Secondary Impact Hazard Assessment

Secondary Impact Bazard AssessmentFinal ReportPrepared for the Solar System BxplorationDivision of the Johnson Space Center by
Eagle Engineering
Houston, Texas
Eagle Report No. 86-128
NASA Purchase Order No. T-256M
June 1, 1986

Table of Contents

Page

1.0 Executive Sumary 1
2.0 Introduction 3
3.0 Graphite/Epoxy Targets 6
3.1 Semi-Infinite (thick) Targets - Ejecta and Spall Collected 10
3.1.1 Discussion of Test Setup- 10
3.1.2 Shot $\$ 883$ (1/2 " thick, cloth on front)- 11
3.1.3 Shot $\$ 884$ (1/2 mick, no cloth on front) 25
3.2 Thin Graphite/Epoxy Targets - Ejecta and Spall Collected 38
3.2 .1 Discussion of Test Setup- 38
3.2 .2 Shot $\$ 894$ (0.093" thick, no cloth) 38
3.2 .3 Shot $\$ 917$ (0.127" thick, with cloth) 48
3.2 .4 Shot $\$ 923$ ($0.095^{\prime \prime}$ thick, no cloth, 30 deg. oblique impact) 73
3.3 Thin Graphite/Epoxy Targets - Projectile Density Effects 100
3.4 Thin Graphite/Epoxy Targets - Hi Speed Film Data-- 102
3.4.1 Shot $\$ 972$ 104
3.4 .2 Shot $\$ 981$ 104
3.4.3 Shot $\$ 990$ 104
3.4.4 Discussion of Calculated/Measured Velocity Comparison- 104
4.0 Aluminum Targets 117
4.1 Shot 1933 - Ejecta and Spall Collected 117
|

Table of Contents (Continued)

Page
4.2 Shot $\$ 975$ - High Speed Film Data Shot 144
4.3 Shots $\$ 979,991$, and 992 - Additional Data- 144
5.0 Derived Relationships from Graphite/Epoxy and Aluminum Impact Data- 150
5.1 Total Ejecta/Spall Mass Scaled with Projectile Energy 150
5.1.1 Graphite/Epoxy Targets 152
5.1.2 Aluminum Targets 157
5.2 No. of Ejecta/Spall Particles of a Given Mass and Above vs. Total Ejecta/Spall Mass 159
5.2.1 Graphite/Epoxy Targets 159
5.2.2 Aluminum Targets 165
5.3 No. of Ejecta/Spall Particles of a Given Energy and Above 165
5.3.1 Graphite/Epoxy Targets 167
5.3.2 Aluminum Targets 167
5.4 Ejecta/Spall Particle Velocity and Mass 180
6.0 Estimate of Damage Potential to the Space Station- 182
6.1 Damage From Primary Impacts - Meteoroids and Orbital Debris 182
6.1.1 Meteoroid Model 183
6.1.2 Orbital Debris Model 183
6.1.3 Space Station Area Model and Probability of Impact 184
6.2 Damage From Secondary Impacts - Ejecta and Spall-- 184
6.2.1 Damage Assessment Worksheet 185
6.2.2 Model Assumptions and Approximations 196
Table of Contents (Continued)
Page
6.2.3 Graphs of Results at Various Critical Energies 198
6.3 Application of Model to Cases of Interest 204
6.3.1 Module Window 206
6.3.1.1 Critical Energy Calculation- 206
6.3.1.2 Discussion- 206
6.3.2 Orbiter Window with Orbiter Docked to Space Station- 216
6.3.2.1 Critical Energy Calculation--- 216
6.3.2.2 Discussion 217
6.3.3 Habitat Module 225
6.3.3.1 Critical Energy Calculation--- 225
6.3.3.2 Discussion- 225
6.3.4 Solar Panels 231
6.3.4.1 Critical Energy Calculation--- 231
6.3.4.2 Discussion- 231
7.0 Conclusions 239
8.0 Recommendations 239
9.0 References 240
Appendix A - Listing of Shot Data A-1
Appendix B - Raw Data from Shots with Particle Catchers B-1
Appendix C - Single Frame Photography Data C-1

List of Figures

Page

Figure 3-1, Photos of Target 13
Figure 3-2, Ejecta Mass vs. Particle Length (Shot 883) 14
Figure 3-3, Ejecta Mass vs. Particle Diameter (Shot \$883) 15
Figure 3-4, Ejecta Particle Mass vs. Theta (Shot $\$ 883$)------ 16
Figure 3-5, Ejecta Calc. Particle Vel. vs. Theta (Shot $\# 883$) 17
 18
Figure 3-7, Ejecta Part. Velocity vs. Phi (Shot \$883)------- 19
Figure 3-8, Ejecta Particle Mass vs. Cone Angle (Shot \&883)- 20
Figure 3-9, Ejecta Part. Velocity vs. Cone Angle (Shot \$883) 21
Figure 3-10, Ejecta Part. Vel. vs. Part. Mass (Shot \$883)--- 22
Figure 3-1l, Log(No. of part. mass $m \&>)$ vs. Log(m/mtotal) (Shot $\# 883$) 23
Figure 3-12, Log(No. of part. mass m \& >) v6. Log(m/mtotal) 24
Figure 3-13, Photos of Target 26
Figure 3-14, Ejecta Mass vs. Particle Length (Shot $\$ 884$) 27
Figure 3-15, Ejecta Mass vs. Particle Diameter (Shot \$884)-- 28
Figure 3-16, Ejecta Particle Mass vs. Theta (Shot \$884) 29
Figure 3-17, Ejecta Calc. Particle Vel. vs. Theta (Shot $\# 884$) 30
Figure 3-18, Ejecta Part. Mass vs. Phi (Shot $\$ 884$) 31
Figure 3-19, Ejecta Part. Velocity vs. Phi (Shot *884) 32
Figure 3-20, Ejecta Particle Mass vs. Cone Angle (Shot $\ddagger 884$) 33
Figure 3-2l, Ejecta Part. Velocity vs. Cone Angle34
Figure 3-22, Ejecta Part. Velocity vs. Part. Mass (Shot $\ddagger 884$) -e 3-23, Log (No. of part. mass $m \& \gg$ vs. $\log (m / m t o t a l)$36
Figure 3-24, Log (No. of part. mass $m \&>$) vs. Log(m/mtotal) (Shot $\% 884$) with Aluminum Equation Also 37
Figure 3-25, Photos of Catcher Box (Shot $\$ 894$) 40
Figure 3-26, Ejecta/Spall Mass vs. Part. Length (Shot \$894)- 42
Figure 3-27, Ejecta/Spall Mass vs. Part. Dia. (Shot \&894) 43
Figure 3-28, Log(No. of ejecta part. mass Mi \& >) vs.Log(Mi/Mtotal ejecta) (Shot 394) with EquationFigure 3-29, Log(No. of spall part. mass Mi \& >) vs.Log(Mi/Mtotal spall) (Shot \#894) with Equation45
Figure 3-30, Log(No. of spall \&/or ejecta part. mass Mi \& >) vs. Log (Mi/Mtotal spall $\varepsilon /$ or ejecta) (Shot $\$ 894$) - 46
Figure 3-31, Log(No. of spall \& ejecta part. mass Mi \& >) vs.Log (Mi/Mtotal spall \& ejecta) (Shot \$894) with Equation
Der. \& Aluminum Equation- 47
Figure 3-32, Photos of Target (Shot ${ }^{\text {(917) }}$ 50
Figure 3-33, Ejecta Mass vs. Particle Length (Shot 917)---- 51
Figure 3-34, Ejecta Mass vs. Particle Diameter (Shot ${ }^{\text {(917)-- }}$ 52
Figure 3-35, Ejecta Particle Mass vs. Theta (Shot $\$ 917$) 53

List of Figures（Continued）

Page

Figure 3－36，Ejecta Calc．Particle Vel．vs．Theta
（Shot ${ }^{\text {\＆}} 917$ ） 54
Figure 3－37，Ejecta Part．Mass vs．Phi（Shot $\$ 917$ ） 55
Figure 3－38，Ejecta Part．Velocity vs．Phi（Shot $\% 917$ ） 56
Figure 3－39，Ejecta Particle Mass vs．Cone Angle（Shot © 917） 57
Figure 3－40，Ejecta Part．Velocity vs．Cone Angle
（Shot $\$ 917$ ） 58
Figure 3－41，Ejecta Part．Velocity vs．Part．Mass （Shot ${ }^{(S 17 \text { ）}}$ 59
Figure 3－42，Log（No．of ejecta part．mass Mi \＆＞）vs．
Derivation 60
Figure 3－43，Spall Mass vs．Particle Length（Shot＊917）－－ー－ 61
 62
 63
Figure 3－46，Spall Calc．Particle Vel．vs．Theta（Shot 884 ）64
Figure 3－47，Spall Part．Mass vs．Phi（Shot F_{p} 917） 65
Figure 3－48，Spall Part．Velocity vs．Phi（Shot（917）－ー－ー－ー－ 66
Figure 3－49，Spall Particle Mass vs．Cone Angle（Shot \％917）－ 67
Figure 3－50，Spall Part．Velocity vs．Cone Angle68
Figure 3－51，Spall Part．Velocity vs．Part．Mass （Shot 917 ）－－ー－ー－ー－ー－ー－e 3－52， $\log ($ No．of spall part．mass Mi \＆＞）vs．Log（Mi／Mtotal spall），（Shot $\% 917$ ）with EquationDerivation70Figure 3－53，Log（No．of spall \＆／or ejecta part．mass Mi \＆＞）vs．Log（Mi／Mtotal spall \＆／or ejecta）（Shot＊917）equa．71
Figure $3-54$ ，Log（No．of spall \＆ejecta part．mass Mi\＆$\&$ vs．Log（Mi／Mtotal spall \＆ejecta）（Shot $\mathrm{F}_{\mathrm{F}} 917$ ）with Alum．Equa．72
Figure 3－55，Photos of Catcher Box（Shot \＄923） 75
Figure 3－56，Photos of Target（Shot $\$ 923$ ） 77
 78
Figure 3－58，Ejecta Mass vs．Particle Diameter（Stiot \＄923）－－ 79
Figure 3－59，Ejecta Particle Mass vs．Theta（Shot ${ }^{\text {F923）}}$ 80
Figure 3－60，Ejecta Calc．Particle Vel．vs．Theta （Shot $\$ 923$ ） 81
Figure 3－61，Ejecta Part．Mass vs．Phi（Shot \＄923） 82
Figure 3－62，Ejecta Part．Velocity vs．Phi（Shot 923 83
Figure 3－63，Ejecta Particle Mass vs．Cone Angle（Shot 423 ） 84
Figure 3－64，Ejecta Part．Velocity vs．Cone Angle
（Shot $\# 923$ 85
 86
Figure 3－66，Log（No．of ejecta part．mass Mi \＆＞）vs． Log（Mi／Mtotal ejecta）（Shot 923）with Equa．Derivation 87
Figure 3－67，Spall Mass vs．Particle Length（Shot \％923）－－ー－ 88

List of Figures (Continued)

Figure 3-68, Spall Mass vs. Particle Diameter (Shot \$923) -.- 89
Figure 3-69, Spall Particle Mass vs. Theta (Shot 4923)------ 90
Figure 3-70, Spall Calc. Particle Vel. vs. Theta

Figure 3-72, Spall Part. Velocity vs. Phi (Shot \$923)--_---- 93
Figure 3-73, Spall Particle Mass vs. Cone Angle (Shot $\ddagger 923$)- 94
Figure 3-74, Spall Part. Vel. vs. Cone Angle (Shot \$923)---- 95
Figure 3-75, Spall Part. Velocity vs. Part. Mass

Figure 3-76, Log(No. of spall part. mass Mi \& >) vs. Log(Mi/Mtotal spall).(Shot ${ }^{\text {(923) }}$ with Equation
97

Figure 3-77, Log(No. of spall \&/or ejecta part. mass Mi \& >) vs. Log (Mi/Mtotal spall \&/or ejecta) (Shot \$923) equa.
98

Figure 3-78, Log(No. of spall \& ejecta part. mass Mi \& >) vs. Log(Mi/Mtotal spall \& ejecta) (Shot $\# 923$) with Alum.

Figure 3-81, Shot $\$ 981$ Spall Velocity (from Univ. of Texas)-111

Figure 3-83, Ejecta Velocity Comparison, Film-Estimation,

Figure 3-84, Spall Velocity Comparison, Film-Estimation, Shots $\$ 917,972$, and 981-----------------------------------116

Figure 4-2, Ejecta Mass vs. Particle Length (Shot $\$ 933$)----- 120
Figure 4-3, Ejecta Mass vs. Particle Diameter (Shot \#933)--- 121
Figure 4-4, Ejecta Particle Mass vs. Theta (Shot \$933)------ 122
Figure 4-5, Ejecta Calc. Particle Vel. vs. Theta (Shot \&933)-123

Figure 4-7, Ejecta Part. Velocity vs. Phi (Shot \$933)--2.--- 125
Figure 4-8, Ejecta Particle Mass vs. Cone Angle (Shot \%933)-126
Figure 4-9, Ejecta Part. Velocity vs. Cone Angle

Figure 4-10, Ejecta Part. Velocity vs. Part. Mass

Figure 4-11, Log(No. of ejecta part. mass $m \&>$) vs. Log (mejecta/mtotal ejecta) (Shot \$933) with Equa. Der. 129
Figure 4-12, Spall Mass vs. Particle Length (Shot 933)--130
Figure 4-13, Spall Mass vs. Particle Diameter (Shot 933)--- 131
Figure 4-14, Spall Particle Mass vs. Theta (Shot 1933) $-\ldots-132$
Figure 4-15, Spall Calc. Particle Vel. vs. Theta

Figure 4-16, Spall Part. Mass vs. Phi (Shot *933)-----------134
Figure 4-17, Spall Part. Velocity vs. Phi (Shot \$933)------135

List of Figures (Continued)

Page

> Figure 4-18, Spall Particle Mass vs. Cone Angle (Shot \&933)-136 Figure 4-19, Spall Part. Velocity vs. Cone Angle (Shot 933) Figure 4-20, Spall Part. Velocity vs. Part. Mass
Figure 4-20, Spall Part. Velocity vs. Part. Mass
(Shot 193) -
4-21, Log (No. of spall part. mass Mi \& >) vs Figure 4-21, Log (No. of spall part. mass Mi \& >) vs. Log(Mi/Mtotal spall). (Shot $\$ 933$) with Equation Derivatio
Figure 4-22, Ejecta and Spall Mass vs. Length (Shot 1933)--- 140
Figure 4-23, Ejecta and Spall Dia. vs. Length(Shot 933)-..- 141
Figure 4-24, Log(No. of spall \&/or ejecta part. mass Mi \& >)vs. Log(Mi/Mtotal spall \&/or ejecta) (Shot $\$ 933$) equa.
only

Figure 4-25, Log(No. of spall \& ejecta part. mass Mi \& >) vs.
Log (Mi/Mtotal spall \& ejecta) (Shot $\$ 933$) with Ref. 2 Alum. Equa 142
Figur Log(Mi/Mtotal spall \& ejecta) (Shot 1933) with Ref. 2
Figure 4-26, High Speed Camera Photos, Shot $\$ 975$ 143 143
Figure 4-27, Measured vs. Cal. Alum. Ejecta Mass and Vel.--- 148
Figure 4-28, Measured vs. Cal. Aluminum Spall Mass and Vel.- 149
Figure 5-1, Ejecta and Spall Total Mass vs. Proj. Energy- 151
Figure 5-2, Graphite/Epoxy Ejecta and Spall Total Mass Scaling Curve----
Figure 5-3, Projectile Density Effect- 154 154
Figure 5-4, Projectile Shape Effect 156
Figure 5-5, Alum. Ejecta and Spall Total Mass Scaling Curve- 158
Figure 5-6, G/E Ejecta Particle Mass Distribution---161
Figure 5-7, G/E Spall Particle Mass Distribution
162
162
Figure 5-8, G/E Combined Ejecta and Spall Particle Mass
Distribution 163
Figure 5-9, G/E With and Without Cloth Particle Mass Distribution
164
164
Figure 5-10, G/E and Aluminum Particle Mass Distribution- 166
Figure 5-11, G/E Combined Ejecta and Spall Particle
Energy Distributio
168
168
Figure 5-12, G/E With Cloth Particle Energy Distribution 169
Figure 5-13, G/E Without Cloth Particle Energy Distribution- 170
Figure 5-14, G/E Ejecta Particle Energy Distribution 171
Figure 5-15, G/E Spall Particle Energy Distribution
172
172
Figure 5-16, G/E With and Without Cloth Particle Energy Distribution-
173
173
Figure 5-17, G/E Ejecta and Spall Particle Energy Dist......-
174
174
Figure 5-18, Aluminum Combined Ejecta and Spall Particle Energy Distribution--.-.
Figure 5-19, Aluminum Ejecta Particle Energy Distribution--- 176
Figure 5-20, Al uminum Spall Particle Energy Distribution---- 177
Distribution178

Figure 5-22, Graphite/Epoxy and Aluminum Particle Energy
Distribution- 179
Figure 5-23, Graphite/Epoxy Particle Mass and Velocity- 181
Figure 6-1, 1990's Average Meteoroid and Orbital Debris Environment 187
Figure 6-2, Primary/Secondary Particle Fluxes for Example--- 195
Figure 6-3, Primary/Secondary Particle Fluxes with 10 Joule Critical Energy 199
Figure 6-4, Primary/Secondary Particle Fluxes with 100 Joule Critical Energy 200
Figure 6-5, Primary/Secondary Particle Fluxes with 1000 Joule Critical Energy 201
Figure 6-6, Primary/Secondary Particle Fluxes with 10,000 Joule Critical Energy- 202
Figure 6-7, Primary/Secondary Particle Fluxes for a 5\% Secondaries Impact Fraction 233
Figure 6-8, International Space Station Configuration 204
Figure 6-9, Cupola Window Workstation Concept 213
Figure 6-10, Cupola Window Configuration 214
Figure 6-11, Primary/Secondary Particle Fluxes for Space Station Window 215
Figure 6-12, Orbiter Docked with Space Station---------------- 218
Figure 6-13, Primary/Secondary Particle Fluxes for Orbiter224
Figure 6-14, Primary/Secondary Particle Fluxes for Habitat Module Wall 230
Figure 6-15, Primary/Secondary Particle Fluxes for Solar Array 238

Page

Table 3-1, Graphite/Epoxy Test Specimens Ordered 7
Table 3-2, Semi-Infinite and Thin Graphite/Epoxy Shots, Spall and Ejecta Collected 9
Table 3-3, Thin Graphite/Epoxy Targets, Projectile Density Effect 101
Table 3-4, Velocity Measurement Worksheet, Shot 103
Table 3-5, Velocity Measurement Worksheet, Shot $\$ 981$ 106
Table 3-6, Velocity Measurement Worksheet, Shot $\$ 990$ 112
Table 3-7, Velocity Measurement Worksheet, Shot $\$ 990$ 114
Table 4-1, Velocity Measurement Worksheet, Shot $\$ 975$ 146
Table 6-1, Space Station Surface Area and Impact Probability Calculations 188
Table 6-2, Damage Assessment Worksheet Example- 191
Table 6-3, Space Station Window Critical Energy Calculation- 208
Table 6-4, Space Station Window Damage Assessment Worksheet- 209
Table 6-5, Orbiter Window Critical Energy Calculation 219
Table 6-6, Orbiter Window Damage Assessment Worksheet 220
Table 6-7, Habitat Module Wall Damage Assessment Worksheet-- 226
Table 6-8, Solar Cell Critical Energy Calculation 233
Table 6-9, Solar Array Damage Assessment Worksheet 234

Foreword

This study was conducted between June 1,1985 and June 1, 1986 for the Solar System Exploration Division of the Johnson Space Center. The purpose of this study was to make a preliminary assessment of the danger of damage to the Space Station caused by secondary particles (ejecta and spall) from meteoroid and orbital debris impact. A second purpose was to characterize the nature of spall and ejecta from hypervelocity impacts on graphite/epoxy composites.

Ms. Jeanne L. Crews was the NASA technical monitor. Mr. Tommy Thompson (Lockheed) and Mr. Kenny Oser (Lockheed) performed the data shots with the Johnson Space Center Light Gas Gun. Mr. Earl Brownfield (Lockheed) provided photographic support. Valuable advise and other data were provided by Mr. Burton G. Cour-Palais (NASA JSC) and Dr. Ching Yew (Univ. of Texas).

Mr. Bill Stump was the Eagle Project Manager. Mr. Eric Christiansen performed the major part of the Eagle contribution. Mr. Norman Smith, an Eagle Co-op, also assisted.

1.0 Executive Sumary

A series of light gas gun shots (4 to $7 \mathrm{~km} / \mathrm{sec}$) were performed with 5 mg nylon and aluminum projectiles to determine the size, mass, velocity, and spatial distribution of spall and ejecta from a number of graphite/epoxy targets. Similar determinations were also performed on a few aluminum targets. Target thickness and material were chosen to be representative of proposed Space Station structure.

The data from these shots and other information were used to predict the hazard to Space Station elements from secondary particles resulting from impacts of micrometeoroids and orbital debris on the Space Station. This hazard was quantified as an additional flux over and above the primary micrometeoriod and orbital debris flux that must be considered in the design process. In order to simplify the calculations, eject and spall mass were assumed to scale directly with the energy of the projectile. Other scaling systems may be closer to reality.

The secondary particles considered are only those particles that may impact other structure immediately after the primary impact. The addition to the orbital debris problemfrom these primary impacts was not addressed. Data from this study should be fed into the orbital debris model to see if Space Station secondaries make a significant contribution to orbital debris.

The hazard to a Space Station element from secondary particles above and beyond the micrometeoriod and orbital debris hazard is catagorized in terms of two factors: 1) The "view factor" of the element to other Space Station structure or the geometry of placement of the element, and 2) The sensitivity to damage, stated in terms of energy.

Several example cases were chosen, the Space Station module windows, windows of a Shuttle docked to the Space Station, the habitat module walls, and the photovoltaic solar cell arrays. For the examples chosen the secondary flux contributed no more than 10 percent to the total flux (primary and secondary) above a given calculated critical energy. A key assumption in these calculations is that above a certain critical energy, significant damage will be done. This is not true for all structures. Double-walled, bumpered structures are an example for which damage may be reduced as energy goes up. The critical energy assumption is probably conservative, however, in terms of secondary damage.

To understand why the secondary impacts seem to, in general, contribute less than 10 percent of the flux above a given critical energy, consider the case of a meteoroid impact of a given energy on a fixed, large surface. This impact results in a variety of secondary particles, all of which have much less energy than the original impact. Conservation of energy prohibits any other
situation. Thus if damage is linked to a critical energy of a particle, the primary flux will always deliver particles of much greater energy. Even if all the secondary particles impacted other Space Station structure, none would have a kinetic energy more than a fraction of the primary impact energy.

2.0 Introduction

This study was a low cost "quick look" with three basic purposes: 1) to assess, in a preliminary manner, the hazards from secondary spall and ejecta from meteoriod and orbital debris impact on the Space Station, 2) to begin to characterize the nature of graphite/epoxy spall and ejecta resulting from hypervelocity impact, and 3) to compare graphite/epoxy and aluminum spall and ejecta in terms of damage potential. In a more basic sense, this study was to search out directions for future work in this area.

In this report, spall is defined as the material that comes off of the back side of an impacted target. Ejecta is defined as the material that comes off of the front side.

The characterization of aluminum and graphite/epoxy spall and ejecta was limited to the following parameters resulting from a single impact:
a) numbers of particles
b) size distribution of particles
c) mass distribution of particles
d) velocity distribution of particles
e) energy distribution of particles
f) angular distribution or angle of dispersion of ejecta/spall

These ejecta/spall parameters vary with the following projectile and target parameters. This variation was studied and empiracal relationships were developed in some cases.
a) target types - aluminum (6061-T6) and graphite/epoxy
b) (different layups, with and without cloth, thick and thin)
c) projectile energy
c) projectile density
d) oblique and normal impacts

There are other variables and relationships that could (and perhaps should) be studied also. Equipment and funding limitations on this study required that the number of variables and relationships studied be kept small. The above variables were therefore chosen as the most important.

Orbital debris and micrometeoriods are significant hazards to the space Station and must be taken into account in its design. Meteoriod or orbital debris impacts have been shown to break off 10 to 100 times their own mass from the target material. Some of this ejected and spalled secondary mass will be traveling at hypervelocity. This study was initiated based on these facts. By themsel ves, these facts indicate that designers may have to protect against these secondary impacts as well as primary orbital debris and meteoriods. Other factors also play a part however. The
three most important are: 1) the number, velocity, and size of hypervelocity particles generated at an impact, 2) the fraction of these particles that may impact other sensitive Space station structure, and 3) the sensitivity of Space Station structure to damage from these particles. This study attempts to determine or otherwise quantify these variables.

The dual keel Space Station is predicted to have three major structural components in terms of surface area: the graphite/epoxy truss structure, the modules, and the solar power system. Table 6-1 shows how these break down in terms of area for one design. OTV hangars may also have significant area on a growth Space Station.

The modules will probably have aluminum meteor and orbital debris shields protecting their inner hulls. The bumper material has not been selected as of this date, however, and graphite/epoxy or other non-metallic materials are also in the running. The truss structure will be graphite/epoxy with some type of coating (not selected at present - it may be an aluminum foil). The solar arrays will likely be solar cell material (very thin - 14 mils for cover glass and cell according to one estimate) on a thin flexible substrate or perhaps thicker (1 cm) aluminum honeycomb structure. Solar dynamic reflectors will probably be aluminum. The Space Station configuration and materials are still in the design process at this time, but, as far as impacts are concerned, the two major materials will be aluminum and/or graphite/epoxy.

The first major effort in this study was therefore to acquire data on the spall and ejecta characteristics of graphite/epoxy and aluminum material. Hypervelocity impacts on aluminum have been studied for many years and a number of good references exist (Ref. 1-2). More attention has been paid to the spall than to the ejecta however, but some aluminum ejecta data was available in the literature (Ref. 1). Only a few actual aluminum shots were therefore performed as a part of this effort (see section 4.0). On the other hand, no one (to our knowledge) has previously studied the spall and ejecta characteristics of graphite/epoxy, so considerable experimental work was required. Section 3.0 documents the experimental work performed on graphite/epoxy as a part of this effort.

Given experimental data in hand, scaling equations were derived that can be used in an overall prediction of hazards to the Space Station. Section 5.0 describes this work.

Section 6.0 describes the assessment of damage to space Station elements based on the equations generated in section 5.0 . Section 7.0 and 8.0 contain conclusions and recommendations.

Appendix A contains a complete listing of all shots of interest to this study (ordered by shot number) and data associated with them. Appendix B contains the raw data from shots for which particle counts were made. Appendix C contains some single frame photos of graphite/epoxy targets shortly after impact.

3.0 Graphite/Epoxy Targets

Table 3-1 lists the graphite/epoxy targets that were ordered from Hercules as a part of this testing effort. The reader should refer to Table 3-1 for a detailed description of the size and properties of the targets used. Some of the targets were used in other test programs and their shots will be documented elsewhere.

The graphite/epoxy shots are divided into four categories: shots into semi-infinite targets (section 3.1) with no camera data, but with ejecta mass collected; shots into thin targets (section 3.2) with no camera data, but with ejecta and spall mass collected; additional shots into thin targets used to determine projectile density effects (section 3.3); and shots for which high speed film data was available (section 3.4).

Table 3-2 summarizes the section 3.1 and 3.2 shots. An aluminum shot (see section 4.0) is also included at the bottom of Table 32. Table 3-2 includes all the shots for which ejecta and spall particles were collected, counted, and weighed. Numbers of interest in Table 3-2 include:
a. the ratio of spall and ejecta mass to projectile mass (average around 35)
b. average cone angle or angle between the spall or ejecta velocity vectors and a normal to the target surface coming out of the impact point
c. average calculated particulate velocity (see Appendix B for how this velocity was calculated)
d. fraction of the secondary mass that was spall or percent spall
e. fraction of the secondary mass that was dust or percent dust. This is the difference between the total spall and ejecta mass (determined by before and after weighing of the target) and the sum of the masses of particles collected from catcher material and in the chamber. The percent dust represents that fraction of the total secondary mass that disappeared, vaporized, or was crushed to dust too small to recover ($\ll 0.0001$ gms particles). The percent dust also represents larger particles that may have been lost in handling, and so could probably be arbitrarily reduced 5 or 10 percent

Sumary tables with similar information for section 3.3 and 3.4 data are contained at the start of each of those sections.

Table 3-1, Test Specimens Ordered

Table 3-1, Continued

S/N	MATERIAL	LAY UP	$\begin{aligned} & \text { WEIGHT } \\ & \text { (CY1) } \end{aligned}$	$\begin{gathered} \text { THICKNESS } \\ \text { (IN) } \end{gathered}$	JSC sBOT
$\begin{array}{r} J S C-05 A-001 \\ -002 \end{array}$	S-2/3501-6	\{CLOTH, 0, -60,	113.1	.104	913
	120VOLAN/3501-6	+60,0,0,+60.	113.4	.106	
	CLOTH	$-60,-60,+60$,			
		$0^{0}{ }_{5}$			
$\begin{array}{r} \text { JSC-06A-001 } \\ -002 \end{array}$	IM6/8551	CLOTH, [$00,+60$,	174.0	. 194	910
	Al93 PW/3501-6	$-60)_{5} \mathrm{l}_{4}$, СLOTH	171.3	. 191	912
	CLOTH				

```
IM6 - GRAPHITE
I2OVOLAN - GLASS CLOTH
S-2 - GLASS
AS-4 - GRAPHITE
3501-6 - STANDARD RESIN
Al93PW - GRAPHITE CLOTH
8551 - TOUGHENED RESIN
```

*CUT INTO FOUR PIECES

3.1 Semi-Infinite (thick) Targets - Bjecta and Spall Collected

When this study was initiated, the high speed camera was not available and the techniques later developed were untried. In addition, other restrictions existed on testing. For these reasons, a number of thick targets which would not be penetrated and produced only ejecta were ordered for testing. The mass of ejecta was easily and reliably determined by weighing the target before mass of material collected in cated mass was then compared with the of the target.

The data f rom these shots was used in developing the rel ationship for number of graphite/epoxy ejecta particles with a given energy and greater. The data was not used in the relationship giving total ejecta/spall mass as a function of projectile energy because only ejecta was produced in these tests, resulting in less total particle mass for a given projectile energy than with thin targets which were penetrated.

3.1.1 Discussion of Test Setup

A small styrof oam box was placed on the front of the target, with a hole cut in the center of the end to let the projectile enter. When the target was impacted, much of the ejecta stuck in the styrofoam. The individual ejecta particles were extracted from styrofoam and their location (x, y, z), mass, length, and depth of penetration measured. Mass measurements were accurate to 0.0001 g except where groups of very mall particles were counted and weighed together to get an average mass. Distance measurements were accurate to 1 mm . The location (x, y, z coordinates) of the projectile impact was also recorded.

This data allowed an accurate estimate of the total ejected mass, an approximate determination of the particle size distribution and velocity vector direction, and a crude estimate of the velocity of each particle based on the penetration distance into the stryofoam. When the high speed camera was acquired later in the testing this velocity approximation was checked and found to be reasonably accurate for the graphite/epoxy tests (see section 3.4.4). It was somewhat less accurate for the aluminum shots (see section 4.4), though only one aluminum high speed camera shot was available to check against it.

3.1.2 Shot 883 (1/2" thick, cloth on front)

This target (JSC-01A-003) had a layer of Hercules Al 93 PW cloth on both front and back sides. The cloth layer on the back was to help prevent spall. The cloth layer on the front reduced the amount of ejecta when compared to the next shot.

Table 3-2 summarizes the basic parameters of this shot. A nylon projectile of roughly 5 mg going $6.42 \mathrm{~km} / \mathrm{sec}$ impacted a $1 / 2$ inch thick graphite/epoxy (G/E) target in a vacuum chamber (with a vacuum of 200 microns of mercury. The Johnson Space Center (JSC) light gas gun was used. A styrofoam box fixed to the front of the target was used to collect the individual pieces of ejecta.

Following the shot, each piece of ejecta was removed from the styrofoam, weighed, and its location noted. The raw data from this considerable effort is given in appendix B. The difference between the before and after weights and the total mass collected from the styrofoam was assumed to represent vapor or dust. For this shot it was 67.2 percent of the total mass. Some of this may be due to loss of large particles through the projectile entry hole and in handling with this first attempt at particle collection.

Figure 3-1 shows the target front and back after the shot. Compare this with Figure 3-13, a no-cloth shot. The cloth reduces the amount of large ejecta.

Figures 3-2 and 3-3 plot ejecta mass versus length and diameter. Most of the mass of recovered composite ejecta is in the form of long thin slivers of material. The diameters plotted are actually an average calculated value. The length and mass of the slivers were measured, and given the density and assuming a cylindrical particle, an average diameter was calculated.

Figures 3-4 through 3-7 plot ejecta mass and velocity versus theta and phi (see appendix A for a definition of theta and phi).

Figures 3-8 and 3-9 plot ejecta mass and velocity versus cone angle. The cone angle is the angle between a normal to the target face at the impact point and the ejecta particle's velocity vector. The mass distribution (in Figure 3-8) seems to center around a cone angle of 50 to 60 degrees. The velocity distribution does also, but not as clearly.

Figure 3-10 plots mass versus velocity and illustrates that, in general, only small particles travel at high velocities.

Figure 3-11 shows a small scale plot of the Log number of particles of mass Mi and larger) versus the Log(Mi/Mtotal ejecta mass). Figure 3-12 shows a least squares fit linear relationship
for these two quantities and the derived equation (without the Logs) that results. A similar equation for aluminum taken from reference 1 is also plotted.

Pigure 3-1, Photos of Target (Shot 883)
JSC 01A-003, 1/2 inch thick, graphite/epoxy

Front

\qquad
$\ldots-1 . \quad-\ldots \frac{2}{2}$,
$\cdots \quad \cdots \operatorname{ct}$
तit it mi

3.1.3 Shot $\$ 884$ (1/2" thick, no cloth on front)

This shot is almost identical to the previous one, except this target (JSC-01B-002) had no cloth on the front surface. This shot was predicted to result in more ejecta.

Table 3-2 summarizes the parameters. A 4.76 mg nylon projectile going $6.26 \mathrm{~km} / \mathrm{sec}$ impacted a $1 / 2$ inch thick graphite/epoxy target. A styrofoam box fixed to the front of the target was used to collect the individual pieces of ejecta as explained in the previous shot.

Table 3-2 shows, as predicted, that this target, with no cloth on the front, produced almost twice as much total ejecta. There is roughly 50 percent less dust, indicating that much, if not all of this additional ejecta is in the form of large, collectable particles. Figure $3-13$ shows the target front and back after the shot. Compare it with Figure 3-1.

Figures 3-14 and 3-15 plot ejecta mass versus length and diameter. A comparison with Figure 3-2 shows that the particle lengths for this shot were almost ten times greater. The masses are also almost ten times larger. The diameters plotted are calculated using the lengths and masses of the slivers and a given density, and an assumed cylindrical particle.

Figures 3-16 through 3-19 plot ejecta mass and velocity versus theta and phi (see figure A-l in the appendix for a definition of theta and phi). Comparing the velocity versus theta plots (3-5 and 3-17) it is clear that the no cloth shot resulted in many higher calculated-velocity particles. See section 3.4 for a comparison of measured and calculated velocity.

Figures $3-20$ and $3-21$ plot ejecta mass and velocity versus cone angle. The cone angle is the angle between a normal to the target face at the impact point and the ejecta particle's velocity vector. The mass distribution (in Figure 3-20) seems to center around a cone angle of 60 to 70 degrees, a somewhat greater cone angle than for the previous shot with cloth covering. The velocity distribution also centers around the 60 to 70 degree cone angle, more clearly than the with cloth case.

Figure 3-22 plots mass versus velocity. It shows far more clearly than the cloth covered shot, that the small particles are faster than the large particles.

Figure 3-23 shows a small scale plot of the Log(number of particles of mass Mi and larger) versus the Log(Mi/Mtotal ejecta mass) and a least squares fit linear relationship for these two quantities and the derived equations (with and without the Logs) that results. The same plot, with a similar equation for aluminum taken from reference 1 , is also plotted in Figure 3-24.

Figure 3-13, Photos of Target (Shot 884)

JSC 01A-003, $1 / 2$ inch thick, graphite/epoxy, no cloth on front
Front
Back

$$
\begin{aligned}
& \text { ORNGINAL PACF IS } \\
& \text { OF MOOR QUALITY }
\end{aligned}
$$

3.2 Thin Graphite/Epoxy Targets - Ejecta and Spall Collected

Once a capture technique was developed and some other restrictions removed, it was clearly desirable to acquire data on spall as well as ejecta. Thin targets representative of truss element walls and possible module bumpers (. 06 to .10 inches thick) were then tested.

This data was used both in developing the particle number/particle energy relationship and also the total mass/projectile energy relationship.

3.2.1 Discussion of Test Setup

Shots 894, 917 and 923 used a plexiglass box enclosing the target in the vacuum chamber to catch and separate the ejecta from the spall. Initially, the purpose of this setup was merely to determine the ratio of spall to ejecta for these targets. It was very successful. Some of the photos in Figure 3-55 show the overall setup. In addition to styrofoam, two other catcher materials were tried. For shot 894, a sheet of plastic wool matting was placed at either end of the box to catch some of the ejecta/spall particles. See Figure 3-25. This setup was not as effective as the styrofoam because velocity estimation from depth of penetration was not practical. A flexible sponge-type foam was also tried and had the same problem. They were sufficient to obtain a size \& mass distribution of the ejecta and spall, but did not allow even a crude estimation of the particle velocities. In all subsequent shots, styrofoam was used (see Figure 3-55).

For shot 917 and 923, sheets of styrofoam were installed at the ends, along the sides, and on the bottom and top of the box See Figure 3-55. This worked well for getting the spatial particle distribution as well as size and mass distribution. An approximate particle velocity was calculated from the depth of particle penetration into the styrofoam, particle geometry parameters, and styrof oam shear strength. This al lowed the estimation of the particle kinetic energy distribution.

Single frame photography data is available for shots 917 and 894. This data is contained in appendix C.
3.2.2 Shot $\$ 894$ (0.093° thick, no cloth)

Table 3-2 summarizes the parameters. A 4.94 mg nylon projectile travelling at $4.75 \mathrm{~km} / \mathrm{sec}$ impacted a .093 inch thick graphite/epoxy target with no cloth covering (JSC-02B-003). The impact velocity was somewhat lower than the rest of the shots; this should be kept in mind when comparing it with other shots. The velocity is still within the range of interest, however.

Shots 894, 917, and 923, as shown in Table 3-2, represent roughly 5, 6 , and $7 \mathrm{~km} / \mathrm{sec}$ shots with approximately the same conditions. Shot 917 had a cloth covering, while 894 and 923 did not. All shots were into approximately 0.10 inch thick G/E targets.

Figure $3-25$ shows the overall setup for catching the spall and ejecta. The target was encased in a plexiglass box to separate spall from ejecta. The projectile enters through a small hole at one end. After the shot, the individual particles of ejecta and spall are collected and weighed. This shot used a woven batting inside the box to try to catch the individual particles where they impacted the box. This batting had been effective previously at catching aluminum particles.

Some approximate velocity data on particles is available from the single frame photograph of this shot (see Appendix C).

Figures 3-26 and 3-27 plot ejecta and spall mass versus particle length and diameter. The length plot, looking at ejecta only, shows about the same results as the semi-infinite shot without a cloth covering (see Figure 3-14, shot 1884). The diameters plotted are actually an average calculated value. The length and massuming the slivers were measured, and given the density and assuming a cylindrical partical, an average diameter was calculated.

The cloth batting was only at the ends of the plexiglass box. Most of the particles bounced off at the plexiglass and ended up on the bottom of the box. A spatial estimate (Theta and Phi, etc.) of particle location was therefore not produced.

Figure 3-28 shows a plot of the Log (number of ejecta particles of mass Mi and larger) versus the Log(Mi/Mtotal ejecta mass) and a least squares fit linear relationship for these two quantities and the derived equations (with and without the Logs) that result. Figure 3-29 shows the same thing for spall. Figure $3-30$ shows the spall, ejecta, and total spall plus ejecta plotted together on the same graph. The lines are all close together, indicating they all might be approximated by one curve.

Figure 3-31 shows the total spall and ejecta Log curve with a curve for aluminum (taken from Ref. 1). The aluminum line shows more particles of a given mass and greater once Log (Mi/Mt) goes above -3.2. In other words, there are more small graphite/epoxy particles, but more medium sized and greater aluminum particles. hazards to these equations is used elsewhere in the estimate of hazards to the Space Station.

Figure 3-25, Photos of Catcher Box (Shot 894)
JSC 02B-003, 0.093 inch thick, graphite/epoxy, no cloth on front Top View

Projectile enters here

Side View

Figure 3-25, Continued, Photos of Catcher Box (Shot \$894)
JSC 02B-003, 0.093 inch thick, graphite/epoxy, no cloth on front

3.2.3 Shot $\$ 917$ (0.127" thick, with cloth)

This shot is similar to the previous one, except this target (JSC-03A-003) had cloth on the front and back surfaces, predicted to result in less ejecta and spall. This shot was also at a higher velocity $(5.99 \mathrm{~km} / \mathrm{sec}$ versus 4.75 for the previous shot, 894). Figure 3-32 shows photos of the the target after impact. Compare it to Figure 3-56, from the next shot, with no cloth. The cloth reduces the number of large particles, but not the total mass of ejecta and spall as shown in Table 3-2. This may be due to other factors, such as the velocity difference, however. Another variable that was not easily measured or controlled at this point in the testing is the way in which the non-symmetrical projectile (which is a cylinder) impacts the target. See Figure 5-4.

Table 3-2 summarizes the parameters. A 4.86 mg nylon projectile going $5.99 \mathrm{~km} / \mathrm{sec}$ impacted a 0.127 inch thick graphite/epoxy target with a cloth covering on the front and back. A plexiglass box with styrofoam placed around the inside (see Figure 3-55) was used to catch the individual pieces of ejecta.

Figures 3-33 and 3-34 plot ejecta mass versus length and diameter. A comparison with Figure 3-26 shows that the largest particle lengths for this shot (with cloth on the front) were almost ten times less than those for the shot with no cloth (\$894).

Figures 3-35 through 3-38 plot ejecta mass and calculated velocity versus theta and phi (see figure A-l in the appendix for a definition of theta and phi). Other approximate velocity data is available from the single frame photo of the impact in Appendix C.

Figures 3-39 and 3-40 plot ejecta mass and velocity versus cone angle. The cone angle, in this case, is the angle between the incoming projectile's velocity vector and the ejecta particle's velocity vector. The mass distribution (in Figure 3-39) seems to center around a cone angle of 30 to 40 degrees, smaller than the 60 to 70 degree averages for semi-infinite shots. Table 3-2, which calculates an average cone angle, also shows this. The velocity distribution shows the same centering; around 40 degrees or so.

In other hypervelocity impacts, evidence is said to exist of very high speed ejecta particles coming off at angles near 90 degrees, almost parallel to the face of the target plate. Our data (including high speed camera photos in later sections) do not show this occurring with graphite/epoxy.

Figure 3-41 plots ejecta mass versus velocity. This plot does not include all particles. It only includes those that were recovered and their velocity estimated, and as such it should be
considered representative of a fraction of the data only. The very small particles, which are likely to be moving at even higher velocities, could not be captured and are thus not shown on

Figure 3-42 plots the Log (number of ejecta particles of mass Mi and larger) versus the Log(Mi/Mtotal ejecta mass). A least squares fit linear relationship for these two quantities and the derived equations (with and without the Logs) that result are also shown. These equations are used elsewhere in the estimate of hazards to the Space Station.

Figures 3-43 and 3-44 plot spall mass versus length and diameter. Except for a few large slivers, the data is similar to that for the ejecta.

Figures 3-45 through 3-48 plot spall mass and velocity versus theta and phi (see figure A-1 in the appendix for a definition of
theta and phi).

Figures 3-49 and 3-50 plot spall mass and velocity versus cone angle. The cone angle is the angle between a normal to the target face at the impact point and the ejecta particle's velocity vector. The distributions seem somewhat more spread out than in previous plots.

Figure 3-51 plots spall mass versus velocity.
Figure 3-52 plots the Log (number of spall particles of mass Mi and larger) versus the Log(Mi/Mtotal spall mass). A least squares fit linear relationship for these two quantities and the derived equations (with and without the Logs) are also shown.

Figure 3-53 plots the equations derived from Figures 3-42 and 3-52 and the Log Log plot of total ejecta and spall. The lines are all close together, indicating they could all be approximated by one line.

Figure 3-54 plots the Log-Log total ejecta and spall line along with an aluminum line (from Ref. l). The results are similar to previous plots. The equations derived will be used to estimate the damage hazard to the Space Station.

Figure 3-32, Photos of Target (Shot ${ }^{\text {917 }}$

JSC 03A-003, 0.127 inch thick, graphite/epoxy, with cloth

Back

Front

(oas/my) Ktioolen alo!tad 0foa!3

(0as/wx) Kt!0010n 010!tiod 070e!3

(шш) دafamo!a pp!f10d llods

(oas/wi) Kt!polan ploluod llods

(aas/ury) Ky!oopn ap!nod liods

(0as/wx) Ktionen aplaid liods

3.2.4 $\begin{aligned} & \text { Shot } \\ & \text { impact) }\end{aligned}$ (0.0935°, without cloth, 30 deg. oblique

This shot is similar to the previous two, except this target (JSC-02B-005) was angled 30 degrees to the projectile velocity vector and had no cloth covering, predicted to result in more ejecta and spall. This shot was also at a higher velocity (7.02 $\mathrm{km} / \mathrm{sec}$ versus roughly 5 and $6 \mathrm{~km} / \mathrm{sec}$ for the previous two thin G/E shots).

Figure 3-55 shows the catcher box made of plexiglass and lined with styrofoam. The large holes in two of the styrofoam side panels were to allow single frame photography, which didn't work on this shot. Appendix C shows some single frames that did work on graphite/epoxy shots. Approximate velocity data can be deduced from the single frame shots.

Figure 3-56 shows photos of the the target after impact. Compare it to Figure 3-32, from the previous shot, with cloth. The cloth reduces the number of large particles, but not the total mass of ejecta and spall as shown in Table 3-2. The total mass ejected and spalled in this shot was exactly the same as for the previous shot, even though the velocity and angle of impact were different. This indicates that cloth covering (and perhaps $1 \mathrm{~km} / \mathrm{sec}$ velocity and 30 degree angle) do not have large effects on the total mass of ejecta and spall. The factors could be offsetting however, and hidden variables such as projectile impact attitude could also be playing a part. In any event, given the low level of approximation needed in this rough assessment of damage hazard, these factors (30 deg. angle, w/wo cloth, $1 \mathrm{~km} / \mathrm{sec}$) are assumed unimportant when equations that describe the spall and ejecta are produced. A many shot program focusing on these factors alone will be needed to see their effects.

Figures 3-57 and 3-58 plot ejecta mass versus length and diameter. A comparison with Figures 3-26 and 3-33 shows that the largest particle lengths for the two no cloth shots are about the same. The no cloth, 30 degree angle shot has the most massive piece of ejecta however, by a factor of three.

Figures 3-59 through 3-62 plot ejecta mass and calculated velocity versus theta and phi (see Appendix B for a definition of theta and phi).

Figures 3-63 and 3-64 plot ejecta mass and velocity versus cone angle. The cone angle, in this case, is the angle between the outgoing ejecta or spall particle's velocity vector and a normal to the plane of the target's face, coming out of the impact point. The mass distribution seems fairly uniform between 20 and 70 degrees. Table 3-2, which calculates an average cone angle, shows an average of 47 degrees.

Figure $3-65$ plots ejecta mass versus velocity. This plot shows the small particles going faster than the big ones, fairly clearly.

Figure 3-66 plots the Log (number of ejecta particles of mass Mi and larger) versus the Log(Mi/Mtotal ejecta mass). A least squares fit linear relationship for these two quantities and the derived equations (with and without the Logs) that result are also shown.

Figures 3-67 and 3-68 plot spall mass versus length and diameter. Compare the plots with Figures 3-57 and 3-58.

Figures 3-69 through 3-72 plot spall mass and velocity versus theta and phi.

Figures 3-73 and 3-74 plot spall mass and velocity versus cone angle. The cone angle is the angle between a normal to the target surface at the impact point and the ejecta particle's velocity vector.

Figure 3-75 plots spall mass versus velocity.
Figure 3-76 plots the Log (number of spall particles of mass Mi and larger) versus the Log(Mi/Mtotal spall mass). A least squares fit linear relationship for these two quantities and the derived equations (with and without the Logs) are also shown.

Figure 3-77 plots the equations from Figures 3-66 and 3-76 and the Log Log plot of total ejecta and spall. The lines are all close together, indicating they could all be approximated by one line.

Figure 3-78 plots the Log Log total ejecta and spall line along with an aluminum line (from Ref. 1). The results are similar to previous plots. The equations derived will be used to estimate the damage hazard to the Space Station.

Figure 3-55, Photos of Catcher Box (Shot $\ddagger 923$)

JSC 02B-005, 0.095 inch thick, graphite/epoxy, no cloth on front

Projectile enters

Side View

Top View

Figure 3-55, Continued, Photos of Catcher Box (Shot $\# 923$) JSC 02B-005, 0.095 inch thick, graphite/epoxy, no cloth on front

Spall on
back wall

Figure 3-56, Photos of Target (Shot ${ }^{\text {F }}$ (923)
JSC 02B-005, 0.095 inch thick, graphite/epoxy, no cloth on front

Front

\qquad or be
040

85
$c-2$

Figure 3-66

<28 !W ssow to quod sequanu $N-(N) 507$


```
(س) 47биөา 9p!pod liods
```


(oas/mx) Kiloolan apland liods

(oas/wx) Kiloolan ap!uod liods

(oas/my) Ki!polen 日p!rod llods

(oas/mx) Ktioolen aplnod liods

3.3 Thin Graphite/Epoxy Targets - Projectile Density Effects

Table 3-3 shows a series of additional shots, some performed in conjunction with a University of Texas effort to determine projectile density effects. Aluminum and nylon projectiles were used at velocities around $5 \mathrm{~km} / \mathrm{sec}$. In Shots 889,890 , and 895 ejecta and spall particles were collected separately, but detailed data, as shown previously, was not collected. Some of the shots used a toughened resin system. A shot using a fiberglass target (\#913) is also shown for comparison.

More data is needed (at different projectile energies) to conclude decisively, but it appears that the higher density aluminum shots produced more ejecta/spall versus equivalent energy nylon shots. Figure 5-3, taken from Ref. 2 shows the same relationship between projectile density and ejecta/spall mass for aluminum.

From the data shown in Table 3-3 it also appears that toughened resin offers no significant advantage in reducing the mass of ejecta/spall produced from hypervelocity impacts. The toughened resin may have other advantages, however. The data collected in these shots was primarily used in developing the total ejecta/spall mass versus projectile energy relationship.

3.4 Thin Graphite/Epory Targets with High Speed Canera

Accurate velocity measurements of ejecta and spall are critical to assessing the hazard to the space Station. In the first series of shots done in this study, accurate velocity measurement was unavailable. A crude method for estimating the velocity of the larger particles based on their penetration into styrofoam was used and checked with a few single photos and one film. Once the Orbital Debris Lab High Speed Camera became The cameral data was also used to check the estimates more carefully.

Table 3-4 summarizes the shots for which high speed camera data was taken. Three graphite/epoxy targets and one aluminum target were used.

The new camera system is a custom designed, state-of-the-art ultra-high-speed rotating mirror framing camera, utilizing a laser diode for image illumination. The camera is capable of exposing 80 frames of 35 mm IR film at 2×106 frames/sec. Even at that framing rate, conventional illuminating systems con the order of 10 to 15 nsec.) were not fast enough to "freeze" a 300 micron particle traveling at speeds in excess of $7 \mathrm{~km} / \mathrm{sec}$. The $860 \mathrm{~nm}, 100$ watt laser diode used for this system has a pulse duration of 5 nanosec. The "exposure time" is therefore 5 nanoseconds and there is one microsecond between exposures.

3.4.1 Shot 972

Figure 3-79 shows the raw film data. The target used in this test was a generic graphite/epoxy sample, similar to the roughly 0.10 inch samples used in the other shots, but not listed in Table 3-1.

Table 3-5 illustrates how the raw data from the film was turned into velocity estimates.

3.4.2 Shot $\$ 981$

Figure 3-80 shows the raw film data. The Figure 3-80 photographs and analysis shown in Figure 3-81 were provided by Dr. Ching Yew of the Univ. of Texas.

Figure 3-81 plots the progress of the spall front, indicating a constant velocity consistent with velocities calculated for graphite/epoxy particles.

Table 3-6 is the data worksheet.

3.4.3 Shot $\$ 990$

Figure 3-82 shows the raw film data. The negative was not high quality, but data could be taken from it.

Table 3-7 is the worksheet.

3.4.4 Comparison of Calculated and Measured Velocity

Figure 3-83 compares measured and estimated ejecta velocities over the range of masses. The plot indicates the calculated values are fairly accurate.

Figure 3-84 compares measured and estimated spall velocities for a range of masses. The two data points fall within the same general range as the calculted values.

Overall, the calculated graphite/epoxy spall and ejecta velocities appear to be roughly accurate.
ORJGNAL PAOE is OF POOR QUALITY

Table 3-5
Work Sheet for Shot \# 972
Ejecta and Spall Velocities detrained froe Mi-Speed Camera

$$
972
$$

972
mi s
0.0695
Diaster (in)
Framing Period 211.2
line between 1.13
Distance 1.85333333
Correction Factor
5.86 (inaccurate)
Calf. Pros. Vel.
(ke/sec)
MEASURERENIS (uncorrected by distance factor)
CALCULAIED VALUES (corrected with distance factor)

$$
t=0
$$

$\mu \mathrm{sec}$

$$
\mathrm{t}=1.0246 \quad \mu \mathrm{sec}
$$

$$
\mathrm{t}=2.0492 \mu \mathrm{sec}
$$

$$
\mathrm{t}=3.0738 \quad \mu \mathrm{sec}
$$

Figure 3-80 (cont'd)

$\mathrm{t}=4.0984 \quad \mu \mathrm{sec}$
$t=5.123 \quad \mu \mathrm{sec}$
$\mathrm{t}=6.1476 \quad \mu \mathrm{sec}$
$\mathrm{t}=7.1722 \mu \mathrm{sec}$

$$
t=8.1968 \quad \mu \mathrm{sec}
$$

$\mathrm{t}=13.3198 \quad \mu \mathrm{sec}$

Figure 3-80 (cont'd)

$\mathrm{t}=16.3936 \mu \mathrm{sec}$
$\mathrm{t}=20.492 \quad \mu \mathrm{sec}$
$t=28.6888 \quad \mu \mathrm{sec}$

Ejecta and Spall Velocities deterained froa hi-speed Lanera

$$
\begin{aligned}
& 10.5 \\
& 5919 \cdot 2 \\
& 9420^{\circ} 1 \\
& 6.572 \\
& 5690^{\circ} 0 \\
& d 3 / \mathrm{sg} \\
& 186
\end{aligned}
$$

MEASUGERENTS \{uncorrected by distance fartor)
5.07 (inaccuratel

$$
\begin{gathered}
\text { Table 3-6 } \\
\text { Worksheet for Shot \# } 981
\end{gathered}
$$

CALCULAIED VALUES (corrected with distance factor)

	$\begin{aligned} & 16 \cdot 2 \\ & 1 \theta^{\prime} \cdot 2 \\ & 61^{2} \\ & 5 S^{2} \end{aligned}$			9656 les: 69% orz'9 181%	60t. 0 $895^{\circ} 0$ LTE'0 $98: 0$ $510^{\circ} 0$ 1910
$\begin{aligned} & \text { (3as/ex) } \\ & \text { ju0st } \\ & \text { 154!t } \end{aligned}$	$\begin{gathered} (0 a s / 0 X) \\ 10011 \end{gathered}$ $\text { \|5 } 5$	$\begin{gathered} (303 / 4 x) \\ 100 / 4 \\ 151!1 \end{gathered}$	$\begin{gathered} (30 s / 0 x) \\ \text { fvos } \\ \text { fsiti } \end{gathered}$	$\begin{aligned} & \{(0) \mid \\ & \text { spes } \\ & \text { 4;p!n } \end{aligned}$	(4!) dates jo 41P!
sot pajpisios Apropan iferano	jua seddy ifejano	apbue avos 201 	an pus sedidy 3715 visurs		

3-82
High Speed Camera Data (Shot \# 990)
1.04 microseconds between frames

\square Calculated vel. 884

4.0 Aluminum Targets

A significant fraction, if not most of the space Station, will be built of aluminum. Some data on aluminum spall and ejecta exists in the literature. The following shots supplement this information.

All of the targets used in these shots were $6 \times 6 \times 0.089$ inch thick 6061 T-6 aluminum. This material is representative of what might be expected in a bumper or outer wall protecting the inner hull of a habitation module.

4.1 Shot $\$ 933$ (0.089 - Thick 6061 T-6 Aluminua)

The test setup for this shot was exactly the same as for the graphite/epoxy shots $\$ 917$ and 923 . The target was inside a plexiglass box, with styrofoam all around to catch the spall and ejecta.

Table 3-2 summarizes the data for this shot. A 4.98 mg nylon projectile impacted a 0.089 inch thick target of $6061 \mathrm{~T}-6$ aluminum traveling at $6.3 \mathrm{~km} / \mathrm{sec}$. 0.12 grams of ejecta and spall were collected, making up 50.9 percent of the mass change of the target. 71.2 percent of the collected material was spall.

Figure 4-1 shows the target after the shot.
Figures 4-2 and 4-3 plot ejecta mass versus length and diameter. The length and diameter terms are somewhat misleading holdovers from the graphite/epoxy plots. The aluminum particles are small chips or flakes rather than slivers.

Figures 4-4 through 4-7 plot ejecta mass and calculated velocity versus theta and phi (see appendix B for a definition of theta and phi). The calculated velocities are, in general much higher than for the graphite epoxy shots. The high speed film data (see section 4.2) indicates that while these estimated velocities are in the correct range for the large particles, they may be a factor of two or so too high for the small particles. Thus the highest velocities indicated in these graphs may need to be reduced by a factor of two.

Figures 4-8 and 4-9 plot ejecta mass and velocity versus cone angle. The cone angle, in this case, is the angle between a normal to the target face at the impact point and the ejecta particle's velocity vector.

Figure 4-10 plots ejecta mass versus velocity. This plot is estimated to include about half the total ejecta mass.

Figure 4-11 plots the Log (number of ejecta particles of mass Mi and larger) versus the Log(Mi/Mtotal ejecta mass). A least
Figure 6-2

$$
\text { (1K - Zఒש/sfoodu! to sequinu) xnla } 607
$$

Figure 6-2

Pigure 4-1, Photos of Target (Shot \#933)

0.089 inch thick, 6061 T-6 Aluminum

(oas/mx) Ktioolan aplacid Dfoa!3

(oas/ux) Kiloolan apladid Diva!3

(سル) 47চuə7 әp!tod llods

(山س) رazawo!o alp!f10d llods

(20s/wx) Kł!0010n ap!lu0d llods

(oas/سメ) Ktiongan alo!nod llods

(oos/سy) Kt!oolan әlo!fod llods

$\therefore 8$!W ssour to 子and saquanu $N-(N) 507$

(шس) 47бие7 epplpod

(um) seremo!o ep!riod

4.2 Shot ${ }^{\text {¢ }} 975$ - Bigh Speed Canera Shot

Shot $\$ 975$ was performed to determine accurate ejecta and spall particle velocities. A 4.6 mg nylon projectile, traveling at $6.66 \mathrm{~km} / \mathrm{sec}$ impacted a . 089 inch thick, $6061 \mathrm{~T}-6$ aluminum target. 0.10 grams of spall and ejecta were produced as measured by weighing the target before and after the shot. More data on the shot is contained in Appendix A, which lists all the shots and their basic parameters.

Figure 4-26 shows the high speed film raw data.
Table 4-l shows the worksheet used to calculate the particle velocity.

4.3 Shot 979 - Additional Data

Though no high speed film or particle count data was taken with this shot, the total ejecta and spall and energy were used in later derivations of equations.

A 4.60 mg projectile traveling at an estimated $5.6 \mathrm{~km} / \mathrm{sec}$ impacted a 6061 T-6 aluminum target and produced a total of 0.07 grams of spall and ejecta. Appendix A documents the shot in more detail.

Ejecta and Spali velucities deteranined from Hi-Speed Cacera

Menslinements (uncorrected by distance factor)

~ 8
를
Calculateo values (corrected mith distance factor)

4.4 Comparison of Calculated and Measured Velocity Data

Figure 4-27 shows calculated ejecta velocity from shot $\$ 933$ and measured (with the high speed camera film) velocity from shot \#975. The calculated data indicates smaller high speed particles (max velocity $=7.5 \mathrm{~km} / \mathrm{sec}$). The measured data shows a single point for the small particles of around $4 \mathrm{~km} / \mathrm{sec}$. This single data point represents a maximum velocity for the small particles as measured on the film for shot $\$ 975$. This indicates the calculated velocities for the small aluminum particles may be high by as much as a factor of two. Since this error is conservative for damage estimation, and since projectiles with densities higher than nylon (which was used in these tests) are likely to occur in the real case, the calculated velocities were used in later damage calculations. Higher density projectiles are predicted to result in more spall and ejecta coming of at higher velocities.

Figure 4-28 shows a similar plot for spall. Once again, the maximum calculated velocities for the small particles are much higher than the maximum measured velocity.

(0as/ư1) Kt!001an aplfi0d 0f0a!ヨ

5.0 Derived Relationships from Graphite/Epoxy and Aluminum Impact Data

Several empirically derived relationships for ejecta/spall were developed to help determine the relative damage potential from secondary impacts. They were generally developed for both graphite/epoxy and aluminum targets by least squares fits of data from the shots described in Sections 3 and 4. Two basic equations used in the damage assessment program (described in Section 6) were developed. One correlated the total mass of the ejecta/spall particles with the energy of the projectile, while the other related the number of ejecta/spall particles of a given energy and above to the total mass of ejecta/spall. These two relationships could have been combined into a single relationship that expresses the number of ejecta/spall particles with a given energy and above to the particle and projectile energies, although this was not done in this study. Both relationships were developed separately for graphite/epoxy and aluminum targets and are therefore valid only for the specific target type.

The following sections describe all relationships developed in the study.

5.1 Total Bjecta/Spall Mass Scaled with Projectile Energy

As a rough approximation in this limited study, the total combined mass of ejecta and spall produced from hypervelocity impact was scaled as a function of projectile energy. This approach may be conservative in that the mass of ejecta/spall is probably over-estimated as projectile energy increases.

In Figure 5-1, the total combined ejecta and spall mass is plotted versus projectile energy for all shots with sufficient data listed in Appendix A. The labels indicate whether a target is graphite/epoxy or aluminum, differences in ply orientation, cloth or no-cloth covering, thin or semi-infinite (0.5 in. thick) target, aluminum or nylon projectile, and normal or oblique impact angles. The impact obliquity angle is the angle between the target surface normal and the projectile flight path (30 deg . in the two oblique shots in this study).
(5) ssow llods 28 0700!3 10701

5.1.1 Graphite/Epozy Targets

In Figure 5-2, a least-squares linear fit to the thin plate graphite/epoxy data (with and without cloth covering) is given by the equation and line. The equation relates the combined mass of ejecta/spall, Mes (g), to projectile energy, Eproj (J).

$$
M_{e s}=0.00357 * E_{p r o j}-0.00935
$$

This equation is valid for thin (approximately 0.1 in. thick) graphite/epoxy targets. It does not include the effects of projectile density, obliquity angle, or target surface covering. Several shots from late in the study were not included in this earlier formulation but were used for other purposes (primarily ejecta and spall particle velocity verification using the Cardin high speed camera).

Generally, more ejecta/spall was produced from the thin plates than the thick for equal energy projectiles. This effect also seems to play a role in the oblique angle shots on the thin plates; because the projectile passes through the plate at an angle, it "sees" more plate, ie. the plate is relatively thicker for the oblique impacts. In the limited number of oblique shots, the ejecta/spall mass was slightly less for equal energy projectiles. Given more data, ejecta/spall mass versus projectile energy curves could be constructed for different target thickness to projectile diameter ratios.

Slightly more ejecta/spall was produced from equal energy impacts with higher density ($2.7 \mathrm{~g} / \mathrm{cc}$) aluminum ($6061-\mathrm{T} 6$) projectiles than with nylon projectiles ($1.14 \mathrm{~g} / \mathrm{cc}$) for the thin targets. This phenomenon for semi-infinite targets is illustrated by the increase in crater volume with projectile density in Figure 5-3. The impact velocity for the data plotted in Figure 5-3 was 6.6 $\mathrm{km} / \mathrm{sec}$. It has been reported that the influence of projectile density on crater volume and presumably ejecta mass decreases with increasing projectile velocity, and may become negligible at meteoroid velocities (Ref.2, p.467).

The projectile density effect was not quantified for additional reasons. First, for identical shots at nearly equivalent projectile energies ($\$ 893$ and $\$ 894$), the ejecta/spall mass varied by 0.05 g or approximately 25 percent. Thus, the apparent increase in ejecta/spall mass with density increases was not appreciably greater than the accuracy of the data. Second, the length to diameter ratio for the aluminum cylindrical projectiles was approximately 0.5 while the nylon projectiles L /D ratio was approximately 1.0. As the L / D ratio decreases, the crater volume (and perhaps ejecta/spall mass) also decreases as shown in Figure 5-4. Thus, the full effect of higher projectile density was masked by lower projectile L/D ratio. Also, occasionally the projectile will yaw (crater volume is a function of the cosine of
yaw angle). Yaw is especially a problem with the aluminum projectiles with a low L/D. All this results in uncertainties that led us to disregard the projectile density in these approximate calculations.

A cloth covering significantly reduced the amount of ejecta produced from equivalent energy projectiles for thick plates tested in this study (shots $\$ 883$ and $\$ 884$). However, the effect of cloth is not nearly as apparent for the thin plate data which was used to generate the above equation. The quantitative advantage of cloth in terms of reducing the mass of ejecta/spall appears to be a function of the target thickness to projectile diameter ratio. More data will be needed to develop the exact relationship.

Figure 5-3

Projectile Density Effects (Taken from Ref. 2)

(b)

Crater depth and volume for equal-mass spheres of various densities. (a) Photographic representation; (b) graphical representation: (Δ) volume versus p_{p}; (0) penetration versus ρ_{3}. Targer: $110-\mathrm{F} \mathrm{Al}$, semiinfinite. Impact velocity: $6.6 \mathrm{~km} / \mathrm{sec}$. Projectile: Zelux-type $\mathrm{M}\left(\rho_{y}=1.20\right.$, diam $\left.=0.313\right)$; $2017 \mathrm{Al}\left(\rho_{p}=2.70\right.$, diam $=0.240$); C1020 steel $\left(\rho_{p}=7.80 \mathrm{~g} / \mathrm{cm}\right.$, diam $=0.169 \mathrm{in}$.). All projectiles same mass -0.32 g .

Figure 5-4
 Projectile L/D Effects
 (Taken from Ref. 2)

Crater depth and volume for projectiles of equal mass and various shapes. (a) Photographic representation; (b) graphical representation versus $/ / d_{i}$; (0) penetration versus $l / d_{d} ;(\Delta)$ volume versus l / d_{s}. Target: $1100-\mathrm{F} A 1$, eeminfinite. Impact velocity: $6.6 \mathrm{~km} / \mathrm{sec}$. Projectile: 2017 Al. All projectiles same mass- 0.32 g .

5.1.2 Aluminum Targets

Figure 5-5 illustrates a linear fit to the 6061-T6 aluminum total ejecta and spall mass versus projectile energy data. The equation relates the combined mass of ejecta/spall, Mes (g), to projectile energy, $E_{\text {proj }}(J)$, for thin (0.089 in. thick) 6061-T6

$$
M_{e s}=0.00301 * E_{\text {proj }}-0.178
$$

When this equation was developed, only two early data points at basically the same projectile energy were available (shots $\$ 933$ and \#975). Therefore, an empirical equation for aluminum developed from experimental results for use at $10 \mathrm{~km} / \mathrm{sec}$ projectile speeds (Ref. l, p.2640) was used to generate another point at higher projectile energies. This equation related the ejecta mass to projectile mass.

$$
M_{e}=115 * M_{p r o j}
$$

The linear fit was through these three data points. Shot *979 was an additional later nylon projectile data point that fell near the aluminum linear scaling line. The last two shots ($\$ 991$ and $\$ 992$) were with aluminum (6061-T6) projectiles and seem to indicate that the projectile density effect for aluminum targets may be greater than for graphite/epoxy because of the large amounts of ejecta/spall that were produced (especially in shot ${ }^{\text {991). More data will be necessary to confirm this however. }}$

5.2 Number of Ejecta/Spall Particles of a Given Mass and Above

From the data of individual ejecta and spall particles, a linear Log-Log relationship was foundrelating the number of particles of a given mass and greater, N, to the ratio of the particle mass, $M(g)$, over the total ejecta/spall mass, Mes (g). The functional form of this equation is useful to get an idea of the mass distribution of the ejecta and spall particles, but was not used as such in the damage assessment model explained in Section 6. The general form of the equation reduces to

$$
N=k *\left(M / M_{e s}\right)^{n}
$$

where the constants, k and n, for various specific target groups are given in the following sub-sections.

5.2.1 Graphite/Epoxy Targets

The least-squares linear fits for the graphite/epoxy ejecta particles given in Figures 3-11, 3-23, 3-28, 3-42, and 3-66 are all plotted in Figure 5-6 together with the overall graphite/epoxy ejecta average. Similarly, the linear fits for the graphite/epoxy spall particles given in Figures $3-29$, $3-52$, and $3-76$ are all plotted in Figure 5-7 with the overall graphite/epoxy spall average. The ejecta and spall average lines as well as the overall graphite/epoxy average are plotted in Figure 5-8. Spall is typically about 60 to 70 percent of the total ejecta and spall mass for the plate thicknesses (approximately 0.1 in.) , tested in this study as is indicated in Table 3-2.

From Figure 5-8, it is evident that although there is about twice as much spall mass as ejecta mass, the number of particles of a given particle mass and greater for the same ratio of particle mass to total particle mass (ejecta or spall) is nearly the same for ejecta and spall (for typical particle to total mass ratios of 0.0001 to 0.05). In other words, there are approximately twice as many spall particles as ejecta particles for a given particle mass. (The real factor is $\frac{1}{2}$ raised to the n power when total spall mass is twice the ejecta mass which, because n approximately equals -1 , makes $N_{s}=2 * N_{e}$). The k and n constants for the general equation are:

	K	n
G/E Ejecta	0.0276	-1.155
G/E Spall	0.0070	-1.382
G/E Avg.	0.0131	-1.253

In Figure 5-9, the average equation for graphite/epoxy with cloth is plotted with the average equation for graphite/epoxy without cloth. In Section 5.1.1, it was mentioned that for a given energy projectile there was little observable difference between
cloth and no-cloth covered graphite/epoxy in terms of the total ejecta/spall mass. Given that information, it is apparent from Figure 5-9 that, in the typical particle to total mass ratio range of 0.0001 to 0.05 , there are more ejecta/spall particles that have large relative masses (particle to total mass ratio of 0.001 and greater) for graphite/epoxy targets without cloth than with cloth. The reverse holds true for ejecta/spall particles of lower relative masses (particle to total mass ratio of less than 0.001). The k and n constants for the general form of the equation are:

G/E w/ Cloth	0.0036	-1.426
G/E w/out Cloth	0.0356	-1.157

(N) N 007

(N) 007

(N)007

5.2.2 Aluminum Targets

In Figure 5-10, the overall average graphite/epoxy equation (from Section 5.2.1) is plotted with the average aluminum equation of Figure 4-24 and a equation from the literature for the mass distribution of particles resulting from a $10 \mathrm{Km} / \mathrm{sec}$ impact on an aluminum spacecraft (Ref. 1, p.2640). From Figure 5-10 it is clear that the aluminum test where particle counts were taken (shot ${ }^{\text {\#933 }}$) resulted in somewhat fewer particles of a given mass and greater than the literature equation for orbital debris impacting into an aluminum spacecraft. This may be due to the lower density for the nylon projectile (1.14 g/cc) used in shot $\$ 933$ versus the presumed higher projectile density in the tests that resulted in the reported spacecraft particle distribution (typically $2.8 \mathrm{~g} / \mathrm{cc}$ is used for orbital debris density). The k and n constants for the general form of the equation are:

	k	n
G/E average	0.0276	
Al average	0.0 .155	
Al Spacecraft	0.8	-0.997
		-0.8

5.3 Number of Bjecta/Spall Particles of a Given Energy and Above

A key pair of equations developed for the damage assessment model (described in Section 6) relates the number of ejecta and spall particles of a given energy and above to the particle energy and the total ejecta and spall mass for both graphite/epoxy and aluminum (6061-T6) targets. The general form of the equation is:

$$
\log (N)=a *\left(\log \left(E / M_{e s}\right)\right)^{2}+b * \log \left(E / M_{e s}\right)+c
$$

where the number, N, of ejecta/spall particles of a given particle energy, $E(J)$, and greater related in a second-order Log-Log expression to the particle energy and total ejecta/spall mass, Mes (g). The total ejecta and spall mass, Mes (g), is related to the projectile energy as explained in sections.1.' The equations and constants (a, b, c) for both graphite/epoxy and aluminum targets are described in the following sections.

(N)007

5.3.1 Graphite/Epozy Targets

Figure 5-11 shows the least-squaresfit to all the graphite/epoxy data for which particle counts were completed (shots \$88, \$884, \$894. \$917, and \$923). Curve-fits were also developed for graphite/epoxy with and without a cloth covering as given in Figures 5-12 and 5-13, and to describe the graphite/epoxy ejecta and spall particle energies as given in Figures 5-14 and 5-15. The curves for cloth and no-cloth covered graphite/epoxy are compared in Figure 5-16. From this figure it is obvious that a cloth covering reduces the energy of the ejecta/spall particles. As will be seen in section 5.4 , this is due to the reduction of the ejecta/spall particle velocity. Ejecta and spall particle energy curves are compared in Figure 5-17. There is not a large difference between ejecta and spall particle energies con a ratio basis of particle energy to total particle mass; remember that spall mass was found to be approximately twice ejecta mass in this study) but a slight tendency exists for spall to have more higher energy particles and fewer lower energy particles than ejecta (on a ratio basis). The graphite/epoxy coefficients for the general equation (a, b, c) are:

G/E overall	-0.168	-0.851	+1.695
G/E w/ Cloth	-0.322	-1.227	+1.203
G/E w/Out Cloth	-0.163	-0.663	+1.822
G/E Ejecta	-0.218	-0.897	+1.602
G/E Spall	-0.169	-0.674	+1.737

5.3.2 Aluminum Targets

Figure 5-18 shows the quadratic form of the ejecta/spall particle energy distribution for aluminum (shot 933). The aluminum ejecta equation and curve appears in Figure 5-19, the al uminum spall equation is in Figure 5-20, and a comparison between them in Figure 5-21. There were significantly more higher energy and less lower energy spall particles than ejecta particles. This was due to the mass distribution of the aluminum ejecta/spall particles, not a difference in observed velocity between ejecta and spall. There were many more large particles (chunks) in the aluminum spall, while the aluminum ejecta was mainly very small particles (less than/equal to 0.0001 g) and dust. A comparison between the overall graphite/epoxy and overall aluminum particle energy curves is given in Figure 5-22. These curves were used in the damage assessment model as discussed in Section 6. Basically, there were significantly more high energy and less low energy aluminum ejecta/spall particles observed than graphite/epoxy ejecta/spall particles for the limited number of shots made during this study.

5.4 Ejecta/Spall Particle Velocity and Mass

Figure 5-23 is a combination of figures 3-9, 3-22, 3-41, 351, 3-65, and 3-75. It gives an idea of how the calculated particle velocity varies with particle mass. Some of the lower mass ejecta/spall particles can travel relatively fast while all higher mass particles tend to travel slowly. For each individual shot, a line was constructed that delineated the maximum particle velocity boundary. There was little real difference between ejecta and spall particle velocities. However, the particle velocities for cloth covered graphite/epoxy were significantly lower than for graphite/epoxy without cloth. Figure 5-23 shows three lines which are averages of the individual boundaries:

G/E w/out cloth	$V=-540 * M+4.65$
G/E average	$V=-1543 * M+4.09$
G/E w/ cloth	$V=-2546 * M+3.53$

where the maximum ejecta/spall particle velocity, V ($\mathrm{km} / \mathrm{sec}$), is related to particle mass, $M(g)$. These equations were not used in the damage assessment model described in Section 6 , but are presented to indicate calculated particle velocity distributions.
Figure 5-23

6.0 Bstimate of Damage Potential to the Space Station

Based on the scaling relationships developed in the previous section, a preliminary assessment was made of the relative amounts of damage that can be expected from impacts by ejecta and spall particles on particular Space Station structures. The flux from primary impacts (meteoroids and orbital debris) is compared to the flux from secondary impacts (ejecta and spall) with a given critical kinetic energy that will result in damage to the particular space Station structure of interest. A spreadsheet program for IBM compatible PC computers was developed to perform the damage assessment calculations.

This section describes the damage assessment model; specifically summarizing the empirical equations used for relating the primary/secondary fluxes and explaining the main model assumptions. Then, the results from applying the model to cases of interest (Station module window, docked Space shuttle window, habitat module wall, and solar panels) are described.

6.1 Damage From Primary Impacts - Meteoroids and Orbital Debris

Spacecraft, space stations, and satellites in Earth orbit are susceptible to potential damage from collisions with both meteoroids and orbital debris. Meteoroids occur naturally while orbital debris (or space junk) originate from man-made objects. Generally, because orbital debris are Earth-orbiting while meteoroids follow interplanetary trajectories, the relative velocities are lower for collisions between orbital debris and spacecraft (average approximately $10 \mathrm{~km} / \mathrm{sec}$) than for meteoroid collisions (average approximately $20 \mathrm{~km} / \mathrm{sec}$). The average density of orbital debris is approximately that of aluminum, $2.8 \mathrm{~g} / \mathrm{cc}$, while cometary meteoroids have a typical density of $0.5 \mathrm{~g} / \mathrm{cc}$. Both types of objects are assumed to be spherical.

The level of hazard to a spacecraft from primary impacts depends on the size of the spacecraft, the number and size of primary objects in its operating environment and the time-inorbit for the spacecraft. The number of impacts, N_{j}, over a time period, t (yrs), is related to the primary flux, F^{\prime} (impacts $\mathrm{m}^{2} 2$ of surface area - yr), and spacecraft surface area, A (m2), by:

$$
N_{i}=F * A * t
$$

6.1.1 Meteoroid Model

The NASA recommended meteoroid model (Ref. 7) was used in this study. The average near-Earth meteoroid flux, $\mathrm{F}_{\text {met }}$ (impact s/m^2 of surface area - yr), with meteoroid mass, Mot (g), and larger is given by the following equations:
for $M_{\text {met }}>=10^{-6}$.

$$
\log \left(F_{\text {met }}\right)=-1.213 * \log \left(M_{\text {met }}\right)-6.871
$$

and for $M_{m e t}<10^{-6}$,
$\log ($ Fret $)=-0.063 *\left(\log \left(M_{\text {met }}\right)\right)^{2-1.584 * \log \left(M_{m e t}\right)-6.840}$
This meteoroid flux is assumed to be omnidirectional although recent work (Ref. 8) indicates a directional dependence with most meteoroids coming from the direction of motion. The Earth partially shields the Space Station from meteoroids and the extent of shielding is a function of altitude (Ref. 9). The equation used to multiplicatively compensate the meteoroid flux for this effect is:

$$
S F=\left(R+H+(H 2+2 R H) \frac{1}{2}\right) /(2 R+H)
$$

where $S F$ is the shielding factor which depends on the radius of the Earth, R, and the altitude of the Space Station, H. Because meteoroids are attracted by the Earth's gravity field, the meteoroid flux is also factored by a Earth defocusing factor, DF, which depends on the distance from the Space Station to the center of Earth in units of Earth's radius, r :

$$
D F=0.568+(0.432 / r)
$$

6.1.2 Orbital Debris Model

Orbital debris are different size particles, fragments, and objects in orbit that result mainly from satellite breakups/explosions and subsequent collisions with operational and nonoperational payloads, rocket casings, etc. Unlike meteoroids which just pass through, orbital debris tends to accumulate (with every launch) and build (from subsequent collisions with other objects) in orbit, especially for frequently used low Earth and geosynchronous orbits. The only natural mechanism for debris removal is atmospheric drag, which acts slowly except at the lowest altitudes. Thus, orbital debris is of particular concern for future space missions (Refs. 2, 10-13). The 1990 's predicted orbital debris flux, Pod (impacts $/ \mathrm{m}^{\wedge} 2$ surface area - $y r$), with debris mass, $M_{o d}(g)$, and greater for a

Space Station in 30 degree inclination, 500 km circular orbit is given by (Ref. 14):
for $M_{o d}<=1.47 \mathrm{~g}$

$$
\log \left(F_{o d}\right)=-0.84 * \log \left(M_{o d}\right)-5.320
$$

and for $M_{o d}>1.47 \mathrm{~g}$,

$$
\log \left(F_{o d}\right)=0.0391 *\left(\log \left(M_{o d}\right)\right)^{2}-0.466 * \log \left(M_{o d}\right)-5.384
$$

The orbital debris flux is highly directional (essentially only impacting a spacecraft from the direction of flight), but because the above flux equations are expressed in terms of total surface area and the effect of oblique impacts on total ejecta/spall mass was not quantified, flux directionality was not included in this study. An illustration of how quickly the primary fluxes decrease with increasing primary particle size is given in figure 6-1 (from Ref. 14).

6.1.3 Space Station Area Model and Probability of Impact

A model of the dual keel Space Station was developed early in this study to determine the surface area to be used in calculating the total number of primary impacts expected during the space Station operating lifetime. The total Space Station surface area (including truss, pressurized volumes, solar arrays, radiators, and major payloadexperiment packages) as given in Table 6-1 is approximately $11,500 \mathrm{~m}^{2}$. The subject of the model was an IOC Space Station reference configuration prior to March 1986 (Ref. 15). Since that time the configuration has further evolved (Ref. 16,17) and this model requires updating. However, it is presented here because the surface area was used in the damage assessment model. Changes in Space Station surface area should not change the relative damage potential between primary and secondary impacts much.

The meteoroid and orbital debris fluxes are calculated using the equations in Sections 6.1.1 and 6.1.2. The sum of the impacts from orbital debris with a diameter of 1 cm and greater and from meteoroids with an equal energy to the 1 cm debris particle is calculated using the equation in Section 6.1. Finally, the probability of no impact, $P_{n i}$ during the 30 year assumed 1 ifetime of the Space Station is calculated from Poisson's probability:

$$
P_{\mathrm{ni}}=\exp \left(-\left(F_{\text {met }} * S F * D F+F_{o d}\right) * t * A\right)
$$

6.2 Damage From Secondary Impacts - Ejecta and Spall

A model was constructed and programmed in a spreadsheet format to estimate the amount of damage that can be expected from secondary impacts. That program is described below.

6.2.1 Damage Assessment Worksheet

An example worksheet is given in Table 6-2. A couple of Space Station variables need to be set by the user: station surface area (from Table 6-1) and station lifetime. In addition, several variables need to be set that describe the structure for which the damage assessment is being made.

One of the key variables to be defined is a critical energy for a particle that would result in unacceptable damage to the sensitive area (or structure that is being assessed).

For this particular example, the critical energy was arbitrarily set at 120 joules. Another variable is the sensitive area's surface area which was set at 200 m 2 in this example. This variable is not particularly important because it is only used in the calculation for the total number of impacts on the sensitive surface. An assessment of the relative amount of damage from primary and secondary impacts can be made simply by looking at the fluxes of primary/secondary particles on the sensitive surface. The flux calculation does not involve the sensitive area surface area directly.

However, the surface area is involved indirectly in another important parameter--the fraction of surface area of the Space Station that faces the sensitive area. In other words, this factor gives the fraction of Space Station surface area that produces ejecta/spall that can potentially hit the sensitive surface (ie. the fraction of station area that is within line-ofsight of the sensitive surface). It has to be calculated/estimated by the user based on the geometry of the station and the size of the sensitive surface. Naturally, as the sensitive surface area decreases, less station surface area is within the line-of-sight of the sensitive surface. This factor will be referred to as the "station surface area fraction" or SAF through the remainder of the text.

Another important user supplied factor is the fraction of sky covered by the station as seen from the sensitive surface (using hemispherical geometry). Because it is geometry related, no calculation exists in the present program and it must be calculated/estimated by the user. This factor will be referred to as the "view factor" or VF. The fraction of the ejecta/spall produced by primary impacts on the Space Station that immediately hits the sensitive surface is thus calculated as the product of SAF and VF (this product will be referred to as the secondary impact fraction or SF).

For a given critical energy, the flux of primary particles that have this energy and greater is calculated based on the flux equations in Sections 6.1.1 and 6.1.2, and the average velocities for meteoroids and orbital debris. These fluxes for the example
critical energy of 120 J are given on the first page of Table 6-2 (within the highlighted box). The meteoroid flux is greater in this case but as critical energy increases, the orbital debris flux becomes the more important primary flux.

The ejecta/spall flux of particles having the critical energy and greater is determined by integrating over the entire range of appropriate projectile masses (the model now integrates from 0.001 g and above). For a given projectile mass and velocity (using the averages for orbital debris and meteoroids), the mass of ejecta and spall is calculated from the equations in Section 5.1. Two sets of calculations are made--one for the case of having the entire Space Station made of aluminum (and thus all ejecta/spall produced from primary impacts would be aluminum), and the other set for the case of the Space Station being entirely graphite/epoxy. A comparison is then possible between the relative damage potential of graphite/epoxy ejecta/spall and aluminum ejecta/spall.

If the results from applying this model to sensitive areas of interest indicate that secondary impacts may create as much or more of a problem than primary impacts, then it might be advisable to make the model more realistic by setting it up with different materials for various Space Station structures and calculating a more accurate picture of the amount of secondary damage to expect on the sensitive surface.

After the total ejecta/spall mass is calculated, the equations described in Section 5.3 are applied to determine the number (or flux) of ejecta/spall particles having the critical energy and greater. The secondary impact fraction (SF) is then used to factor the total Space Station secondaries flux having the critical energy and greater to determine the amount of secondaries flux striking the sensitive surface. In the example of Table 6-2, with a SAF of 25% and a VF of 25%, the resulting SF is 0.0625 which results in the ejecta/spall flux being about 78 of the total number of critical energy impacts on the sensitive surface if the Space Station was entirely graphite/epoxy and about 68 if it was aluminum. This example indicates that a designer for the sensitive surface that was concerned about meteoroid/orbital debris damage should factor the total primary flux (sum of meteoroid and orbital debris fluxes) by approximately 1.07 to compensate for damage from secondary impacts.

Figure 6-2 is a graph of the Table 6-2 example that plots the secondary flux versus $S F$. The graphite/epoxy secondaries flux is slightly above the aluminum secondaries flux primarily because of an assumption that significantly reduced the number of potentially damaging aluminum ejecta/spall particles. This assumption is explained in Section 6.2 .2 (letter d).


```
    Table 6-1
(page l of 3)
```


emace shaim
 maine mea tmuntim

OUS KEEL REFERENCE COMFICIRAIIOM

Truss Eletents
lin a 16.4042 foot cube truss, there is aps. 255.3029 liseer fert of
2 jach tubs.

		Boca Len. (14)	Lin. ft of truss		Width (it)						
Dual Keel	Cylzader	311.7	4,850.8		0.167	2,539.9	2	5,079.7 compaitp	$\cdot 0.1$	471.92	30
Upper Doos	Cylinder	147.6	2,297.7		0.167	1,203.1	1	1,263.1 Compsite	0.1	111.77	3
Lower floon	Cyliader	147.6	2,291.7		0.867	1,203.1	I	1,203.1 Comesite	0.1	111.77	30
Mid 8 Sost	Cylinder	114.8	1,787.1		0.167	435.7	1	55.7 Compesite	0.1	E.93	30
Transy. Beon lintoard and ou	Cylinder outboard)	141.6	2,297.7		0.167	1,203.1	2	2,405. 2 Cenposite	0.1	223.54	3
Nedule Support Doos Elearnts	Cyliader	213.3	3,318.9		0.167	1,737.8	1	1,757.1 Comosite	0.1	161.15	3
Iruss lotal								12,565.6		1,167.38	30
On:	Cylinder	3	15	-		141.4	2	22.7 Almajno	0.*	26.27	30
Asplects	Cylinder	10	1	-		219.9	2	439.1 Almajome	0.*	40.06	30
Antentid (18M 2060/2070	Bich 0)	-	100	-		7,854.0	1	7,04.0 Compesite/		729.6	0

Table 6-1, Continued
(page 3 of 3)
jhinact progabiliIy calculations

SIER	DEPRIS CAIT. MASS A GKARS	$\begin{array}{ll} \text { DEBFIS } & \text { DE } \\ \text { AVE. VOL. } & \text { AU } \\ \text { (CC) } & \text { IC } \end{array}$	DEERIS ave. DIA.C (CM)	EDRIS ful agove CRII. HASS / / ${ }^{\wedge} 2 / \mathrm{Kk}$	HO DEBRIS ITPACT PROCAGBILITY CFIT. MASS OR GKEATER	$\begin{aligned} & \text { METEORDID EI } \\ & \text { AVE, DIA. } \\ & \text { (CN) } \end{aligned}$	EARTH E DEFOCUSING GACTOR f	EARTH SHIELDIMG factok	NETEDROID fluy above CRII. Mass l/niziva	WO MEI. IPPACI PROBABILITY CRIT. MASS OR GAEATER	COHBIMED No IHPACI PROB. CAII. MASS OR CGEAIER	LIFEIIME IMPA Crit. Mass k Graster MET.	
Coanes Module	1.4661	5.24E-01	1.000	$3.597 \mathrm{E}-06$	0.91720	1.12E+00	0.9675	0.117	4.1851-07	0.9930	9.11E-01	0.0070	0.08.
LOR 1202	1.1661	5.24E-01	1.000	3.597E-06	0.98773	1.12E+00	0.9675	$\cdots 0.117$	4.185E-07	0.9990	9.87E-01	0.0010	0.017
Logistucs hod.	1.4661	5.24E-01	1.000	3.597E-06	0.99938	1.12E +00	0.9675	0.717	4. 185E-07	1.0000	9.99E-0!	0.0000	0.00
Solar Arrays	1.4661	5.24E-01	1.000	3.597E-06	0.65895	1.12E+00	0.9675	0.717	4. 18SE-07	0.9669	6.37E-01	0.0337	0.4171
	1.4661	$5.24 E-01$	1.000	3.597E-06	0.95301	1.22E $+\infty$	0.9675	0.117	4.185E-07	0.9961	9.49E-01	0.0039	0.04
(notule)	1.4661	5.24-01			0.98804	1.12E+00	0.9675	0.717	4.185E-07	0.9990	9.87E-01	0.0010	0.0120
Kadia:ors lfor sys.)	1.4661	5.24E-01	1.000	3.597E-06	0.98004	$1.12 E+\infty$	0.9675	0.717	4.185E-07	0.9939	Q.21E-01	0.0063	0.07
Hangar (10. 2570	1.4661	5.24E-01	1.000	3.597E-06	0.92672 0.98015	$1.125+00$	0.9675	0.717	4.1855-07	70.9984	9.19E-01	0.0016	0.0201
SAI Instr.5tor.	1.4661	5.24E-01	1.000	3.597E-0.	0.98015	$1.128+60$	0.975	0.71	4.15				
SAL ONC	1.4661	$5.245-0.1$	1.000	$3.597 E-06$	0.99002	$1.12 \mathrm{~F}+00$	0.9675	.. 0.717	4.185E-07	- 0.9792	$9.89 \mathrm{E}-01$	10.0008	0.01
T6M 2010	1.1601	5.24E-01	1.000	3.597E-06	0.99400	1.12E+00	0.9675	50.717	4.185E-07	$7 \quad 0.9995$	P.94E-01	10.0005	0.0080
54A 0005	1.4601	5.24E-01	1.000	3.547E-06	60.99201	1.32E+00	0.9675	0.717	4.185E-07	70.9994	9.91E-01	10.0006	0.00°
SAA 0207	1.4661	5.24E-01	11.000	$3.597 E-06$	60.99400	1.12E+00	0.9675	50.717	4.185E-07	70.9995	P.94E-01	10.0005	0.00.
$54 \% 1609$	1.4661	5.24E-01	11.000	3.587E-06	$6 \quad 0.99102$	1.12E+00	0.0 .9675	50.717	4.185E-07	10.9993	$39.905-01$	10.0007	0.0097
Sal Stor, Bay	1.4661	5.24E-01	11.000	3.597E-0	$6 \quad 0.90279$	1.12E+00	0.9675	$5 \quad 0.717$	7 4.185E-07	$7 \quad 0.9918$	8.95E-01	10.0083	0.10
5RT SVL Bay	1.4661	5.24E-01	1.000	3.597E-0	60.90279	1.12E+00	00.9675	$5 \quad 0.717$	7 4.185E-07	70.9918	8 8.95E-01	0.0083	0.1023
ICH 2100	1.4661	1 5.24E-01	11.000	3.597E-0	0.0 .99161	1 1.12E+00	00.9675	$5 \quad 0.717$	7 4.185E-07	070.9993	3 9.91E-01	10.0007	0.001
Ketieling kar	1.4661	5.24E-01	11.000	3.597E-0	0.0 .90279	1.12E+00	00.9675	50.717	7 4.185E-07	070.9918	8 8.95E-01	0.0 .0093	0.102

Wual kee!	1.4661	5.24E-61	1.000	3.597E-06	0.95034	1.12E+00	0.9675	0.717	4.185E-07	0.9959	9.46E-01	0.0041
Upper	1.4661	$5.24 E-01$	1.000	3.597E-06	0.98801	1.127400	0.9675	0.717	4.185E-07	0.9990	9.87E-01	0.0010
Lomer Soce	1.4661	5.24E-01	1.000	3.5875-06	9.98801	1.12E+00	0.9615	0.117	4.185E-07	0.9990	9.87E-01	0.0010
Huct Hoon	1.4661	5.24E-01	1.000	3.597E-66	0.9906	1.12400	0.1675	0.117	4.185E-07	0.9992	9. P0E-01	0.0008
Tramsy. 800z fintuard and ou	1.4661	5.24E-01	1.000	3.597E-06	0.97614	1.12E+00	0.9675	0.717	4.185E-07	0.9881	1.74E-01	0.0019
Hejole Sumpart Bois Elenefit:	1.4661	5.24E-01	1.000	3.597E-06	0.98273	1.12E + 20	0.9675	0.717	4.185E-07	0.9986	9.81E-01	0.0014
Truss Totai	1.46t1	5.24E-0]	1.000	3.4674E-06	8.8565E-01	$1.12 \mathrm{E}+00$	0.9675	0.717	4.185E-07	0.9899	8.77E-01	0.0102
OHN	1.4861	5.24E-01	1.000	3.5976-06	0.99717	1.12E+00	0.9675	0.717	4.185E-07	0.9998	9.97E-01	0.0002
Ajploiks	1.4661	5.24E-01	1.000	3.597E-06	0.99560	1.125+00	0.9675	0.717	4.185E-07	0.9996	9.95E-01	0.0004
Artenni ITDH $2060 / 2070$	1.4061	5.24E-01	1.000	3.597E-06	0.92427	$1.125+00$	0.9675	0.717	4.185E-07	0.9937	9. 18E-01	0.0064

Flux of Ejecta/Spall Particles of Critical Energy and Greater on a Sensitive Area of Space Station
Table 6-2, Damage Assessment Worksheet

Average Graphite-Epoxy Ejecta/Spall velocity (ka/secl
Average Aluninua Ejecta/Spall velocity $1 \mathrm{ke} / \mathrm{sec}$)
Orbital Debris Fraction below vaporization veloci

iven Bass \& greater
per an2 surface - year)
Probability of no iapacts on Station
Increrpntal Orbital 1. JJE-03 1.0JE-04 5.64E-05
Debris Fius
\square
Table 6-2, Continued

$\stackrel{2}{2}$
1.45
1.175
$\stackrel{\pi}{8}$
$\stackrel{n}{2}$
1.25
0.691
$\stackrel{\text { m }}{=}$
$0.95 \quad 1.05$ $0.75 \quad 0.85$ $\begin{array}{llllll}5 & 0.25 & 0.35 & 0.45 & 0.55 & 0.65\end{array}$ 0.15
0.126
0.152
0.18
 frea pelegroids
Mren Orbital Cetris
Meteoroid faraneters
If Ejecta; Spall ail froe Carben-Eraphite Composite Structures
For laracts tron Grbital liebris

 porticles created from crbital debris iapacts over lifetiat of station.

 erergi partiz!es of critical energy and greater from orbital debris iapacts

6.2.2 Model Assumptions and Approximations

The worksheet model included a number of assumptions/approximations which are explained below. The specific model applications described in Section 6.3 were all determined using these assumptions.
a) The model includes both ejecta and spall in the mass and number of secondary particles produced from primary impacts. Because some of the spall produced in an impact might be contained and prevented from further impacts on other surfaces, this assumption contributes to increasing the estimate of potential damage from secondary impacts. The location of the specific sensitive area relative to the rest of the station will determine if it is subject to secondary ejecta, spall, or both. When using the tables generated, this can be taken into account by choice of $S F$.
b) The user must supply a "critical energy" that will result in damage to a surface of interest. There may be more appropriate parameters than kinetic energy to scale on.
c) The flux of ejecta/spall particles having the critical energy and above is determined using empirical equations developed in this study. These equations are necessarily extrapolated beyond the bounds of the tests run in this study (due to the tremendous velocities of meteoroids/debris which we are trying to model) which implies that an unknown amount of uncertainity is introduced into the calculation.
d) It was assumed that aluminum vaporizes with projectile velocities above $7 \mathrm{~km} / \mathrm{sec}$ (Ref.2, p.489--the user can easily change this variable) and above this velocity, impacts on aluminum structures will not produce any damaging ejecta/spall particles conly vapor or very small particles which would be a problem to structures only a relatively few inches away from the impact point). This limit acts to reduce the total (secondary producing) flux of orbital debris on aluminum to about a quarter of its original. This 25% factor is calculated within the model from the orbital debris velocity distribution (Ref. 14) and is equal to the orbital debris fraction with velocities less than $7 \mathrm{~km} / \mathrm{sec}$. This limit also reduces the average orbital debris velocity that will produce any damaging ejecta/spall from the actual average ($9.3 \mathrm{~km} / \mathrm{sec}$) to the average below $7 \mathrm{~km} / \mathrm{sec}$ (or approximately $4.2 \mathrm{~km} / \mathrm{sec}$). This assumption also nearly eliminates meteoroids as a source of damaging ejecta/spall on aluminum structures because of the high relative meteoroid velocities.
Because no information was available on meteoroid velocity distributions when this part of the study was developed, the meteoroid relative velocity for aluminum structures was taken as the assumed aluminum vaporization velocity, ie. 7
$\mathrm{km} / \mathrm{sec}$. No corresponding vaporization velocity is assumed for graphite/epoxy targets, pushing the aluminum-graphite/epoxy comparison toward aluminum's favor.
e) The slopes of the mass distribution curves (Section 5.2) are assumed to not change significantly at higher impact velocities. From reported results of fragmentation distributions due to different energy explosions (Ref. 18), this is probably not quite true (higher energy impacts may produce relatively more small particles and less large particles).
f) The Space station nominal altitude was assumed at 500 km $(270 \mathrm{~nm})$. Recently, the baseline operating altitude was reduced to $463 \mathrm{~km}(250 \mathrm{~nm})$ to lower launch costs (Ref. 19). This change will result in somewhat reduced orbital debris flux.
g) Self-shielding of various Space Station elements is not considered--the entire Space Station surface area is assumed exposed to orbital debris/meteoroid damage.
h) The program under-estimates the secondaries damage potential at very low critical energies because the lower projectile mass limit in the secondaries flux integration (presently set at 0.001 g) is not low enough.
i) It is assumed that if ejecta or spall particles hit the sensitive surface, they will do so immediately after being produced. No attempt is made to calculate through orbital mechanics whether any secondary collisions are possible several orbits after the primary impact event.

(1к - Zఒس/słフodu! to sequnu) xnls 607
Primary Fluxes
$\underset{\sim}{N} \underset{\sim}{\top} \underset{1}{\top}$

6.3 Application of Model to Cases of Interest

The damage assessment model was applied to several common cases for Space Station operations: a habitat module window, a window of a docked Shuttle, a habitat module wall, and solar panels. Refer to Figure 6-8 for a current International Space Station (ISS) configuration (Ref.17, p.82) that can be used to visualize general geometry and view factors.

6.3.1 Module Window

The module window design discussed in this section was taken from a NASA white paper (Ref. 22). Current window/viewing requirements are under review (Ref. 25) but the window damage assessment technique discussed here could certainly be applied to new window designs. Primary and secondary fluxes are calculated for one of four windows in a module; each window being 16 inches in diameter, double pane, with a 1 inch thick pane of fused silica glass.

Several impacts on previous space station (Skylab, Salyut) windows have been recorded (Ref.23,24). For instance a Soviet Salyut 7 space station window was struck on July 27,1983 causing a loud crack heard by the two-man cosmonaut crew. The Soviets characterized the impact as "an unpleasant surprise," although the 0.15 in. diameter crater on the window did not threaten the pressure integrity of the pane (Ref.24, p.125).

6.3.1.1 Critical Energy Calculation

The critical energy calculation given in Table 6-3 utilizes a penetration equation developed for Apollo windows and a criterion to prevent spallation (Ref.26). The penetration equation related crater depth, $P(c m)$, to projectile density, $p(g / c c)$, projectile diameter, $D(\mathrm{~cm})$, and to projectile velocity, $V(\mathrm{~km} / \mathrm{sec})$.

$$
P=0.53 * p^{0.5} * \mathrm{D}^{1.06 * v^{0.67}}
$$

The no-spall criterion related the minimum window thickness to prevent spallation, $t(\mathrm{~cm})$, to the crater depth.

$$
t=7 * P
$$

From the penetration equation and failure criterion, the window pane thickness of l in., and known orbital debris/meteoroid density and velocity, the critical size and energy of the projectiles was calculated as given in Table 6-3. From the fluxes of orbital debris and meteoroids having this critical size and greater (equations given in Section 6.1.1 and 6.1.2), the weighted average critical energy for failure of a 1 inch thick glass pane was calculated as approximately 100 joules.

6.3.1.2 Discussion

Table 6-4 is the output of the one module window damage assessment program. The window critical energy of 100 J and surface area of $0.13 \mathrm{~m}^{\wedge} 2$ has been entered. A SAF factor of 25% was calculated/estimated and a VF of only lo\% was estimated because the module window for this analysis was oriented facing away from the other modules (facing mainly truss, radiators and solar arrays). With these factors a very low SF of 0.025 was
VHW031

Spacecraft Window Critical Energy Determination

Glass Thickness (cm) (outer of two panes)	2.54	
	Meteoroid	Debris
Farticle Density (g/ce)	0.5	2.8
Farticle Velocity ($k: m / 5$)	20	9.3
Farticle Critical Diameter (cm to avoid spall on silica glass	0.1460 nes (from	$\begin{array}{r} 0.1051 \\ \text { Cour-Fal } \end{array}$
Farticle Mass (g)	8. 15E-04	1.70E-05
Farticle Eriergy (J)	163.05	7E.65
Farticle Flus (\#/m²-yr) with critical diameter and great	$5.19 E-04$	1.01E-05
Fiercent Flux	$5 \pm .87$	66.15
Average Critical Energy (J) above which results in spallin pane from Meteoroid s, Orbital		glass

calculated. The important output is within the highlighted block on the first page of the table. Given the low SF, ejecta/spall adds only 2-3\% to the total critical energy flux expected on the window. The design factor for compensating the primary flux would be 1.03 in this case.

However, viewing requirements may require that some of the pressurized volume viewing ports have unrestricted views of a large part of the station. For instance, some recent designs call for a 5-window-sided workstation cupola positioned at a Space Station node hatch (Ref.25, pp.2B-25,2B-39,2B-40) which would be designed for good station viewing (Figure 6-9 and 6-10). If the VF went as high as 50% and SAF decreases to 20% (the SAF decreases as VF goes up because less of the total station is seen by the sensitive surface), the SF would be 0.l. From Figure 6ll, a 108 SF would increase the ejecta/spall fraction of the total critical energy flux on the cupola windows to about 0.09. Thus, a design factor of l.l should be applied to the primary flux on the cupolas to compensate for the secondaries flux.
Table 6-4, Critical Energy Calculation for Module Windows
Hlux of Ejecta/Spall Particles of Critical Energy and Greater on a Sensitive Ares of Space Station
Station ortital altitude
Altitude in Earth radii
20paej bu!plaiys ylaty

Earth shielding factor	0.713070
Pertent of Percent of	

 area thenispherical view factor) 0.1 . Fraction of Station Ejecta: 0.025 Spall striking the sensitive area
(Station SA fraction \& view factor)
Probability of no iapact sens. area mith critical
mergy $\&$ grater (percent) 99.638
99.702
99.982
99.982

$2.06 E-05 \quad 1.09 E-056.82 E-06 \quad 1.46 E-055.33 E-062.82 E-06 \quad 1.76 E-06 \quad 1.22 E-068.92 E-07 \quad 6.85 E-07 \quad 5.43 E-074.42 E-07 \quad 3.68 E-07 \quad 3.11 E-07 \quad 2.67 E-07 \quad 2.32 E-07 \quad 1.73 E-07 \quad 3.43 E-06$
$20^{\circ} 0 \quad 10^{\circ} 0 \quad 100^{\circ} 0$ (6) s5an al! atoros

Figure 6-10 (from Ref. 25) ÑODE CUPOLA VIEWING

19) Ruckwell Intenmational

6.3.2 Orbiter Window with Orbiter Docked to Space Station

Figure 6-12 illustrates an orbiter docked to a Space Station module (Ref.25, 2B-39). The orbiter windows comprise three panes with the outer pane being $5 / 8$ inch thick silica glass. The two underlying panes provide a primary and secondary cabin pressure integrity seal. Impact incidents involving the shuttle have happened before. In June 1983, a micrometeorite or debris particle struck Challenger's right-hand middle windshield (window no.5) during STS-7. The crater measured 0.0178 in. deep by 0.0892 in. diameter. Including flaws in the glass, the total damaged area was 0.2 in. wide. Although the pressure integrity of the pane was not compromised, the window was replaced due to fears the damage could expand to dangerous levels when subjected to aerodynamic and heating loads during a later launch or re-entry (Ref.24, p.125).

6.3.2.1 Critical Energy Calculation

The failure criterion and penetration equation for orbiter windows was taken from a study on solid rocket product impingement on shuttle surfaces (Ref.28). The penetration equation was very similar to Cour-Palais (described in Section 6.3.1.1). The crater diameter (with spall), $D_{f}(\mathrm{~cm})$, is related to the projectile diameter, $D(c m)$, projectile density, p ($/ \mathrm{cc}$), and projectile velocity, V (km/sec).

$$
D_{c}=2.1 * D * p^{0.5 * v 0.6}
$$

Applying this equation with orbital debris/meteoroidaverage velocity and density parameters to the size crater that resulted in replacement of the STS-7 window, enabled the calculation of the approximate energy of the impacting object (which differs between orbital debris and meteoroids):

	Dia. (cm)		Mass (g)
Meteoroids	0.0207		Energy (J)
Orbital Debris	0.0146		$2.32 \mathrm{E}-6$
	$4.54 \mathrm{E}-6$	0.465	
		0.196	

The proposed failure criterion for orbiter windows (Ref.28, pp.3-$16,6-15$) was influenced by experimental evidence on the size of a flaw that would continue to spread after the impact event due to internal stress relief and thermal stress during entry. The failure criterion is in terms of the projectile diameter, $D(\mathrm{~cm})$, and velocity, $V(\mathrm{~km} / \mathrm{sec})$. Above this value, an impacting projectile will have enough energy to make it necessary to replace the orbiter's window.

$$
D * V^{0.67}>=11
$$

As given in Table 6-5, this failure criterion results in a critical energy of $8.72 \mathrm{E}-7$ joules which is too low for the model in its present state to accept without significantly underestimating the ejecta/spall effect (see Section 6.2.2, assumption h). Therefore, a critical energy equal to 0.2 joules was used in for this calculation.

6.3.2.2 Discussion

The orbiter window critical energy (0.2 J), surface area for one window ($0.15 \mathrm{~m}^{2}$), and docking period (0.019 yrs or 7 days) were input into the model as given in Table 6-6. The SAF factor was estimated as only 10% (because the orbiter is so close to the Space Station when docked to a module) while the VF was 50 \% resulting in a SF of 0.05 . At the low critical energy of the orbiter window, graphite/epoxy ejecta/spall particles having the critical energy and greater are more numerous than aluminum. However, the secondary flux in this case is less that a percent of the total critical energy flux, whether the secondary flux is graphite/epoxy or aluminum. Therefore, a flux design factor for hazard assessment studies on the orbiter windows while docked to the Space Station would be approximately l.01. Figure 6-13 illustrates the dependence of the secondary fluxes on the SF factor.

Projectile Mass (g)	0.001	0.01	0.02	0.04	0.06	0.08	0.1	0.2	0.3	0.4	0.5	0.1	0.1	0.8	0.9	1	1.1	1.2	1.3	1.4	1.54)
Orbital Debris Paraneters																					
Orb. Deb. Dia. (ca)	0.0880	0.1896	0.2389	0.3010	0.3446	0.3783	0.4086	0.5148	0.5893	0.6486	0.6981	0.7124	0.7816	0.8172	0.8499	0.8803	0.9087	0.9354	0.9607	0.9841	1.0071
15 of iepacts of given asss t greater per a^2 surface - year)																					
frobabilily of no iapacts on Station	10.7052	95.1132	91.240%	99.4482	98.8947	99.1302	99.2782	99.5962	99.1132	99.1748	99,8132	99.839\%	99.0598	99,8742	99.886I	99.8952	99.9032	99.9102	99.9162	99.9212	99.925
Incremental orbital Debris flux	$1.35 E-03$.01E-04 5	5.61E-05	2.06E-05	1.09E-05	. $122 \mathrm{E}-06$. $166-05$	3.33E-06 2	.82E-06	.76E-08	.22E-06	1.92E-07	.85E-01 5	.43E-07	.485-07 3	3.68E-07 3	.11E-07 2	2.67E-07	.326-07	. $33 \mathrm{E}-07$	3.43E-06

Orbiter Window Critical Energy Determination

```
Glass Thickness (cm) 0.9525
(outer of three panes)
Farticle Density (g/cc)
    Meteoraid Debris
Farticle Velocity (km/s) 20 9.3
Farticle Critical Diameter (cm) 0.00018729 0.000248
                                    (from Fief. 28 study)
\begin{tabular}{lrl} 
Farticle Mass (g) & 1.72E-12 & \(2.26 E-11\) \\
Farticle Energy (J) & \(3.44 E-07\) & \(9.76 E-07\) \\
& \\
Farticle Flux (\#/m"2-yr) & \(8.22 E+02\) & \(4.20 E+03\)
\end{tabular}
Fercent Flux
    16.38 83.62
Average Critical Energy (J) 8.72E-07
above which results in unacceptable damage to the first glass
pane from Meteoroid & Drbital Debris Impacts
```

Table 6-6, Continued (page 2 of 4)																					
11 of iapacts of given avg. asss plus or ainus 0.004 men proj. ass $(=0.01 \mathrm{~g}, 0.005$ for 0.01 (proj. asss ($0.02,0.01 \mathrm{~g}$ for 0.02 (proj. eass (0.1 g , and 0.05 g when proj. asss) 0.1 g per a^2-year)																					
Average Debris Mass (g) for incresental	$\begin{aligned} & 50.0055 \\ & 1 \text { calcs. } \end{aligned}$	0.015	0.03	0.05	0.07	0.09	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.05	1.15	1.25	1.35	1.45	1.5
Munber of lapacts froe Orbital Debris	0.297	0.022	0.012	0.005	0.002	0.001	0.003	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Neteor oid Parameters																					
Meteoroid Dia. (cas)	0.1563	0.3368	0.1243	0.5346	0.6120	0.6736	0.7256	0.9142	1.0464	1.1518	1.2407	1.3184	1.3880	1.4511	1.5092	1.5632	1.8136	1.6811	1.7060	1.7487	1.7894
Probability of no iepacts on Station	91.5222	99.4592	99.7662	99.8997	99.9382	99.9561	94.9674	99.9862	99.991\%	99.9948	99.995\%	99.9962	99.9972	99.9972	99.9988	99.9988	99.9988	99.9981	99.9998	99.9991	99.999\%
Aver age Met. Mass (g) for incremental	$\begin{aligned} & 0.0055 \\ & \text { calcs. } \end{aligned}$	0.015	0.03	0.05	0.07	0.09	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.05	1.15	1.25	1.35	1.45	1.5
Nuaber of lapacts fros heleoroids	0.083	0.003	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
If Ejecta/Spall all from Carbon-Graphite Composite Structures																					
For lapacts Proa Orbital Debris																					
Mass ejecta k spall per orlital debris	$\begin{aligned} & 1 \\ & i \text { impert }(g) \end{aligned}$	2.31	4.62	7.70	10.78	13.86	23.11	38.51	53.92	69.32	84.73	100.14	115.54	130.93	146, 35	161.76	171.16	192.57	201.97	223.38	231.08
Munber of ejectal spall particles of and greater per is	145.45 critical act fros o	257.00 rg hital det	349.51 ris of 9 i	119.15	462.71	492.03 aass ran	544.54	579.18	590.78	593. 16	591.15	586,84	581.28	575.06	568.19	561.78	555.04	548.35	541.76	535.30	532.12
Hubber of critical particles created	$\begin{gathered} 43.13 \\ \text { froe orbital } \end{gathered}$		4.32 apacts over	$\begin{array}{r} 1.89 \\ \text { lifetier } \end{array}$	$\begin{gathered} 1.10 \\ \text { of station. } \end{gathered}$	0.14	1.74	0.68	0.31	0.23	0.16	0.11	0.09	0.07	0.06	0.05	0.04	0.03	0.03	0.02	0.10
Flux of critical 2.78E-01 8.13E-02 5.53E-02				3.56E-02 2.69E-02 2.19E-02 1.95E-02 1.06E-02 7.49E-03 5.02E-03 4.71E-03 4.05E-03 3.53E-03 3.13E-03 2.82E-03 2.57E-03 2.36E-03 2.19E-03 2.04E-0] 1.92E-03 1.83E-03																	

Table 6-7, Habitat Module Wall Damage Assessment Worksheet

[^0]| Surface Aved of Station (â2) | 1146.1 |
| :---: | :---: |
| Dobital life (yrs) | 30 |
| Critical Energy to dabage sensitive surface (Joules) | 63400 |
| Surface Area of critical surface (a^2) | 350 |
| Orb. Debris Aver age Velocity (ta/sec) | 9.3 |
| Ort. Debris Density (g/ec) | 2.8 |
| Meteoroid Average Velocity (ka/sec) | 20 |
| Meteoroid Density (g/at) | 0.5 |
| Velotity above mich Al targets vaporize (ko/sec) | 7 |
| Projectile Mass (g) | 0.001 |

Orbital Debris Paranters
1.5 4)

6.3.3 Babitat Module Wall

It is likely that all pressurized volumes will be the most protected places on Space Station in terms of resistance to meteoroid/orbital debris penetration. The habitat module wall, therefore, is an example of the damage assessment model using a high critical energy.

6.3.3.1 Critical Energy Calculation

The module double wall system may likely have to resist penetration from a 1 cm diameter orbital debris particle (density $2.8 \mathrm{~g} / \mathrm{cc}$, velocity $9.3 \mathrm{~km} / \mathrm{sec}$) which has an average kinetic energy of approximately 60,000 joules (Ref.27).

6.3.3.2 Discussion

Table 6-7 gives the relative contribution of ejecta/spall to the total critical energy flux on two modules. Two 42 ft . long, 14 ft . diameter modules will have approximately $350 \mathrm{~m}^{2}$ surface area. Since the modules are situated at the center of the Space Station, the SAF was estimated at 50\%. The VF was calculated at approximately l0\% which results in a SF of 0.05. The effect of different $S^{\prime}{ }^{\prime} s$ on the calculated primary and secondary fluxes can be checked in Figure 6-14.

The contribution of graphite/epoxy ejecta/spall to the total critical energy flux was practically negligible. However, because aluminum targets produce many more large, high energy ejecta/spall particles, the aluminum secondary flux contributed a surprisingly large fraction of the total critical energy flux or about 7\%. If the Space Station was primarily al uminum, then module wall designers may want to multiply the combined orbital debris/meteoroid flux by a 1.075 factor in their hazards analysis calculations to compensate for the secondaries flux.

Table 6-7, Continued (page 2 of 4)																				
If of iapacts of given avg.																				
Average Debris Mass 0.0055 (g) for incresental calcs.	0.015	0.03	0.05	0.07	0.09	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.05	1.15	1.25	1.35	1.45	1.5
Mubser of lapacts 463.881 froe Drbital Debris	34.594	19.326	7.061	3.735	2.336	5.000	1.827	0.966	0.604	0.116	0.305	0.234	0.186	0.152	0.126	0.107	0.091	0.079	0.059	1.175
Meteoroid Paraseters																				
Meteoroid Did. (ca) 0.1563	0.3368	0.1243	0.5346	0.6120	0.6736	0.7256	0.9142	1.0464	1.1518	1.2407	1.3184	1.3880	1.4511	1.5092	1.5632	1.6136	1.6611	1.7060	1.7487	1.7894
Probability of no 0.0002 iapacts on Station	0.0212	2.5112	20.615t	38.0732	50.6018	59.4722	79.9182	87.190\%	90.7834	92.8992	94.2501	95.214\%	95.9142	96.4492	94.868\%	97.205\%	97.4811	91.7121	91.9062	98.0132
Average Met. Mass 0.0055 (q) for increnental calcs.	0.015	0.03	0.05	0.07	0.09	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.05	1.15	1.25	1.35	1.45	1.5
Muaber of Inparts 130.100 Iros heteoroads	4.826	2.082	0.613	0.284	0.162	0.295	0.087	0.040	0.0229	0.0146	0.0101	0.0073	0.0056	0.0043	0.0035	0.0028	0.0024	0.0020	0.0017	0.0195
If Ejecta/Spall all froe Carbon-6raphite Composite Structures																				
For Iepacts iroe Orbital Debris																				
hass ejecta \& spall 0.85 fer ortital debris iapact (g)	2.31	4.62	7.10	10.78	13.86	23.11	38.51	53.92	69.32	84.73	100.14	115.54	130.95	146.35	161.76	171.16	192.51	207.91	223. 38	231.08
Nubber of critical 0.00 particles created fros orbital	$\begin{aligned} & 0.00 \\ & \text { debris iap } \end{aligned}$	0.00 pacts ov	$\begin{gathered} 0.00 \\ \text { lifetine o } \end{gathered}$	$\begin{gathered} 0.00 \\ \text { if station. } \end{gathered}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05
energy particles of critical energy and greater froo orbital debris iepacts																				

material. Including secondary impacts, the number of critical impacts on one solar array would climb to about 35,000 . Over a 10 year design lifetime, a solar array would receive about 11,500 critical impacts. A solar array covered with the large area silicon cells that are 5.9 cm by 5.9 cm (Ref.4, p.409) has about 64,000 solar cells. Each impact that completely penetrates the solar array probably has the potential of causing a solar cell to fail. If each penetrating impact did cause a solar cell to fail, approximately 18 percent of the solar cells in a solar array would be inoperative after 10 years. Thus, the solar arrays may potentially need to be replaced every 5 years if only a 10 percent degradation in solar array performance is allowed.

6.3.4 Solar Panels

The International Space Station configuration (Fig. 6-8) has four photovoltaic solar arrays. Each array measures 80 ft . by 32.5 ft . (Ref.4, p.407). The Space Station reference description stated that solar cell performance is expected to degrade by 10 percent over 10 years (Ref.4, p.409) and solar array components would necessarily need to be changed-out.

6.3.4.1 Critical Energy Calculation

An early design for the solar cells called for a 0.008 in. thick silicon cell with a 0.006 in. thick cover glass. The penetration equation by Cour-Palais (Ref. 26 - same as Section 6.3.1) was used to calculate the size of orbital debris/meteoroid particles that would penetrate the solar array. The penetration equation related crater depth, $P(\mathrm{~cm})$, to projectile density, p (g / cc), projectile diameter, $\mathrm{D}(\mathrm{cm})$, and to projectile velocity, V ($\mathrm{km} / \mathrm{sec}$).

$$
P=0.53 * p^{0.5} * D^{1.06} * V^{0.67}
$$

As given in Table 6-8, the diameter of the orbital debris/meteoroid particles that would create a crater with a depth equal to the total thickness of the solar cell (0.014 in.) was calculated. This failure criterion does not take into account spall effects which can be several times the crater depth and is therefore considered a high estimate. It is also assumed that silicon has similar penetration resistance as silica glass. The solar cell critical energy was calculated from a weighted average of the orbital debris/meteoroid critical energies as 0.21 joules.

6.3.4.2 Discussion

The 0.21 J critical energy and $446 \mathrm{~m}^{2}$ surface area of one solar array (front and back surfaces) was used in the damage assessment model given in Table 6-9. Because of the large area of the solar array, the SAF factor was estimated as 50\% while the VF factor was calculated as approximately 25\%. This gave a SF of 0.125. The calculated contribution of graphite/epoxy secondary flux was about 2% of the total primary and secondary flux having the critical energy and above. Because fewer numbers of aluminum particles were counted in this study's tests, the calculated contribution from aluminum secondary flux was less at the low critical energy of the solar cells than graphite/epoxy secondary flux. Thus, a primary flux design factor of 1.02 would include the effects of secondary impacts. Figure 6-15 gives the effect of $S F$ on the calculated secondary fluxes.

Over the 30 year Space Station lifetime, one solar array will likely receive over 34,000 primary impacts from orbital debris and meteoroids that will completely penetrate the solar array
Table 6-9, Solar Array Damage Assessment Worksheet
Flux of Ejecta/Spall Particles of Critical Energy and Greater of a Sensitive Area of Space Station
(page 1 of 4)

Surface Area of Station (iA2)
Orbital life (yrs)
Critical Energy to dalage sensitive surface IJooles)
Surface Arra of critital sarface (a^2)
Ort. Debris Average Velocity (ka/sec)
orl. Deteris Densitr (g/ec)
Meteoroid Average Velocity (ka/sec)
Meteoroid Density

Solar Cell Critical Energy Determination

Average Critical Energy (J)
0.21
above which results in complete penetration of the solar cell from Meteoroid \& Orbital Debris Impacts

secondary flux, whether from aluminum or graphite/epoxy will be significantly less than primary fluxes having the critical energy or greater. A conservative rule of thumb would be to add 10 percent to meteoroid and orbital debris flux to account for secondary impacts.

9.0 References

1. Kessler, D.J. and Cour-Palais, B.G.: Collision Frequency of Artificial Satellites: The Creation of a Debris Belt. Journal of Geophysical Research, Vol. 83, No. A6, June 1978, p. 2637.
2. Kinslow, R., ed.: High-Velocity Impact Phenomena. Academic Press, Inc. 1970.
3. Thompson, A.B.: Spacecraft Probability of No Meteoroid Penetration Program. April 1978. Included in Appendix C: Composite Space Station Habitation Module Design Approach. Stump, W.R. and Davis, J.I., Eagle Engineering Report No. 83-69, September 1983.
4. Space Station Reference Configuration Description. JSC19989, August 1984.
5. Vaughan, W.W.: Natural Environment Design Criteria for the Space Station Program Definition Phase. NASA TM-82585, July 1984 .
6. Vaughan, W.W.: Natural Environment Design Criteria for the Space Station Definition and Preliminary Design (First Revision). NASA TM-86460, September 1984.
7. Vaughan, W. W. and Green, C.E.: Natur al Environment Design Criteria Guidelines for the Space Station Definition and Preliminary Design (Second Revision). NASA TM-86498, 1985.
8. Kessler, D.J.: Meteoroid Velocity Distribution. SN3-86-82, March 1986.
9. Kessler, D.J.: A Guide to Using Meteoroid-Environment Models for Experiment and Spacecraft Design Applications. NASA TN D-6596, March 1972.
10. Kessler, D.J.: Orbital Debris Issues. Advanced Space Research, Vol.5, No.2, 1985, pp.3-10.
11. Reynolds, R.C.; Rice, E.E.; and Edgecombe, D. S.: Man-Made Debris Threatens Future Space Operations. Physics Today, Vol.35, No.9, 1982.

7.0 Conclusions

1. Spall mass made up approximately 70% of the total mass of ejecta/spall particles (for the thin, 0.1 inch thick, targets used in this study).
2. Total ejecta/spall mass was 20-100 times more than projectile mass (with projectile energy ranging from 50-120 Joules). Ejecta/spall mass increased as projectile energy increased (with constant projectile mass). Higher target density and lower projectile density reduced total ejecta/spall mass.
3. Some small ejecta/spall particles are fast while all large ejecta/spall particles are slow.
4. Aluminum structures produce more high energy but fewer low energy ejecta/spall particles than graphite epoxy structures for a given energy impact.
5. For thick graphite/epoxy targets, a cloth covering significantly reduced (by almost 50%) the total ejecta mass. However, it was not apparent that a cloth covering significantly reduced the total ejecta/spall mass for thin graphite/epoxy targets.
6. For most structural elements of interest on the International Space Station, the secondary flux from ejecta/spall particles will contribute no more than 108 to the total flux (primary and secondary) having a given critical energy or greater. Thus, in hazards assessment analysis, designers should multiply the total primary flux by 1.1 to compensate for secondary impact effects.
7. It is predicted that over 35,000 primary and secondary impacts will have sufficient energy to completely penetrate each 80 ft . by 32.5 ft . solar array over the 30 year Space Station lifetime. It has been reported that the solar array performance should degrade only 10 percent before replacement. If each complete penetration causes a solar cell to fail, the solar arrays may need to be replaced every 5 years.

8.0 Recommendations

Further work needs to be done to assess the effect of hypervelocity impacts on solar cells. Depending on the sensitivity of the cells to impact damage, significant loss of power could occur over long time periods (10-30 years).

Designers need only include effects (flux) of secondary impacts on surfaces that have high exposure to ejecta/spall produced from the rest of the Space Station. Even on very sensitive surfaces (ones with low critical energy of projectiles that result in damage), unless the exposure fraction is high, the
25. Cooke, D.R.; Lewis, J.; and Byrd, W.J.: Window Viewing Requirements--Presentation to Systems Integration Board (SIB) Review. April 30, 1986.
26. Cour-Palais, B. G.: Eypervelocity Impact Investigations and Meteoroid Shielding Experience Related to Apollo and Skylab. NASA Conf. Pub. 2360, July 1982, p. 272.
27. Elfer, N.: Presentation on Space Debris and Meteoroid Protection - IRAD Project M-01S, March 31, 1986.
28. Burris, R.A.: Orbiter Surface Damage Due to SRM Plume Impingement. McDonnell Douglas, NAS9-15550, December 18, 1978.
29. Beer, F.P. and Johnston, E.R.: Mechanics of Materials. McGraw-Bill Book Co., 1981, p. 585.
12. Wolfe, M.; Chobotov, V.: Kessler, D.J.; and Reynolds, R.C.: Man-Made Debris - Does it Restrict Free Access to Space? AIAA Paper No. IAA-81-256, 1981.
13. Reynolds, R.C., Fischer, N.H.; and Edgecombe, D.S.: A Model for the Evolution of On-Orbit Man-Made Debris Envirorment. NASA Conf. Pub. 2360, July 1982, p.l02.
14. Ressler, D.J.: Orbital Debris Environment for Space Station. JSC 20001, 1984.
15. Aaron, J.: Space Station Program Update. Presentation to Committee on Science and Technology, U.S. House of Representatives, February 10, 1986.
16. Space Station Configuration Baseline for Preliminary Design (Initial Draft). McDonnell Douglas, MDAC-5401D, March 1986.
17. Space Station Definition and Preliminary Design, Contract Management Review Documentation and Monthly Status Report (DR-14). McDonnell Douglas Astronautics Company, May 6, 1986.
18. Humes, D.H.; Brooks, D.R.; Alvarez, J.M.; and Bess, T.D.: Manmade Orbital Debris Studies at NASA Langley. NASA Conf. Pub. 2360, July 1982, p. 63.
19. Foley, T.M.: NASA Approves Competition of Station Phase C/D Contracts. Aviation Week and Space Technology, May 12, 1986, pp.63-64.
20. Louviere, A.J.: Design Approach to Meteoroid/Debris Protection for Space Station. Johnson Space Center PB3-86-029M, March 24. 1986.
21. Kissinger, D.: Preliminary Memo for Space Station Change Request Proposal BMO10028--Meteoroid/Debris Damage, May 1986.
22. Kavanaugh, H.C. and Miller, G.J.: Preliminary Structural Design and Analysis of a Shuttle Launched Space Station Manned Habitable Module. Space Station Subsystem White Paper, June 1984.
23. Clanton, U.S.; Zook, H.A.; and Schultz, R.A.: Hypervelocity Impacts on Skylab IV/Apollo Windows. NASA Conf. Pub. 2360, July 1982, p.177.
24. Raasch, R.F.; Peercy, R.L.; and Rockoff, L.A.: Space Station Crew Safety Alternatives Study - Final Report, Vol II. NASA Contractor Report 3855, NASl-17242, June 1985.
Target Data on JSC Light Gas Gun Shots

∞
∞

862 12-Nov-85 Thick plate
0.238
∞
∞

$$
\begin{aligned}
& \text { Graphite/ } 0.191 \\
& \text { Epoxy (generic) } \\
& \text { Mass/unit area = } \\
& 0.0109 \mathrm{bm} / \mathrm{in}^{\wedge} 2
\end{aligned}
$$

-7ロId YOFY」 G8-AON-EI E98
∞
$+$

in +45 deg phi, -90 deg theta;
in +45 deg phi, -90 deg the
-45 deg phi, +90 deg theta
orientation. Rear surface
+45 phi, 490 theta; -45 phi.
-90 theta orientation. -90 theta orientation.

TeDf7ditig ofetd peqexojiod
 4 mm diameter crater. Peelings on front sur
in +45 deg phi, +90
 orientation. Rear sur +90 theta orientation
JSC Date
Shot
Other Data on JSC Light Gas Gun Shots

$\begin{array}{ll}\overrightarrow{-0} & \infty \\ \dot{-} & 0 \\ -\quad & \infty\end{array}$
∞
86.6
∞
ω
ω
ω
∞
∞
0.115

Mass/unit area $=$
$0.00531 \mathrm{bm} / 1$
Graphite/ 0.095
Target type
No Cloth.
JSC-01B-002
Material

894 13-Dec-85	Thin (trusstype) Plate. Replacement for WN4.	```Graphite/ 0.093 Epu:y. AS4/3501-6 JSC-02B-003 Mass/unit area = 0.0053 1bm/in^2```	6	8	85.92	85.79	Complete penetration. Surface delaminations (peelings) on both sides. On ejecta side peelings in +45 deg phi, -90 deg theta; -45 deg phi, +90 des theta. On spall side peelings in +45 deg phi, +90 deg theta; -45 deg phi. -90 deg theta orientation.
895 16-Dec-85	Truss simulator. No cloth. Thin.	```Graphite/ 0.115 Epoxy. AS4/3501-6 JSC-03B-001 WN6 Mass/unit area = 0.0063 1bm/1n^2```	6	6	103.64	103.41	Ejecta wt. $=.03 \mathrm{~g}$
900 18-Dec-85	Thick. Cloth on both sides.	Grphite/ 0.528 Epoxy, Graph1te cloth. AS4/A193PW/ 3501-6 JSC-01A-001 WN2 Mass/unit area = $0.03141 \mathrm{bm} / 1 \mathrm{n}^{\wedge} 2$	6	6	512.6		

Target Data on JSC Light Gas Gun Shots

JSC	Date				Target			
Shot \#		Target type	MaterialThickness (inches)	Length (inches)	Width (Inches)	Mass before (grams)	$\begin{aligned} & \text { Mass after } \\ & \text { (grams) } \end{aligned}$	Damage Notes
901	18-Dec-85	Thick. Cloth on both sides.	Graph. /Epoxy Graphite coth. AS4/A193PW/3501-6 JSC-01A-005 WN2 Mass/unit area $=$ 0.524 $0.0311 \mathrm{lbm} / \mathrm{in}^{\wedge} 2$	6	6	508.6		
909	30-Dec-85	Thin. Cloth on both sides.	$\begin{aligned} & \text { Graphite/ } 0.124 \\ & \text { Epoxy. AS4/3501-6 } \\ & \text { JSC-03A-002 WNB } \\ & \text { Mass/unit area }= \\ & \quad 0.0069 \mathrm{lbm} / \mathrm{ln}^{2} 2 \end{aligned}$	6	6	113.29	112.92	Blow out
910	31-Dec-85	Thin. Toughened resin.	$\begin{aligned} & \text { Graphite } 0.194 \\ & \text { IM6/8551 } \\ & \text { JSC-06A-001 WN10 } \\ & \text { Mass/unit area = } \\ & 0.0107 \text { 1bm/1n^2 } \end{aligned}$	6	6	174.1	173.82	
911	02-Jan-86	Thin. Cloth on both sides.	$\begin{aligned} & \text { Graphite/ } 0.125 \\ & \text { Epoxy. AS4/3501-6 } \\ & \text { JSC-03A-001 WN7 } \\ & \text { Mass/unit area }= \\ & 0.0070 \text { lbm/in^2 } \end{aligned}$	6	6	114.24	114.02	!
912	03-Jan-86	Thin. Toughened resin.	```Graphite 0.191 IM6/8551 JSC-06A-002 WN7 Mass/unit area = \(0.01051 \mathrm{bm} / \mathrm{In}^{2} 2\)```	6	6	171.42	171.26	1
913	03-Jan-86	Thin. Fiberglass with cloth.	Fiberglass. 0.104 S-2/3501-6 JSC-05A-001 WN11 Mass/unit area $=$ 0.0069 1bm/in^2	6	 ..	$6 \quad 113.3$	113.2	
917	13-Jan-86	Thin (trusstype) plate. Cloth on both sides.	$\begin{aligned} & \text { Graphite/ } \\ & \text { Epoxy, AS4/3501-6 } 0.127 \\ & \text { JSC-03A-003 } \\ & \text { Mass/undt area }= \\ & 0.0070 \text { lbm/1n^2 } \end{aligned}$	$\cdots 6$	-	6114.75	lst weight 114.31 2nd weight (without label)	Complete penetration. Elliptica crater on front surface 3 mm in vertical 4 mm in horizontal On back surface, circular crate approx. 5 mm in diam. On front surface, checkerboard square delaminations on top and bottom edges of crater; cloth ripped of f and horizontal delamination run 8 mm to right of crater(facing plate front) and 6 mm to lef On rear surface, checkerboard

Other Data on JSC Light Gas Gun Shots

86.35 Complete penetration. Surface
delaminations (peelings) on both
sides. On ejecta side peelings
in +45 deg phi, +90 deg theta;
-45 deg phi, 90 deg theta. On
spall side peelings in +45 deg
phi, 90 deg theta; 45 deg phi,
+90 deg theta orientation.
Elliptical crater 5 mm long,
4 mm wide measured on front
surface; 6 mm long and 5 mm
wide(horizontal) on rear
surface. Surface not raised
around crater.
86.6
ω
∞
∞
∞
$\begin{array}{rll}923 \text { 21-Jan-86 Thin (truss- } & \text { Graphite/ } 0.095 \\ \text { type) plate. } & \text { Epoxy, AS4/3501-6 } \\ \text { No cloth. } & \text { JSC-02B-005 } \\ & \text { Mass/unit area = } \\ & 0.0053 \text { lbm/in^2 }\end{array}$
139.62

∞
0
-
N
∞
\bullet
\pm

$\stackrel{N}{N}$
${ }^{\circ}$
ω

IIBM reuni

Other Data on JSC Light Gas Gun Shots

Target Data on JSC Light Gas Gun Shots

Other Data on JSC Light Gas Gun Shots

Other		
Impact Photo?	Doc. Photo?	Purpose of Shot
No	Yes	Secondary shot to quantify ejecta and spall characteristics (mass, size, distribution, velocity). No cloth, oblique impact (-30 deg phi from front surface normal).

rom front surface norm

Target Data on JSC Light Gas Gun Shots

Other Data on JSC Light Gas Gun Shots
SC
-

Appendix A - Listing of All Shots with Characteristics and Notes

$$
881 \text { 27-Nov-85 Bumper Fiberglass(suit) } 0.075
$$

Target Data on JSC. Light Gas Gun Shots

JSC	Date		Target						
Shot \#		Target type	Material	Thickness (inches)	Length (inches)	Width (inches)	Mass before (grams)	$\begin{aligned} & \text { Mass after } \\ & \text { (grams) } \end{aligned}$	Damage Notes
873	20-Nov-85	Thick plate	Graphite/ Epoxy (gene Mass/unit	ic). ea $=$ $1 \mathrm{bm} / \mathrm{In}^{\wedge} 2$	6	6			

$$
0.032
$$

$$
\begin{gathered}
\text { Standoff Distance } \\
\text { Mass/unit area }= \\
0.00529 \mathrm{lbm} / \mathrm{in}^{\wedge} 2
\end{gathered}
$$

$$
\begin{array}{r}
2.875 \\
5.75
\end{array}
$$

2.875

2.875
5.75
2.875
6
∞
∞
513.69

$$
\begin{aligned}
& \begin{array}{l}
\text { Fiberglass } 0.094 \\
\text { B86-1, JSC-05A-002 }
\end{array} \\
& \begin{array}{ll}
\text { Aluminum } & 0.032 \\
(6061-\mathrm{T} 6) & 4.000
\end{array} \\
& \begin{array}{c}
\text { Standoff Distance } \\
\text { Bumper Mass/unit } \\
4.000 \\
\text { area }=
\end{array} \\
& \begin{array}{r}
\text { Bumper Mass/unit area }= \\
0.0069 \mathrm{lbm} / \mathrm{in}^{n} 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 878 \text { 25-Nov-85 Bumper }
\end{aligned}
$$

Other Data on JSC Light Gas Gun Shots

Shot	Projectile					Other	
	Projectile Material	$\begin{gathered} \text { Mass } \\ \text { (milligrams) } \end{gathered}$	Diameter (inches)	Length (inches)	$\begin{aligned} & \text { Velocity } \\ & (\mathrm{km} / \mathrm{sec}) \end{aligned}$	Impact Doc. Ph Photo?	? Purpose of Shot
975	Nylon	4.60	0.0695	0.066	6.66	Yes (High-Speed Camera)	Secondaries test for high-speed film on aluminum target.
979	Nylon	4.60	0.0694	0.0716	5.4 (Est.)) No No	Secondaries test to get low energy impact data on aluminum target. High-speed film did not capture impact.
981	Nylon	4.91	0.0695	0.0696	7.38	$\begin{gathered} \text { Yes } \\ \text { High-speed film } \end{gathered}$	Secondaries test of high energy impact on this type graphite/epoxy target with high-speed camera capability.
988	Nylon	4.97	0.0708	0.0747	7.01 (but s	Yes High-speed film starts after impact)	Secondaries test of high energy impact on this type graphite/epoxy target with high-speed camera capability. Also baselines this type composite.
990	Nylon	5.02	0.0715	0.0711	6.29	$\begin{gathered} \text { Yes } \\ \text { High-speed film } \end{gathered} \text { No }$	Secondaries test of high energy impact on this type graphite/epoxy target at 30 deg. oblique impact, with high-speed camera capability.

Appendix B - Raw Data for shots $883,884,894,917,923,933$

(also includes calculations for theta, phi, cone angle, diameter, velocity, energy)
3. Phi angle, Phi (deg), is the angle from the impact point to the ejecta/spall particle in the vertical plane (see diagram). The following equation is for an ejecta particle with the position origin in the lower left-hand corner of a thin plate.
$\operatorname{Phi}=\operatorname{asin}\left(\left(Y-Y_{0}\right) /\left(\left(Z-Z_{0}\right)^{\wedge} 2+\left(Y-Y_{0}\right)^{\wedge} 2\right)^{\wedge} 0.5\right) * 180 / \mathrm{pi}$
Side View Spall $+90^{\text {Ejecta }}$
of Target
Y-Z Plane

4. Cone angle, $C A$ (deg), is the angle from the impact point to the ejecta/spall particle. Zero degree cone angle is normal to surface at impact point.
$C A=\operatorname{acos}\left(\left(z-Z_{0}\right) / R\right) * 180 / p i$
5. Particle diameter, $D(m m)$, is determined from the particle density, p ($g / c c$), and assuming cylindrical particle geometry.
$D=2 *(M * 1000 /(p i * L * p))^{\wedge} 0.5$
6. Particle cross-sectional area, $A\left(m^{\wedge} 2\right)$.
$\mathrm{A}=(\mathrm{D} / 2)^{\wedge} 2 * \mathrm{pi}$
7. Particle velocity, V (km/sec), is derivedfromparticle kinetic energy considerations.
$V=\left(\left(2 * S_{E} *(A+(p i * D * P)) * P / M\right)^{\wedge} 0.5\right) / 1000$
8. Particle kinetic energy, KE (joules).
$\mathrm{KE}=0.5 * M * \mathrm{~V}^{\wedge} 2 * 1000$

Appendix B

Measured and Calculated Data

Measured Parameters

For each ejecta/spall particle collected in the styrofoam catchers, the following parameters were measured.

1. Position from suitable origin--for the ejecta side of a thin plate this is typically the lower left hand corner of the plate--in X, Y, Z coordinates (mm).
2. Length of ejecta/spall particle, L (mm).
3. Depth of particle penetration into the styrofoam, P (mm).
4. Mass of particle, M (g).
5. Point of impact: $X_{0}, Y_{0}, Z_{0}(m m)$.

Constants

1. Graphite/epoxy density, $P_{G E}$, is $1.5775 \mathrm{~g} / \mathrm{cc}$.
2. Aluminum density, P_{A}, is $2.712 \mathrm{~g} / \mathrm{cc}$.
3. Styrofoam shear strength, S_{s}, is 55 M pascals (Ref.29, p.585).

Calculated Parameters

1. Distance from impact point to particle, R (mm):

$$
R=\left(\left(X-X_{0}\right)^{\wedge} 2+\left(Y-Y_{0}\right)^{\wedge} 2+\left(Z-Z_{0}\right)^{\wedge} 2\right)^{\wedge} 0.5
$$

2. Theta angle, Th (deg), is the angle from the impact point to the ejecta/spall particle in the horizontal plane (see diagram below). The following equation is for an ejecta particle with the position origin in the lower left-hand corner of a thin plate.
$T h=\operatorname{asin}\left(\left(X-X_{0}\right) /\left(\left(z-z_{0}\right)^{\wedge} 2+\left(X-X_{0}\right)^{\wedge} 2\right)^{\wedge} 0.5\right) * 180 / p i$
Looking Down Proj.
On Target
X-Z plane

Normal

B-2

ニMロロ

бR

电

M太

百

Particle Ko．	I location of inpact lorigin at t）	Y location of inpact lorigin at il	l location of iapact lorigin at il	Fenetration Depth	Length of Particle

JS

Hass

g

 E

E

E

E

$$
B-8
$$

！

Length of
Particle
E

8

\mathbf{E}
 E
 E

응ำが心の E
言

突: Average
biaseler $=$ to surface)
(origin at 4). Degrees

:

: $\begin{gathered}\text { Length of } \\ \text { Particle }\end{gathered}$
o-

 E \pm

害

\qquad
Calculated Values

 ※
 E
 4) to surface) E
A location lheta location Phi location
of inpact of iapact of impact
(origin at w) (origin at "1) (origin at 41)
官

 ! Penetration
Depth
Length of
Particle Alocation Y location $\begin{gathered}\text { a location } \\ \text { of inpact }\end{gathered}$
of iapact of iapact
lorigin at t) lorigin at t) (origin at 4)

2
-

JSC Shot Mo. 894

St890\%	(13smp) sapj!]jed
	daydes arojodizs
S91 ${ }^{\circ} 0$	U! popradx [ejor
saquey) falisef to cotzog je	
$080{ }^{\circ} \mathrm{O}$	paprajos ejafy
ajpe fasojaq jabsef jo	
$861 \% 0$	s5en modi jejor
£ $660^{\circ} 0$	pasnseas pauiquoj
(saplipued papail ssall	
$1980{ }^{\circ} 0$	pashsean paulquoj
S9960 ${ }^{\circ}$	$=10101$


```
g
```



``` 
vepres vegrees
```

$$
0
$$

```
        *)
        *)
```

\[
\pm \quad \text { Degrees Degrees an }
\]

\section*{Measured Valyes}

\(\qquad\)

\footnotetext{

\begin{tabular}{|c|c|}
\hline E & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline & \\
\hline E & \\
\hline E & \\
\hline \(E\) & \\
\hline E & \\
\hline 5 & تِ \\
\hline & \\
\hline & B-19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Calculated Values} & \\
\hline R location of ispact toriginat & Theta 1 of iepat) lorigin & Phi loc of ispa lorigin & A & Ave. Area \\
\hline n & Degrees & Degrees & m & \\
\hline
\end{tabular}

 JSC Shot Mo. 894
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Particle Mo. & X location of iapact (origin at 1) & \(Y\) location of ispact (origin at *) & 1 location of iopact (orjgin at ©) & Penetration Depth & Length of Particle & Hass \\
\hline & \({ }^{*}\) & " & 04 & \({ }^{*}\) & ** & gas \\
\hline
\end{tabular}

JSC Shot Mo．B94
```

            \overline{⿺夂丶亍匕刂}
    ```


 Measured Values

Spall（total less spall behind \(\&\) in catcher \(=.0447\) g）

 5s

Measured Values


```

Whin Flatel 12/17/85


(Thin Platel 12/:17/85


## 




an Degress Degrees $\omega$ an beyres JSC Shot Mo. 894 는








嫘	品
	E
	－
	8
	䣽
	3








g

(Whin Platel 12/17/85


63.1\% Percent Spall
36.9x Percent Ejecta
63.12 Percent Spall
18.82 Percent Dust
36.9x   63.12 Percent Ejecta


 arget nass before
arget mass after
Talal expected Ejecta/spall

Verage $\quad$ Velocity
as squared $\quad \mathrm{K}_{0} / \mathrm{sec}$




!


R location Theta location Phi location Cone Angle Average
of ipact of iepact of ipact langle froe Dianeter
(originat it) forigin at inlorigin at (is) ipact pt.
to surf nora)
2nfros
pt.
nora
it

a
$\underset{y}{2}$
E $\Sigma$
Length of
Sarticlea
Measured Values












$x$ location of ispact (origin at i)	r location of iapact (origin at i)	1 location of impact (origin at 4)	Penetration Depth	Length of particle
$\pm$	-	-8	$\because$	0



 futicle Mo.


Mescured values
Particle Mo. X location Ylocation 1 location Penetration Length of Mass

른 䓂



量

Average
area
surf nora)
Degrees
s
Degrees




 $\pm$ Measured Values

$$
\mathbf{E}
$$







E.

E
:


Farticle Mo	X location   of iapact   (origin at a)	$Y$ location of iopact (origin at \#)	1 location of japact lorigin at 4)	Penetration Depth	Length of Particle	Mass



 E

R location	Theta location	Phi location	Cone Angle	Average	Aver age	Velocity
of 1apact	of ispact	of inpact	langle from	Diancter	Area	
igin at	(origin at mblo	lorigin at	iapact pt. to surl noral			
ne	Degrees	Degrees	Degress	-		






B-37

$$
\begin{aligned}
& \text { J5C Shot Mo. 9H1 } \\
& \text { (Thin Plate with Cloth) }
\end{aligned}
$$

$$
\begin{aligned}
& 30.07 \text { percent Ejecta } \\
& 69.93 \text { percent Spall } \\
& 37.51 \text { percent oust }
\end{aligned}
$$


:
a
:

E
$\pm$




Aver age
Oianeter
E
one Angle
angle from
iapact pt.
o sur' nora)
Degrees





E

|  |  <br>  |
| :---: | :---: | $\varepsilon$



 g
 E













$x$ location cf iapact lorigan at il	Y location of ippact (origin at a)	1 location of capact (origin at 4)	Penetration Depth	Length of Particle	Hass
*	$\pm$	$\because$	04	$\pm$	






```
JSC Shot Mo. 917


```

                g
    Calrulated Values
    Mverage
        (Degress
        R location Theta location Phi location Cone Angle 
    Particle Mo. \& location Y location l location Fenetration Length of

```
Particle Mo. Xlocation Y Iocation llocation Fenetration Length of Mass

营

\section*{E}
\(\varepsilon\)


```

\&

```


Measured Values
Calculated Values

\section*{E \\ E}

 a
 \(=\)
\(E\)

 E880000000000000
 Mocation rlocation llocation
of ingact of iapact of 1pact
toriginat at (originat ol loriginat t)
E
E

 NN-nNnmのn-NNN-Nn
Particte Mo.

㟥

Degress

-
I

:

E
-
\[
\mathbf{~}
\]

Measured Values

 JSC Shot Mo. 917
(Ihin Plate with Cloth)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Particle Mo. \({ }^{\text {a }}\) & 1 location of inpact (origin at b) & \begin{tabular}{l}
\(\gamma\) location \\
of impact \\
lorigia at 1)
\end{tabular} & i location of iapact lorigin at ") & \[
\begin{aligned}
& \text { Penetration } \\
& \text { Depth }
\end{aligned}
\] & Length of Particle \\
\hline & H & \({ }^{1}\) & \({ }^{\circ}\) & \({ }^{*}\) & \(\omega\) \\
\hline
\end{tabular}

:
E

E

000
Degrees ch iepact of apact of iapact angle froe
 !

突
g
\(s\)
Measured Values (origin at ") lorigia at ") lorigin at ")

 헝

 E
 00

E

!
!
Measured Values
!
E
\({ }^{\boldsymbol{a}}\)

E

Average Velocity
Area
nen squared kn／sec

\section*{
}
a
：

B

 8

88
Measured Values
\(\pm\)
g

\section*{E}
\[
\mathbf{m}
\]
柲
 Thin Plate with no Cloth)
IIapact at -30 deg. phi frou norad on ejecta side)

\footnotetext{
Farticle Mo. Xlocation Y location 2 location Penetration Length of
}

g
\[
\exists
\]
1
2

*)

.

\[
\mathbf{E}
\]
\[
\pm
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Particle No. & \(x\) location of inpact forigin at a) & Y location of iapact (origin at 11 & 1 location of inpact (origin at t) & Penetration Depth & Length of Particle & Nass \\
\hline
\end{tabular}

 "
 g

惖
 \(\square\) E

 E

E

-
s
\[
\varepsilon
\]
g

\(\qquad\)

8
Measured Values
Particle Mo. Wlocation Y location location Penetration Length of \(\qquad\)
(\({ }^{1)}\)
iepact of iapact of iapact

\begin{tabular}{|c|}
\hline 品 \\
\hline
\end{tabular}

\(\Xi\)
:
E
8 ori. nor mal
origin at
Degress

Particle Mo. Xlocation V location 1 location Penetration Length of

JSC Shot No. \({ }^{\text {923 }}\)
(Thin Plate mith no
(Inpact at -30 deg.
亲

 E lorigin at (1) langle troe

\(\qquad\)
\(\qquad\)

 츤

空

a

8
\(\pm\)

\footnotetext{

}
 EJECTA B-62

 Particle No.
Velocity

:
surf, nor 6.
Degrees
albuy avo
Aver age
Diaster
anact pt.
surf. nor
E
 000

E

E.
 \({ }^{n}\)
Measured Yalues
 (Thin Plate with no Cloth)
(lapact at +30 deg Phi)
\(\oplus\)
\({ }^{*}\)
 \({ }^{\circ}\)
 n
 \({ }^{10}\)
\(\qquad\)
 ...


```

        Melocity
        M
    ```


```

        E
    #
        R location Theta location Phi location Cone Angle
        lorigin at ellorigin at Eflorigin at aliapact pt.
        Degrees to surf. norn.t
        #
        E
            E
    ```

```

        E
            Medsured Values
        (Thin Plate with no Cloth)
        M
        \ location Ylocation l location Penetration Length of
        Particle No.
    
c.
Length of
Particle
Penetration

Measured values

```
*
```

```
*
```

$\because$
g
E
a



!



2
nors. 1
surf.
Degrees
00000000000000000000000000000000000000000000
 Degrees



$\stackrel{2}{2}$
!

$$
=
$$

$$
\begin{aligned}
& \text { fipat } \\
& \text { loripin at }
\end{aligned}
$$

E
igin

』
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Measured Values



##  <br>  





E





 $\qquad$
Measured Values
velocity
kn/ser

JSC Shot Mo. 923
Aver age
Ared

 8







## 惖




4
E
-
$\qquad$



E


 $\stackrel{E}{E}$



:
a
$=$
! I
 -

## 



䔡。

$$
B-6 d
$$



응













ํํํํํํํํํํํํํํ
B-71


# Appendix C - Single Frame Photography Data 

## Appendix C - Single Frane Photography Data

The following three photographs were taken shortly after the impact of hypervelocity projectiles on composite targets. Due to various problems with time measurement and scaling, only approximate velocity data can be derived from these photos. They still provide useful information however, and are therefore documented here.

## Shot 873

5 mg nylon projectile, $6.32 \mathrm{~km} / \mathrm{sec}$ velocity
.416 inch thick composite plate from Hercules (generic graphite/epoxy plate)

Photo is of ejecta approximately 15 microseconds after impact
Scaling - 16 threads per inch in photo $=.15875 \mathrm{~cm} /$ thread
Threads are 10 inches from camera. Centerline of shot is 12 inches. Therefore Real Distance $=1.2 \times$ Measured from thread.

Therefore scaling for shot centerline is $1.2 \times .1575=.1905$ cm/thread.

The furthest particles from the target are roughly 19 threads out, assuming they are on the centerline. $19 \times .1905=3.62 \mathrm{~cm}$.
$3.62 \mathrm{~cm} / 15 \mathrm{microseconds}=.0362 \mathrm{~m} / .000015 \mathrm{sec}=2.41 \mathrm{~km} / \mathrm{sec}$
Therefore the highest velocity ejecta appears to be traveling in the range of $2.4 \mathrm{~km} / \mathrm{sec}$, which agrees with calculated and other data measured with the high speed movie camera.

Shot 917
See section 3.2 .3 for more discussion of this shot.
5 mg nylon projectile, $5.39 \mathrm{~km} / \mathrm{sec}$ velocity
. 127 inch thick graphite epoxy target (JSC-03A-003) with cloth covering on both sides.

Photo was taken of spall an estimated 20 to 50 microseconds after impact.

A couple of threads are visible in the photo. As calculated above, 1 thread $=.1905 \mathrm{~cm}$.

The fastest particles are roughly 15 threads out. $15 \times .1905=$ 2.86 cm .
$2.86 \mathrm{~cm} / 20$ microseconds $=.0286 \mathrm{~m} / .000020 \mathrm{sec} .=1.43 \mathrm{~km} / \mathrm{sec}$
$2.86 \mathrm{~cm} / 50$ microseconds $=.0286 \mathrm{~m} / .000050 \mathrm{sec} .=.57 \mathrm{~km} / \mathrm{sec}$
The one high speed camera shot ( $\$ 990$ ) for a .lll inch thick, cloth covered graphite/epoxy sample (JSC-02A-003), at a 30 deg. angle, indicated a maximum spall velocity of $.75 \mathrm{~km} / \mathrm{sec}$.

Shot ${ }^{\text {8 }} 894$
See section 3.2.2 for more discussion of this shot.
4.94 mg nylon projectile, $4.75 \mathrm{~km} / \mathrm{sec}$ velocity.

Target - . 093 inch thick graphite/epoxy with no cloth covering (JSC-02 B-003).

Photo shows ejecta (on the right) and spall (on the left) approx. 30 to 35 microseconds after impact.

No good scaling parameter is available in this shot. The thickness of the sample could be used, but appears to be uncertain due to angle and depth by a factor of 1.5 to 2 . The extent of the ejecta and spall clouds are also of $f$ the photo, adding to the uncertainty in calculating fastest particle velocity. Nevertheless, using the same scale as the other two photos, the ejecta cloud is estimated to extend 16 threads or $16 \times .1905=3.05 \mathrm{~cm}$.
$3.05 \mathrm{~cm} / 32$ microseconds $=.0305 \mathrm{~m} / .000032 \mathrm{sec}=.953 \mathrm{kd} / \mathrm{sec}$
This velocity does not agree well with high speed camera numbers of 2 to $5 \mathrm{~km} / \mathrm{sec}_{\text {, }}$ but the uncertainty in this measurement is high.


[^0]:    Flux of Ejecta/Spall Particles of Critical Energy and Greater on a Sensitive Area of Space Station

