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1. INTRODUCTION

Tropospheric scintillations are rapid fluctuations of signal caused by

multiple scattering from the small scale turbulent refractive index inhomogencities

in the troposphere. They can strongly impair satellite communications links

operating at frequency above 10 GHz. The VA Tech OLYMPUS propagation

experiment [1] which includes 12, 20, 30 GHz beacon receivers at an elevation

angle of 14" provides us with wduable multifrcquency scintillation data.

In this paper a long term analysis of tropospheric scintillation results from

the VA Tech OLYMPUS experiment is presented. It includes statistics of both

the scintillation intensity and the attenuation relative to clear air as well as

seasonal, diurnal and meteorological trends. A comparison with the CCIR

predictive model for scintillation fading is presented.

2. DATA ANALYSIS

The long term analysis conducted covers the following twelve months:

January to May 1991, June to August 1992 and September to December 1991.

This choice was imposed by the temporary loss of the satellite OLYMPUS

between May and August 1991. The analysis is performed for "non rain" periods.

The criterion used to discriminate these periods is based on the radiometric

attenuation ARD and was chosen in order to avoid calculation of the scintillation

intensity in rain. It is made of the set of conditions:
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ARD30 < 3 dB and ARD20 < 2.7 dB and ARD12 < 1 dB (1)

These conditions allow us to eliminate most periods of rain and correspond to 73,

80.7, 80.4 % of the total period for respectively 12, 20 and 30 GHz. The

scintillation intensity is comlmted for each frequency for successive 1 minute

periods. Tile monthly cumulative distributions and PDF of both the scintilbttion

intensity and the attenuation with respect to clear air as well as the seasonal and

diurnal distributions of the scintillation intensity for the non rain periods, are

produced.

3. STATISTICS OF SCINTILLATIONS

The long term distributions of the scintillation intensity were computed on

a monthly basis. Figure 1 presents tile PDF for May 1991 together with the

Gamma and log-normal distribution constructed flom the mean and variance of

the measured data. Tile PDF of tile scintillation intensity is best al_l_roximated by

a log-normal distribution. The fit is better for the low scintillations, winter

months, and the lowcst frequencies. The cumulativc distribution of the

scintillation intensity for the total period is shown in Figure 2. During this one

year period scintillation intensities of 0.8, 1, 1.2 dB were exceeded for 0.1% of the

time at 12, 20, 30 GHz respectively. The monthly PDFs of the scintillation fading,

exemplified for May 1991 in Figure 3 are not Gaussian, contrary to the short term

distribution. The monthly PDFs show a very good agreement with the Mousley-

Vilar model [2] which assumes that the attenuation has a Gaussian distribution

with a variable variance. The model is excellent for enhancements but slightly

underestimates our measured data at the higher fading. We explain this

discrepancy in part by the choice of "non rain" threshohl which does not eliminate

all the rain from the analyzed data. In all cases the agrccment betwccn measured

anti predicted distributions is best at 12 GHz.

3. SEASONAL, DIURNAL AND METEOROLOGICAL TRENDS

The seasonal and diurnal variation of tropospheric scintillations are

illustrated in Figure 4. It shows thc increase of the monthly average of the

scintillation intcnsity as the season shifts from winter to spring aml summer.
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There is little diurnal variation ill winter scintillations and no well defined hour of

peak scintillations. The spring and summer scintillation on the contrary show a

strong diurnal trend with a maximum scintillations occurring in the afternoon

between local times 13:00 and 15:00. The diurnal behavior of the scintillation

intensity on a monthly basis is strongly correlated to the ground temperature and

humidity as shown for June 1992 in Figure 5. The correlation coefficient obtained

between the monthly average of the hourly ground temperature and humidity and

the scintillation intensity at 12, 20, and 30 GHz are respectively 0.841, 0.835,

0.789 and -0.880, -0.870, -0.827. Note that temperature and humidity are mirror

image of each other and that the scintillation intensity (regardless of the

frequency) exhibitsa slightly higher correlation with the humidity than with the

temperature.

The relation between scintillation and weather parameters is further

investigated in Figure 6, in which the scatter plots of the monthly average

scintillation intensity as a fimction of ground temperature, humidity and the wet

refractive index are shown together with the best curve fit. The dependence

between ground temperature and scintillation intensity was best approximated by

using an exponential formula of the type a x = acbT; this is consistent with result

found by Merlo et al. [3]. The scintillation intensity however is well represented

by a linear function of the ground relative humidity and the ground wet refractive

index. The coefficients of the curve fit are also given in Figure 6. Note the very

good agreement between the data and the fits specially in the case of the wet

refractive index N,,,_ t . This confirms the results obtained by Karasawa et al. [4]

on which the current CCIR model is based.

4. COMPARISON WITH CCIR MODEL

The CCIR model used to compute the long term (at least a month)

statistics of amplitude scintillation for elevation angle higher than 4° described in

[5] was compared to our measured data. The nmnthly average humidity and

temperature of Roanoke (located 35 km from our experimental site) were used in

the model for the period going fi'om January 1991 to May 1991 because of a

malfunction of our humidity sensor during that time. For June 1992, however the

meteorological quantities measured at our experimental site were used. The
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cumulative distribution of scintillation fade depths obtained using the CCIR

technique are compared to the measured data as depicted in Figure 7. The

average temperature and relative humidity used in the model arc indicated on the

graphs. There is a good agreement between measured and predicted scintillation

fade depth on a monthly basis. In winter the CCIR model tends to underestimate

the fade exceeded at low percentage (by a maximum of 0.2 dB at 30 GHz) but

shows excellent agreement for the high percentage of time. The best fit is obtained

at 12 GHz. In the spring and summer, on the contrary_ the results obtained using

the CCIR model exceed slightly the measured data at high percentages and match

the experimental data at low percentages. The comparison of the CCIR model is

not as good for the 6 month period of January-May 1991 combined with June

1992. The measured and predicted exceedance plot5 are very close at high

percentages but diverge by as nmch as 1 dB at 30 GHz for low percentages.

Globally, the difference between the CCIR model and measured scintillation fade

depth is less than 0.5 dB for time percentages ranging between 0.1 and 10 %. For

smaller percentages the rain attenuation would in any case be the dominant

factor.

5. CONCLUSIONS

Scintillation results from the Virginia Tech OLYMPUS propagation

experiment were presented. The statistics of both the scintillation intensity and

the attenuation relative to clear air during dry weather were given and the

seasonal, diurnal and meteorological trends were characterized. A comparison with

the CCIR predictive model for scintillation fading was presented. The results

presented here are unique in that they span the Ku, K and Ka frequency bands.
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Figure 4: Diurnal and seasonal variation of the average monthly 12, 20, and 30
GHz scintillation intensities for one year of data. The scintillation intensities
shown arc the monthly average for of the scintillation intensity for each hour of

the clay.
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1991 and June 1992. The best fit curves and their equations are also shown.
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Figure 7: Comparison of the measured 12, 20 and 30 Gttz scintillation fade depths
to those obtained using the CCIR model with the ground temperature and relative
humidity indicated on the graph: (a) May 1991 (h) January-May 1991.
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