes the assumptions of

incompressibility of plastic strains and that no yielding is caused by hydrostatic stresses.

It is the objective of this study to quantify the variability present in metal matrix

composites. In the first model, the probabilistic micromechanics concept developed by

Stock [4] to apply to the nonlinear constitutive behavior of high temperature metal matrix

composites. The Monte Carlo procedure is employed in conjunction with the

METCAN program (METal matrix Composite ANalyzer) developed at NASA Lewis

Research Center. Assumed statistical distributions for material properties, volume ratios,

and nonlinear parameters thus allow prediction of experimental scatter in metal matrix

composite behavior. In the second model, a macromechanics (orthotropic) elastoplasticity

theory is combined with a continuum shell element (see Reddy and his colleagues [29,30])

and a probabilistic methodology is incorporated to account for uncertainties in material

properties. The resulting formulation is used to quantify the variability of the structural

response of materially nonlinear composite laminates. Numerical examples based on the

formulation are also discussed here.

2. Micromechanics Constitutive Model

_.1 Micromechanics Formulation

The deterministic part of the model consists of the computational scheme contained

in the METCAN program. It employs the Chamis-Hopkins semi--empirical

micromechanics equations [1] in conjunction with a constituent based multi-factor

nonlinear material model [2,3] to perform nonlinear analysis of fiber reinforced metal



matrix composites. As shown in Fig. 1, a closed-loop analysis logic is used in which

nonlinearities are applied at the micromechanics (constituent) level, ply properties are

constructed in the synthesis stage, laminate theory is used to build laminate properties,

global analysis is performed, and the laminate is decomposed again to the constituent level.

Note that the Monte Carlo sampling is performed at the constituent level. In the

decomposition stage, the ply stresses are computed and used to calculate the stresses in the

constituents (microstresses). The constituent material properties are updated based on

their dependency on various factors in the nonlinear material model including stress,

temperature, time, mechanical and thermal cycles. The resultant nonlinear analysis

involves incremental loading and time stepping in which iterative convergence is checked at

the micro, ply and laminate scales.

The multi-factor material model is presented

representative subcell of the micromechanics relations.

in Figure 2 along with the

This material model has been

selected to consistently represent the in-situ behavior of all constituent properties. More

details on this model can be found in the work by Hopkins [2]. The unit cell presented in

Figure 2 illustrates the various subregions assumed in the micromechanics theory to

capture the effects of matrix, interphase, and fiber interaction.

_._ Monte Carlo Simulation

Monte Carlo simulation is a computational technique often used to simulate random

processes. In a general sense, it is defined as any computer simulation involving random

numbers for solving stochastic problems. In the procedure, the computer is used to

generate independent statistical samples for each random variable, which are then fed into

the model. Each sample can be thought of as an independent deterministic experiment,

which is processed by the model to yield the results of the experiment. Each sample is

drawn from an appropriate probability distribution. Following the simulation process, the

output data is statistically analyzed to estimate the true characteristics of the model. The
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law of large numbers assures that if sufficiently large sample sizes are taken, the results will

converge to the true population statistics of the model.

3. Macromechanics Constitutive/Structural Model

$. 1 OrOtotropic Plasticity Formulation

In order to model orthotropic elastoplastic behavior from a macroscopic viewpoint,

a quadratic yield function introduced by Sun, et al. [27,28] is adopted. The yield function

is quadratic in the stresses and employs the associative flow rule and isotropic hardening.

The plane stress radial return algorithm of Simo and his colleagues [31,32] was modified to

include this new yield function. This algorithm was chosen due to its accuracy, improved

global convergence rates, and compatibihty with the probabilistic finite element routines.

Gorerrting Eq_atio_

According to Sun [27], the orthotropic yield function is given by

2
f-- _a11_r_1 + a22cr22 + a33_r_3 + 2a12_r11_22 + 2a13cr11_r33

2 2+ 2a23o'22cr33 + 2a44_3 + 2a55a13 + 2a66_ 2) = (1)

where r/, is a state variable and _U are the stresses in principal material coordinates. The

coefficients aij are constants, which are determined from experimental data and control the

amount of anisotropy in the plastic behavior. This yield criterion does not include the

assumption of incompressibility of plastic strains or that hydrostatic stresses result in no

yielding or plastic deformation. The function also reduces to the yon Mises criterion or the

Hill yield function for orthotropic materials [26] with appropriate selection of the aij

values.
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The associativeflow rule assumptionallows the incremental plastic strains to be

stated as

dEP = d7 _f (2)J

The shell finite element employed is a continuum element developed from the 3-D

elasticity theory using the kinematics of the first order shear deformation theory (see

[29,30]). In other words, transverse normals remain straight and inextensible, so that _s3 =

0. Consequently, ass does not enter the formulation (because the strain energy of the shell

due to e3s is zero).

In vector notation, the stress and strain tensors can be written as

{o} = '(all o'22 o'12 o'13 cT23}T

(3)

The components of the back stress qij (included to model kinematic hardening), and the

relative stress _ij = _ij - qij are expressed in the vector form as

{q} - {qll q22 q12 q13 q23 }T ' {z/}= {7711_722_/12v713_723}T (4)

Thus the governing elastoplasticequations in vector form can be expressed as (see [31])

{d = {e}+ {_p}

{_}= [Q]{e}

{_P}= _[P]{_/}

{dl}= ;__H'[P]{_7}
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f= _{_}T[p]{_} _½ y2(a) _<0

= _ [_ {_}T[p]{_}]ll2 (5)

where _, is the time derivative of the plastic load parameter, H' is the kinematic hardening

modulus, and the parameter Y represents the hardening law in terms of the equivalent

plastic strain a. The matrix [Q] is the elastic constitutive matrix, adjusted for the

constraint _r33 = 0. The effective stress [; can be expressed as

= _ _ {N}T[p]{N} (B)

and matrix [P] is given by

[P] =

all a12 0 0 0

a12 a22 0 0 0

0 0 2a66 0 0

0 0 0 2a55 0

o o o o 2%4

(T)

Loading and unloading conditions are stated in the Kuhn-Tucker form [32] by

requiring that

f<0,7>_0, __=0 (8)

For an dastic process, f < 0 and 7 = 0. For a plastic process, we have f = 0 and 7 > 0.

These two conditions are generally valid, for a loading or unloading state.

Incrernent_ Formulation

The ordinary differential equations of time in Eq. (5) can be numerically integrated

using a backward Euler difference scheme over the time interval (tn,tn,1). Letting 7n,1 =

7n,lAt (the plastic load parameter) and _ = _/{_/}T[p]{_/}, the strain at tn,i can be
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written in terms of the strain at tn and the gradient of the incremental displacements,

{en+l}- {en} + V{Au} (9)

where "V" denotes the differential operator used in the definition of strains. A trial stress

state is assumed by freezing plastic flow so that the entire step is purely elastic. The trial

stress then becomes

t r ial. {/})_+1 _ = [Q]({_n+l}-

trial. . trial_ {qn}7/n+ 1 )=lan+ 1 _-

{eP+l } = {eP} + _/n+1[P]{_n+l }

2
{qn+l } = {qn } + 7n+ I _ H'[P]{_Tn+I}

an+l = _n + _ "Yn+l_n+l"
(1o)

In order to perform the incremental updates required in equations (10), the plastic

load parameter (Lagrange multiplier) 7 must be determined. It is found by enforcing the

consistency condition at time tn,l, i.e.,

f2(Tn+1)- ½ _2n+l - ½[Y(an + _ 7n+lfn+l )]2= O.
(II)

The actual hardening functions used in the program are those recommended by Simo and

Hushes[31],

and by Sun [27],

Y(a) =/Yl_a + ay + (K®- ay)[1 -exp(-Aa)] (12)



14

Y(a) = I [a + ] , (13)

where I_ is the hardening modulus, ay the uniaxial yield stress, K® and )_ are other input

parameters, and

H(a) - (i - ]_)l_a.

Here l_denotes the fractionof kinematic and isotropichardening desired,i.e.l_= I denotes

purely isotropic hardening, and _ = 0 denotes purely kinematic hardening. Equation (11)

is solved at each gauss point in the structure for 7 by a local Newton iteration procedure,

as it is generally a nonlinear scalar equation.

The global equilibrium is obtained by using Newton-Raphson iteration. This

requires that the tangent moduli be known in the form

dffI e ln+l-{ tn+S (14)

Simo and Hughes [31] developed tangent moduli, which are consistent with the integration

algorithm previously discussed. For finite values of load step size, they showed that the

consistent elastoplastic tangent moduli preserved the quadratic rate of asymptotic

convergence that is characteristic of Newton's method. Use of the continuum tangent

moduli derived independent of the algorithm loses this convergence rate.

3.i_ Con2inuum-Based Finite Element

The incremental equations of a continuous medium are formulated based on the

principle of virtual displacements and the total Lagrangian description. The detailed

description can be found in [29,30]. The final incremental equilibrium equations for an

element are given by
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([KL] + [KNL]){A} = {R}- {F} (15a)

where {A} is the vector of nodal incremental displacements in an element, and [KL] , [KNL],

and {F} are defined by,

[KL] = Iv[BL]T[Q][BL]dV

[KNL] = Iv[BNL][Q][BNL]dV

{F} = Iv[BLI{S}dV.
(15b)

In the above equations, [BL] and [BNL ] are linear and nonlinear strain--displacement

transformation matrices, [Q] is the incremental stress-strain material property matrix, {S}

is a vector of 2nd-Piola-Kirchhoff stresses, and {R} is the external load vector. All

matrix elements refer to the deformed state with respect to the original undeformed

configuration.

After assembly, the following linearized versions of the actual equilibrium equations

are obtained

[I_]{A} = {B.}, (16)

where

[I_]= [KL] + [KNL ]

[l?t]= {R} - {F} (17)

The Newton-Raphson method is employed to solve the linearized equations iteratively

until the actual equations of motion are satisfied to a required tolerance.
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In the process of evaluating the integralsin equation (15), Gauss quadrature isused

in the membrane directionsof the shell,and in the thickness direction when plasticity

occurs. When material behavior is elasticat a membrane location through the entire

laminate thickness,then explicitintegrationisperformed in the thickness direction.

$.$ Second-Moment Formulation

The second-moment perturbation method as developed by Liu, et al. [33,34]is

summarized in this section for geometric and material nonlinear time independent

behavior.

The equilibrium equation for the probabilisticfiniteelement model can be expressed

as

{F({A},{b})}-- {R({b})} (18)

where {F} is the internalforce vector, {A} isthe displacement vector, {R} isthe external

force, and {b} is a discretizedvector of the random function b(_x),where x is a spatial

coordinate {x}. The random function b(x) isexpanded using shape functions _bi(x):

n

b(.x)= _ ¢i(x_)bi (19)
i=1

where bi are the nodal values of b(_x). Generally the random quantity b can be a material

property, geometric dimension, or a load.

The probabilistic finite element analysis is carried out by applying the

second-moment method. The vectors in equation (18) are expanded about the mean of the

random function b via Taylor's series, and the following perturbation equations are

obtained:



17

Zerott_-order ecuation:

First-order equation:

{t)= {R) (20)

[I_T]{A}bi = {R}bi - {_'}bi
, i= 1,...,n (21)

where the bar over the symbols represent evaluation of that term at the mean value of b,

and the subscript bi represents the derivative with respect to bi. Also [K T] is defined to be

the tangent stiffness matrix,

[K T] - _ (22)

Once {_,} and {_}b. are obtained by solving equations (20) and (21), the mean and
1

autocovariance matrices for the nodal displacements can be determined (see [38]).

The solution procedure involves a consecutive solution of equations (20) and (21).

After the deterministiczeroth---orderequation (21) issolved,eitheronce for the linearcase

or iterativelyat each load step in the nonlinear case, the generalized displacement vector

{_} is used to perform the perturbation solutionsin equation (21). In (21),there are as

many solutions for {A}b i as there are number of nodes in the model. In addition, the

computations must be performed for each layer in the model, as a particular random

function is assumed to be independent from layer to layer. If there are n nodes and P

layersin the model, (n + 1)P more matrix solutionsare required at each load step for each

random variable. This isnot as expensive as it seems, because the stiffnessmatrix [KT] is

problems the residual vector can be functionally

{F} = {F({A},{b})} (23)

Temporarily dropping the vector braces,and differentiatingF with respect to b, we obtain

inverted once and used in (21).

For materially nonlinear

represented in the form
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dF o_F 8F cgA
(24)

The first term on the right hand side involves the explicit derivative of F with respect to b.

This is the derivative that must be evaluated on the right side of equation (21). This

derivative can be expressed exactly when elastic behavior exists. However, when material

nonlinear behavior is present, finite difference derivatives are used (as in [33]) once again

due to the complex nonlinear relationship between stress and strain. Since orthotropic

plasticity is present in certain layers, the radial return algorithm discussed previously is

considered to be very good for this purpose (see [33]). This is true since at a particular

load step, the plastic strain and effective plastic strain are "frozen" and only updated after

equilibrium conversion is achieved. This update can be done after the finite difference

calculations are made, so that the true effect of perturbing the random variable about its

mean is measured. Other advantages of the radial return method are the increased

accuracy involved in the stress recovery routine and the algorithmic compatible tangent

moduli which results in a more accurate tangent stiffness matrix. This accuracy is

important in computing the perturbation derivatives [e.g., {_}b. in equation (21)].
1

Sources of randomness in the model can be material properties, geometric

dimensions, or loads. In the present study, the ply thickness, ply angle and material

properties are selected as the random variables. The random material variables include the

engineering properties En,E2_,vI2,GI2,GIs,G23, and the plasticity parameters ay and

(uniaxialyield stress and hardening

deterministicthroughout this study.

variables,seeReference38.

modulus). The loading is considered to be

For details regarding the incorporation of these

The probabilistic finite element procedure developed herein has the ability to model

the spatial correlation involved in random fields. This technique is discussed in detail in

[38], where examples involving random fields were included. However in the present work
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it is assumed that fully correlated fieldsexist in each ply which degenerate to single

random variables,and each random variableisindependent from ply to ply.

4. Applications

4.I Micromechanics Constitutive Model

Linear Analysis

First, simulations were performed in which the nonlinear multi-factor material

model was not activated. As in Stock's work [4] histograms, cumulative distribution, and

confidence interval curves were used as methods of illustrating various characteristics of a

single ply. P100 high modulus graphite fiber and a copper matrix were selected as the

constituents for this linear work. In general, sample sizes of 50 were chosen as statistically

significant to show the trends of interest and remain economical.

Histograms and cumulative distribution plots were made for the two cases given in

Table 1. Case 1 represents a narrow range distribution of the constituent properties, and

Case 2 a wide one. A deterministic case was run using the mean values from Cases 1 and 2

(given by either _ or/_. Sample results are given in Figures 3a---d for the in-plane shear

modulus Ggl2 results. These are compared to the deterministic case result of 32.2 GPa to

assess the sensitivity of the ply properties to changes in the distribution parameters.

Confidence interval curves are used to investigate and illustrate various effects on

the resultant ply properties. These effects include fiber and matrix strengths, fiber

orientation, fiber stiffnesses, and interphase thickness. Some examples of these effects are

presented next.

Fiber Strength Effect. Using the properties of Case 1 as the base, the shape

parameter of the Weibull distribution for fiber strength was perturbed to show the effects

on the ply properties. The fiber volume ratio was kept deterministic and the simulation

was performed for a range of these values. Figure 4 contains representative results for the

ply longitudinal tensile strength. The solid lines represent the means of the samples, and
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the stars above and below represent the upper and lower bounds of the 95% confidence

interval estimates.

Matrix Strength Effect. Similar variations are made on the matrix strength shape

parameters with the intent of showing the effects of these changes on ply strengths. These

results are given in Figures 5 through 7.

Fiber Orientation Effect. Three values of the distribution parameter on fiber angle

were simulated to determine the effect on the ply properties. These curves are given in

Figures 8 through 11.

In general, from reviewing the previous confidence interval plots, the metal matrix

composite ply properties are not very sensitive to fiber misalignment due to the closeness of

the matrix modulus to the fiber modulus. It is also easy to see that ply longitudinal tensile

strength is significantly affected by the shape parameter of fiber strength. Without further

detail, it is evident that much information concerning the variability of this metal matrix

composite has been quantified. The next step is to determine effects of allowing the

nonlinear material model to become active.

Nonlinear Analysis

For any given particular ply property, the governing equation is the micromechanics

relation shown in Fig. 2. This equation relates the ply property to the constituent

properties, i.e., the fiber, matrix, and interphase properties. These constituent properties

are in turn governed by the nonlinear multi-factor material model (power law), thereby

making them a function of the local temperatures, stresses, stress rates, and mechanical

and thermal cycles (see Figure 2). The constituent power laws contain certain allowable

parameters such as melting temperature, strengths, allowable stress rates and cyclic

thermal and mechanical strengths. In addition, the individual terms in the power law are

raised to an exponent or power.
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In this section, in addition to the random variables used in the linear analyses, the

allowable parameters in the power law terms and the exponents were included as random

variables. The material studied is Silicon Carbide fiber (SCS-6) in a Titanium Aluminide

matrix (TI15). Table 2 contains information on the distribution parameters for each

random variable. For illustrative purposes, confidence interval plots are used again to

investigate the effects on the ply longitudinal tensile strength. The fiber volume ratio is

deterministic and a sample size of 50 is again chosen.

Longitudinal Tensile Strength. The micromechanics equation for longitudinal

tensile strength is given below for ease of discussion:

(25)

The symbols K, 7 and D indicate volume ratio, an empirical constant, and fiber diameter

respectively. The nonlinear power law relationship for the appropriate constituent

properties are,

[TMf- T in - 'r m - " /[NMF - N qso,tSo ot  o [Ss  1o] (26)

[TMm- T n[s m -"r]m[s m - " - N q mllo T m (27)

Similar relations hold for Edli and Enl. In order to have a basis for comparison, Figure 12,

which contains no nonlinear effects, is included.

First the effects of the constituent property Sfm are investigated. In Figures 13 and

14, the nonlinear temperature term is activated by elevating the ply to 811"K temperature.
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Herethe coefficient of variation (COV) of the temperature exponent n was varied from 1%

to 30%, and the COV of the fiber melting temperature was varied from 1% to 10%. One

can see that generally the Stllt values were reduced when compared to the linear curve;

however, little difference occurred for the perturbation on the melting temperature or the

exponent n. As for the stress nonlinear power term, the WeibuU distribution parameter for

Sfllt was varied between 20 and 10 (narrow and wide) when a ply uniaxial stress of 68.9

MPa existed (see Figure 15). In order for the fiber tensile strength to behave linearly to

stress changes as expected, the exponent m in the micromechanics equation was chosen to

be zero (see Fig. 2). Thus the differences in the two curves shown in Figure 15 are simply

due to the influence of the micromechanics equation and not the power law equation.

Next, the nonlinear behavior of the constituent Emil was studied. Figure 16 shows

the effect of simply varying the COY of E_11 without the power law terms being activated.

One can see that the effects of changing E=11's distribution parameters are small. Figures

17 and 18 contain the results of activating the temperature term and perturbing the

exponent n and the matrix melting temperature COV's in equation (27). Little changes

due to the perturbed quantities are noticed for these results.

Figure 19 is an example of activating the mechanical cycle nonlinear power term. In

this plot the WeibuU distribution parameter for the mechanical cyclic strength NUF was

varied from 20 to 10. In this example, 5 x l0 s cycles (50% of the assumed strength) was

used. From this result, it can be concluded that the probabilistic distribution of cyclic

strength is significant for this high degree of nonlinearity, as would be expected.

Obviously, the possibilities for analytical examples and investigations are

voluminous. The previous examples are meant only to be representative of the capability.

In addition, as in Stock [4], the individual ply could be broken down into subplies and the

simulation procedure performed at this scale. Laminate theory can be used to build the ply

properties, and in this way uncertainties caused by many fibers per layer or variations

through the thickness is effectively modeled.
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_.$ Macromechanics Constitutive/Structural Model

ARALL Laminate Tension Specimen with Hole

ARALL laminates are high strength hybrid composites developed by Alcoa for

aerospace applications. Figure 20 illustrates the architecture of the laminate, which

consists of thin sheets of high strength aluminum alloys bonded to high strength aramid

fibers using a special epoxy resin. The ARALL laminates have increased fatigue life and

fatigue crack growth properties over monolithic aluminum; the outer aluminum layers

provide impact damage and moisture protection that would be a problem for typical fiber

composite materials. In addition, increases in strength and lower densities are achieved as

compared to monolithic aluminum [38]. Here we analyze the ARALL laminates using the

macromechanics elastoplastic formulation discussed earlier.

Figure 20 also shows the description of the analytical model used to represent the

stiffness of the ARALL laminates. The aramid epoxy layers are divided into fiber-rich and

resin-rich layers. Table 3 contains the properties and statistical distributions for the

aluminum, aramid epoxy fiber-rich, and aramid epoxy resin-rich layers. Experimental

tension test results [37] are compared with the analytical results in Figure 21. From the

figure it is observed that the aramid epoxy behavior is linear and the analytical linear

comparison is very good. The 7075-T6(L) aluminum behavior is elastic perfectly-plastic

and the analytical model with a yield stress of 78 ksi agrees very well except near the point

of first yield. As for the ARALL-1 results (-1 indicates 7075-T6(L) aluminum is used)

the analytical model with ideal plasticity for the aluminum layers and linear elastic

aramid epoxy layers generally exhibits the same behavior as the experimental results

except the 0 degree laminate analytical model underpredicts the stiffness after yield and

the 90 degree laminate model overpredicts the stiffness after yield. For the purpose of this

example the analytical model is considered acceptable and will be used to study the mean

and variance response of an ARALL tension specimen with a hole.
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Figure 22a shows the finite element model and dimensions of the tension specimen

with a hole problem. The same material properties and material model from the previous

discussion are used in this problem. The probabilistic analysis assumed a fully correlated

random field for each random function in each layer. Figure 23 contains the mean and

standard deviation of the longitudinal Eyy strain at the hole edge (point A) for the case

where all aramid epoxy layers are aligned at 90 degrees to the load. The figure also shows

the breakdown of standard deviations for all the significant random variables. Since the

fibers are oriented at 90 degrees to the load and to the strain eyy, then the aluminum

properties tend to dominate. It is interesting to note that even though no bending occurs

in this problem, the ply thickness of the aluminum layers is dominant after yield. The

aluminum yield stress and elastic modulus are also important. Figure 24 contains similar

results except now the fibers are aligned with the loading direction. While the aluminum

yield stress and ply thickness random variables are still significant, the aramid Eu and ply

thickness random variables are now equally important. These results illustrate the role the

individual random variables play in the total variability of this type of ARALL structure.

Boron�Aluminum Teflon Spe_men _th Hole

A Boron/Aluminum laminate was selected to illustrate the use of the macroscopic

orthotropic plasticity formulation. The same problem dimensions (except for thickness)

were used as in the last example, however, a different mesh was used that placed gauss

points along the x-axis (see Fig. 22b). Rizzi, et al. [28] conducted an experimental and

analytical study of this specimen, and provided experimental measurements for the

orthotropic elastic constants as well as the aij values in the yield criterion and the

hardening parameters in the isotropic work hardening model. These values are all stated in

Table 4 and are used in the present analytical model. It should be noted that the aij

values used in this study differ from those given in the reference by a factor of 2/3 due to a

minor difference in the formulations. Figure 25 contains a comparison of the analytical



25

results from the present study and experimental results from [28] for the longitudinal strain

_yy along a radial line (x-axis) 90 degrees to the loading. The agreement is slightly worse

than that obtained in [28], but is probably due to the difference in element formulations

and the classical incremental plastic stress routine used versus the radial return algorithm

used here. Yielding occurs after 1000 lbs, and the agreement worsens as the loading is

increased. However, the results are still considered quite good.

Using the random variable statistics stated in Table 4, the first-order

second-moment probabilistic method was used to evaluate the mean and variance of the

eyy strain response. Once again the probabilistic analysis assumed a fully correlated

random field for each random function. Figure 26 shows the analytical mean Eyy strain for

the 2500 lb and 1000 lb load values with the plus or minus one standard deviation points

included. It is obvious that the sensitivity of eyy to the random variables increases both

with the load and as the location moves closer to the hole. Figure 27 contains a plot of

both the mean and standard deviation of the eyy strain at the location A on the model

versus load. The breakdown for each random variable is presented as well. Since only a

single layer is used, then the ply thickness could not be considered a variable here. The

most significant random variable is the plastic hardening modulus l_, with E2_ and the

yield stress important as well. Note that E22 is significant since the fibers are 90 degrees to

both the loading direction and to _yy. This example can be extended to include the aij

plastic yield coefficients and the hardening parameter _ as random variables since they are

also experimentally measured quantities with uncertainties.

5. Summary

A probabilistic analysis procedure for constitutive behavior of metal matrix

composites based on the METCAN program is developed. The procedure can be used to

simulate manufacturing nonuniformities and uncertainties in constituent properties to

quantify their overall effects on the composite. Studies involving both linear and nonlinear
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effects on the thermoelastic and strength properties of two different metal matrix

compositeswere performed. For the caseof linear behavior the contributing constituent

variations were constrained to the framework of the micromechanicsmodel. Thus, cause

and effects for the linear behavior were easy to demonstrate, so that the relative

importance .of each material variable could be identified. As for the nonlinear effects, since

the constituent-based nonlinear material model became active, variations were induced not

only by the probabilistic distributions of the constituent properties but also by the

distributions of the nonlinear power term parameters such as the melting temperatures and

exponents. Thus the nonlinear behavior was really a blend of the variations in the

micromechanics model variables and the nonlinear power law variables. It is easy to see

how this procedure could be used to aid in material characterization and selection to

precede and aid in experimental studies. Much of the results presented have been based on

assumed distributions, and thus are intended to be examples illustrating the power of the

method.

A formulation based on a macromechanics orthotropic elastoplasticity theory is also

presented. A nonlinear probabilistic finite element analysis procedure including

elastoplastic constitutive behavior is developed. The first--order second-moment method

for probabilistic finite element analysis was combined with a continuum shell element

which includes the effects of shear deformation.

plasticity problems were investigated, and the

quantified for a tension specimen with a hole.

Both ARALL and Boron/Aluminum

variability of these composites was
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TABLE 1

Input Statistical Parameters for Graphite Copper

Invut

Normally Distributed Variables
Ply Angle (degrees)
Fiber Volume Ratio (FVR)

Zf11(GPa)

Ef22(GPa)

Gn2(GPa)
Gf23(GPa)

Em(GPa)

Ed(GPa)

Interphase % of fiberdiameter
WeibulI Distributed Variables

Sfllt(MPa)

Sfllc(MPa)

Sf22t(MPa)

Sf22c (MPa)

Sfl2s(MPa)

SI23s (MPa)

Sm(MPa)

Sms(MPa)

Sd(MPa)

Sds(MPa)

Gamma Distributed Variables

Void Volume Ratio (VVR)

#
0.0
0.5

723.9

6.2

7.6

4.8

122.0

275.8

0.10

2240.8

1378.9

172.4

172.4

172.4

86.2

220.6

131.0

103.4

68.9

0.33

Case 1

ff

5.0
0.1

36.2

0.3

0.4

0.24

6.1

13.8

0.005
A
2O

20

20

2O

20

20

20

2O

20

20

A
3.0

Case 2

ff

i0.0

0.2

72.4

0.6

0.8

0.48

12.2

27.6

0.01

A

I0

10

i0

10

I0

10

i0

I0

10

I0

A

5.0
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TABLE 2

Input Statistical Parameters for SCS-6 TI15

Normally Distributed Variables

Ply Angle (degrees)

Efll(GPa)

Ef22(GPa)

Gfl2(GPa)

Ga3(GPa)
Em(GPa)

Ed(GPa)

TMf(" K)

TMm (" K)

TMd(" K)

Fiber Exponents

Matrix Exponents

Interphase Exponents

Interphase % of fiber diameter

all1
at,2
am
ad
Weibull Distributed Variables

Sfllt (MPa)

Sfllc (MPa)

Sf22t (MPa)

Sf22c (MPa)

Sfl2s (MPa)

Sf23s (MPa)

Sm(MPa)

Sins (MPa)

Sd(MPa)

Sds (MPa)

NMF(cydes)

Gamma Distributed Variables

Void Volume Ratio (VVR)

u

0.0

349.6

349.6

146.9

146.9

84.8

275.8

2755.4

1255.4

2199.9

0.25

0.50

0.50

0.10

0.12E-5

0.12E-5

0.45E---5

0.5E---5

3350.9

3350.9

3350.9

3350.9

1675.4

1675.4

896.3

627.4

103.4

68.9

1.0E6

0.33

_a

0.5

17.5

17.5

7.3

7.3

4.2

13.8

107.2

32.2

79.4

0.0125

0.025

0.025

0.005

0.60F.,-7

0.60E-7

0.225E-6

0.25E-6

A
20

2O

20

2O

20

20

2O

2O

20

20

2O

3.0
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TABLE 3

Material Properties and Statistics for ARALL-I Laminate

Constituents

Random

Variable

Standard Coefficientof

Mean Deviation Variation

Aluminum (7075-T6L)

E 10.4=106

v 0.3

* 7.8=104aV
6 1.2=10-2

Aramid E_xv fiber-richlae.y__t

Ell 12.549=106

E22 0.76525=106

G12 0.28955"106

v12 0.3458

G13 0.28955"106

0 O",90 °
$

6 5.6= 10-3

Aramid _ resin-rich Is ev_._t

Ell 2.1972 =106

E22 0.48219= 106

G12 0.15717 =106

v12 0.3749

G13 0.15717=106

G23 0.15576 =106

0 O" ,90'

5 1.416= 10 -3

5.2xi05 0.05

1.5=10 -2 0.05

3.9=103 0.05

6.0=10 -4 0.05

6.2745 =105 0.05

3.82625=104 0.05

1.44775= 104 0.05

1.729= 10 -2 0.05

1.44775= 104 0.05

2 °

2.8= 10-4 0.05

1.0986=105 0.05

2.41095x 104 0.05

7.8585x 103 0.05

1.8745= 10-2 0.05

7.8585= 103 0.05

7.7880=103 0.05

2*

7.08=10 -.-5 0.05

*Cry indicates yield stress, 0 indicates fiber

indicates ply thickness.
Units are in psi and inches where appropriate.

orientation angle, and 6
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TABLE 4

Material Properties and Statistics for Boron/Aluminum
Laminate

Random Standard
Variable Mean Deviation

Coefficient of
Variation

E11 29.4x106 1.47x106 0.05

E22 19.1=106 9.55=105 0.05

G12 7.49=106 3.745=105 0.05

v12 0.169 8.45x10 -3 0.05

G13 7.49x106 3.745x105 0.05

G23 7.49=106 3.745x105 0.05

* 13.5_103 6.75=102 0.05

_*
H 60.0_103 3.0_103 0.05

* 0* 2.0" -

6 7.95 _10-2 0.05

*ay indicates yield stress, H indicates hardening modulus, 0 indicates

ply orientation angle, and 5 indicates ply thickness.

The values of the aij constants in the yield criterion are:

3 =0.001 , _ =1.0 _ =-0.01all a22 , a12

3 3 3 = 1.9
a44 = _ a55 = _ a66

The hardening model used was Y(a) = f=I[a + [aY]_] 1/)_

)_ = 5.8

Units are in psi and inches where appropriate.
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with perturbed shape parameter of matrix

strength.
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Figure 6. Transverse tensile strength with

perturbed shape parameter of matrix strength.

Figure 7. Transverse compressive strength

with perturbed shape parameter of matrix

strength.
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Figure 8. Longitudinal tensile strength
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Figure 9. Longitudinal compressive strength

with perturbed COV of fiber angle.

0.4

Gr-Cu CONFIDENCEINTERVALS

_0,3

i0.1

O
Z;

0.0 ' I ' I ' I '

0.3 0.4 0.5 0.6 0.7

FIBER VOLUME RATIO

Figure 10. Transverse tensile strength

with perturbed COV of fiber angle.
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Figure 11. Transverse compressive strength

with perturbed COV of fiber angle.
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Figure 12. Longitudinal tensile strength

with perturbed shape parameter of fiber

strength; power law inactive.

Figure 13. Longitudinal tensile strength

with perturbed COV of fiber strength temperature

exponent n; temperature po_ler term active.
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Figure 14. Longitudinal tensile strength

with perturbed COV of fiber melting temperature;

temperature power term active.

Figure 15. Longitudinal tensile strength

with perturbed shape parameter of fiber

strength; stress power term active.
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Figure 16. Longitudinal tensile strength

with perturbed COV of matrix modulus; power

law inactive.

Figure 17. Longitudinal tensile strength

with perturbed COV of matrix modulus temperature

exponent n; temperature power term active.
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Figure 18. Longitudinal tensile strength

with perturbed COV of matrix melting temperature;

temperature power term active.
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Figure 19. Longitudinal tensile strength

with perturbed shape parameter of mechanical

strength; mechanical cycle power term active.



40

• • . @

A1umsnum

T

h = .:C._3 ::'.

Z:

1
?.esl=--.-:C _

I .,(_ h

-r 2

-:_e;-r.c.'.!.¢_ h
I '-rl

.R.es_:-nc: ---_ h

_:_:_d Epoxy ._[ccei

AI "_'1.0085 in.

Dime_sions

Figure 20. ARALL laminate layup anG geometry.

7075-T@(L)
@

\

"" ARALL-1 (go')

ZO

0

O.OO

Aramid-epoxy (90 e)

0.01 0.02

SCRkl_

0.03

Figure 21.ARALL tesnsion test experimental and
analytical comparisons.



41

_F )

r I
(a) ARALL motel !

L X Lccz:_on A

_V J

I

R : 0.375 in.

' : 3 in_ .

:,V= 1.47 in.

BC's

,_=0 at x=O

v:O at y=O
_=0 at y=L

.j

c_

"I

4, ._P 4,

(b) B/A1 M(_del

Figure 22. Finite element mesh, loading and boundary
conditions of -a
a hole.

32

A241

I

Z

i
8-

tension specimen with

2.1
; Comi_mec]

.... Me_-, c,_ :.PSYY i
Sic. :ev. af EPSYY tl

t

/ f .._

I

/ l AI i:)lythick !.4 ._

//I / II yield

stress _.,

/111 it/ _10_.

"2/ °

// /j./_-/ ",v / Ar E22
/ At Ell

"// , , Art pEi11angle 0

0 80 160 240 320

LOAD P

Figure 23.Mean and standard deviation of normal strain
at the hole edge (point A) versus load for the

case where the fibers are at 90 ° to the load.



42

30 ! ComoJnea 1.2

°-- Mean of EPSYY l
J

- '/ ?"_ 20 / 0.82

__. yield stress

,' / 3, A. Dlyt.ick

-i ,"/ /¢"'"'"'"'
° .;/ j__ °-':

,,+ _f_J \A, _

0 100 200 300 400 SO0 r-O&gp

Figure 24,Mean and standard deviation of normal strain at

22_0

!

× '500

_250

:000

rJ
2:

500

250

0

O,J!

the hole eCge (point A) versus load for the case
where fibers are aligned with the load.

0 400 Ib test

o 1000 Ib test

A 1400 Ib test

_- 1800 Ib test

x 2200 Ib test

0 2500 lb test

-- Analytical

Pa3_ ])_q-r,u_cl (_)

Figure 25. Analytical and experimental comparison of the
longitudinal strain along a line 90 ° to the
loading for the Boron/Aluminum laminate,



43

2500

]: i1

: ¢i

o 500 ] ';'=i
",'=

E "':.

103 _-,, 25o0 Ib

, , ] ...... , ,

0.38 0.60 0.82 1,05 1.27 1.50

.R_DULLDI,Wr_,_CI(_)

Figure 26.Dis_.r;_btic_ of the longitudinal strain along

a _!_e _0 zo -he loading for zne Boron/Al
laminate _.ension speci,_en witr hole.

i 180
!

Heart of EPSYY /

2000 Std° deVo of EPSYy ///?i _ _"_ _, _ ec_ i 160

_,15oo- ,,' _ :,

_iooo 8o_

5oo .-'" /L.4" / F 4o"

- 20
0 0

0 i000 2000 3000

LOA.DP

Figure 27.Hean _.nd s_andard deviation of normal strain
at the _.ole edge (point A) versus load for the
Boron/Aluminum _ension specimen with hole.



Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Pubic reportingburdlmforthiscollectionof informationis estimatedto average1 hourperresponse,includingthetimefor reviewinginstructions,searchingexislingdatasources.
gatheringandmaintainingthe dataneeded,andcon'_latingandreviewing!he collectionof information:Sendcomrnentsregar.¢lingthisburdene_imateorany _her aspect,,ofthis
collectionof information,includingsuggestions;orreoucingthssouroen,lo wesmngtonHeaoquaners:_entces,utrectorateTorimormanonuperatlons_o Heports,1z]_ Janerson
DavisHighway,Suite1204.Arlington,VA 22202-4302,andto theOffloeof ManagementandBudget,Paperwo_ReductionProject(0704-0188),Washsngton,DC 20503.

1. AGENCY USE ONLY (Leave blantO 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

September 1993

Probabilistic Micromechanics for High-Temperature Composites

6. AUTHOR(S)

J.N. Reddy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Virginia Polytechnic Institute and State University
Department of Engineering Science and Mechanics
Blacksburg, Virginia 24061

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

Final Contractor Report
5. FUNDING NUMBERS

WU-510-01-50
C-NAG3-933

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8113

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-191150

11. SUPPLEMENTARY NOTES

Project Manager, D.A. Hopkins, Structures Division, (216) 433-3260.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -Unlimited

Subject Category 39

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The three-year program of research had the following technical objectives: the development of probabilistic methods
for micromechanics-based constitutive and failure models, application of the probabilistic methodology in the
evaluation of various composite materials and simulation of expected uncertainties in unidirectional fiber composite
properties, and influence of the uncertainties in composite properties on the structural response. The first year of
research was devoted to the development of probabilistic methodology for micromechanics models. The second year
of research focused on the evaluation of the Chamis-Hopkins constitutive model and Aboudi constitutive model
using the methodology developed in the first year of research. The third year of research was devoted to the develop-

ment of probabilistic t'mite element analysis procedures for laminated composite plate and shell structures.

14. SUBJECT TERMS

Composites; Micromechanics; Finite element method; Plate; Shell;
Probabilistic analysis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540.-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
45

16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
PrescribedbyANSI Sld. Z39-18
298-102


