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Abstract- Some rainfall rate and beacon fade results

from the first 5 years of continuous observations of an
11.2 GHz satellite beacon with a 5.8 ° elevation angle in

Austin, Texas are presented and compared to CCIR

predictions.

INTRODUCTION

Systematic measurements of satellite beacon rain
attenuation have been carried out since late 1960s in the US,

Europe, and Japan. Their results have been used to develop

and verify the many prediction methods now in worldwide

use, of which the CCIR and Global models may be the most

familiar. These models predict the annual cumulative

probability of exceeding a given fade on a specific satellite

link, taking into account such parameters as the ground

location, the frequency, and the elevation angle.

The prediction models have reached a reasonable state

of maturity and perform with adequate average accuracy on
links with non-extreme conditions, i.e., for elevation angles

above about 30 ° and in temperate climate zones. The

modeling interest, therefore, has shifted towards trying to

forecast the year-to-year variability of fading, using

approaches such as Worst Month predictions and other

statistical approaches.

Characterizing the natural variability, return period, or

prediction risk associated with rain attenuation requires data
obtained over a sufficiently long period of time [1]. Most of

the data sets available in the CCIR data base, thc official

repository for beacon fade data, however, do not exceed 2 to

3 years and this is not adequate to test variability model

designs. As a remedy, the 11.2 GHz beacon observations in

progress in Austin, Texas, since June 1988, are being
continued [2] and this paper summarizes some of the results

from the first 5 years of the experiment.

EXPERIMENTAL DETAILS

Data Collection

The experimental equipment for the measurements at

Austin, Texas (30.39°N lat., 97.73°W long., 185 m alt.,

CCIR Climate Region M), incorporates a 2.4 m diameter

receiving antenna feeding both a beacon receiver and a
radiometer, a tipping bucket rain gauge, and sensors for

wind, relative humidity, and pressure. Employing a single

antenna ensures the alignment of the volume from which the

thermal radiation emanates with the path of the beacon

signal. Its measured sky coupling efficiency, h, is 0.98. A

block diagram of the receiving equipment is shown in

Figure 1.

Fig. 1 11.2 GHz Beacon Receiver and Radiometer Block

Diagram.

The data reported pertain to the five-year period from

June 1988 to May 1993, during which the right-hand

circularly polarized (RHCP) 11.198 GHz signal from a
succession of three INTELSAT geostationary satellites

located at 335.5°E was monitored, with a path elevation

angle of 5.8 °. Salient features of the beacon receiver are a

Ku-Band low-noise amplifier and a 32 channel frequency-
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tracking filter bank with 100 Hz bandwidth (BW) and a 0.9

Hz post detection BW, resulting in a fade margin of 25 dB.

The receiver output is sampled at a 2 Hz rate. The

radiometer implements a gain controlled, continuously self-

calibrating Dicke-switched design with a total noise BW of
200 MHz centered at 11.325 GHz (LHCP), a 1 s integration

time, and a sensitivity of less than 0.1 K. The radiometer

and meteorological sensors are sampled at a 0.1 Hz rate; rain

gauge tipping times are recorded asynchronously with a

resolution of 0.06 s. Both experiment control and data

acquisition are personal computer driven.

Beacon receiver calibrations were performed

approximately quarterly by the signal injection method to
allow for the characterization of the receiver in the

enhancement region and to avoid having to rely on rare

periods with low scintillations for a constant reference

signal. The calibrations verified that receiver gain changes

were negligible. The radiometer noise diode was calibrated
against liquid nitrogen at the beginning of the experiment

and diode aging appears to be insignificant, as the lowest sky
temperature observed during dry winter nights repeated from

year to year.
Data loss through equipment malfunction was

minimized by careful system design, built-in redundancy,

and daily operator inspection. During the five year period

only one failure occurred during a fade event, but the data

could be recovered from simultaneous strip-chart recordings.

Data gaps caused by calibration or maintenance are judged

to have negligible impact on the statistical results.

Data Processing

Calibration verified both constant gain and linearity of

the receiver, but several factors contribute to a time varying

offset. These need to be separated by post-acquisition data

processing to derive the level of the received signal with

respect to free space or clear air. The radiometer derived

attenuation for non-rain fade periods is the most important

ingredient in this procedure.
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The 0.01% Rainfall Rate for the 60 Month

Measurement Period Indicates Normal Behavior.

At the low elevation angle of this experiment,

scintillations of the beacon level (+5 dB at 0.01% of time)

were observed nearly always, even during rain fades, as

verified by comparing the variations of beacon and
radiometer time series. To separate rain fading from

scintillation fading it is therefore not sufficient to just extract

beacon data for time periods during which the radiometer is

above a threshold (e.g., 110 K); the scintillations have to be

removed by low-pass filtering of Afs or Aca. For the results
presented here, we chose a moving averager window width

of 3 min, which rejects about 80% of the scintillation power

without causing overshoots after rapidly-decaying rain fades,

based upon a graphical inspection of fade events.

RESULTS

Rainfall Rate

The rainfall rate at 0.01% annual probability for CCIR

Climate Region M is 62.5 mm/hr, but for the 5-year

measurement it averages 73.6 mm/hr, indicating that the

CCIR classification does not fully account for Austin's

subtropical climate in which rainfall often occurs in very

heavy showers. The mean monthly 0.01% rainfall rate over

the 60 month measurement period, however, is 60.7 mm/hr.

A chi-squared fit performed on the data indicates that the
monthly 0.01% rainfall rate is normally distributed with a

standard deviation of 36.2 mm/hr, as depicted in Figure 2.
The month-by-month tabulation of the measured rainfall

statistics has been included in Appendix A. Cumulative
distributions of the rainfall rate observed for each of the 5

years, the overall period, and the worst month have been

plotted in Figure 3.
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Fig. 3 Cumulative Distributions of the Annual Rainfall

Rate for the 5 Years of Observation in Austin,
Texas.

82



Fading

Figure 4 plots the percentage of time that the unfiltered
clear air attenuation exceeded the values drawn on the

abscissa for each of the 5 observation years, as well as the

overall period. Note that the ordinate has a normal

probability scale. Fades predicted by the CC1R method as

given in Report 564 have also been included and are

represented by the symbol C. There are two distinct

domains in the graph. Fades less than about 5 clB are

dominated by scintillations symptomatic for a low-elevation

angle path. As scintillations are present for almost all of the

time, year-to-year variations are very small. The higher
fades are due to rain attenuation, are relatively rare events,

and therefore exhibit much higher year-to-year variability. It

is obvious, however, that the CCIR prediction method

seriously underestimates rain fading.
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Fig. 4 Annual Cumulative Distributions of 11.2 GHz Rain

Fades Measured in Austin, Texas, over a 60 Month
Period.

The experiment's dynamic range of less than 25 dB is

not adequate to characterize the 0.01% fades. During the

worst month, 20 dB fades were exceeded for about 1% of the

time. The average difference between monthly and 5-year

fades exceeded at percentages between 0.1 and 1 has been

plotted in Figure 5 along with the standard deviation. The

average difference at 0.1% is about -4 dB, i.e., the monthly

average 0.1% fade is about 14 dB, as opposed to the annual
0.1% fade value of 18 dB. Common sense would indicate

that the average difference ought to be 0 dB. The

discrepancy can be blamed on an apple/orange comparison.

When comparing cumulative distributions, one has to have
the same timebase. As an example, assume a month to have

100 hours and a year to consist of 2 months. During the first
month, let fades exceed 5 dB for 1 hour, during the second

month, fades exceed 5 dB for 2 hours and 10 dB for 1 hour.

Assume fades were 0 clB at alI other times. The two 1% fade

levels are then 5 dB and 10 dB, with an average of 7.5 dB.

The year, consisting of 200 hours, had 197 hours at 0 dB, 3

hours exceeding 5 dB, and l hour exceeding l0 dB. At

1% (2-hours), the annual fade exceeded only 5 dB. A table

of the monthly and annual rain attenuation in excess of clear

air, lowpass filtered with a 180 s window, has been added in

Appendix B.
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Fig. 5 The Average Difference Between the 5-Year CDF
and the 60 Monthly CDFs.

Radiometric A[edium Temperature

The 60 monthly values of the radiometric medium

temperature, used for converting sky temperature to fades,

are normally distributed and have a mean value of 266.7 K
and a standard deviation of 5.5 K. Figure 6 shows a time

series of the medium temperature estimates. The first 15

months have a lower average than the later months. At this

time the cause for this trend is not known, however, it merits

further investigation.

CONCLUSION

Observations of beacon rain fades on an 11.2 GHz path

with 5.8 ° elevation have been performed for 5 years and are

still continuing. The value of the long, uninterrupted and

homogeneous data set will be for the modeling of the

variability of rain fading. The results so far show that the

CCIR prediction method consistently underestimates the

attenuation due to rain fading on this link.
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APPENDIX A: Monthly and Annual Rain Rates (ram/h) Exceeded with Time
Percentages from 0.5 to 0.001 in Austin, Texas, During the Five Year Period from June
1988 to May 1993,

i_yynl I Rain Rate at Percentage
, m 0.5 I 0,3 J 0.2 I 0.1 I 0.05 J 0,03 I 0.02 I 0.01 10.005 10.003 10.002 10.001

8806 2 6 12 31 55 70 79 90 99 110 121 [126
8807 2 6 13 22 31 36 40 45 47 52 5_3 55
8808 0 1 2 9 16 27 33 60 81 99 108 111
8809 1 3 4 6 9 12 20 43 51 69 82 87
8810 0 0 2 3 16 25 48 69 81 84 92 96

8811 0 0 0 11 2 5 7 10 20 24 27 32
8812 1 2 3 4 6 8 8 10 12 13 14 15
8901 4 8 11 16 21 25 29 35 41 48 47 50
8902 0 1 2 4 7 9 10 13 15 16 23 24
8903 2 8 12 23 37 47 55 85 136 144 152 172
8904 1 3 8 20 52 74 94 112 132 138 144 151
8905 8 17 24 39 56 64 68 81 98 105 108 129

Year1 1 4 7 15 28 39 49 70 68 101 111 137
8906 1 4 6 15 25 34 40 59 78 84 87 94
8907 0 0 0 0 0 0 0 3 7 7 8 16
8908 4 9 15 27 38 43 50 66 96 111 115 140
8909 0 0 0 1 9 14 17 32 69 74 76 77
8910 3 4 4 7 13 17 19 26 44 55 57 61
8911 2 2 3 5 6 9 11 17 21 22 28 30
8912 0 0 0 0 1 1 2 2 3 3 3 4
9001 1 1 2 3 7 11 13 16 21 22 28 29
9002 5 7 11 18 28 35 39 48 53 58 65 66

9003 4 6 8 12 18 24 28 30 35 36 38 39
9004 4 6 7 15 27 36 47 98 182 194 199 199
9005 10 21 31 47 67 82 96 134 180 199 199 199

=

Year2 2 4 6 13 24 34 42 59 79 97 125 173

9006 0 0 1 11 53 80 105 130 159 172 178 194
9007 4 5 8 15 27 39 50 59 69 72 73 75
9008 0 0 0 0 3 5 7 10 14 18 19 21
9009 2 4 8 20 41 54 69 75 84 95 102 130
9010 5 7 9 14 20 31 36 58 75 82 87 89

9011 4 7 9 13 21 27 32 47 51 57 61 68
9012 0 1 1 7 19 26 31 45 70 76 82 94
9101 9 12 16 21 29 37 42 47 55 57 60 66
9102 5 6 7 9 17 29 32 44 62 65 75 77
9103 0 1 2 3 7 12 17 42 68 71 75 77
9104 3 5 7 11 30 49 65 91 117 129 133 153
9105 3 12 19 32 50 61 72 100 115 124 127 139

Year3 3 6 8 15 26 40 50 68 86 109 118 140
9108 3 6 10 22 34 43 56 74 98 121 150 170
9107 0 1 4 8 31 46 60 83 92 95 98 105

9108 8 17 25 42 88 114 128 158 193 193, 199 199
9109 1 5 12 25 37 44 48 60 71 80 83 98
9110 1 7 15 33 62 77 89 104 135 147 150 167
9111 0 1 4 11 20 30 35 45 52 63 64 65
9112 17 24 33 49 67 78 83 91 100 101 103 110
9201 4 5 5 7 8 9 12 15 18 19 19 20
9202 7 8 11 19 34 43 52 60 75 88 108 121
9203 6 10 16 28 45 57 65 75 64 88 99 110

9204_ 3 4 5 7 13 21 38 52 63 99 108 112
9205 12 22 35 54 72 90 102 133 156 168 177 186

Year4i 5 9 15 28 46 61 73 93 115 134 147 171

9206 3 6 12 27 46 65 82 97 105 111 113 117

9207 0 2 2 3 6 7 11 16 20 21 21 28
9208 0 2 4 11 15 19 26 39 48 50 52 56
9209 3 5 9 41 68 83 92 100 110 116 120 127

9210i 0 0 0 13 31 42 54 73 88 96 107 120
9211 6 10 14 37 61 75 85 104 131 143 150 174
9212 4 6 8 12 19 23 27 33 45 49 53 55
9301 5 6 8 10 16 22 24 36 44 50 55 62
9302 4 6 7 12 17 22 25 35 44 59 64 96

9303 2 5 8 15 23 33 44 55 62 67 80 87
9304 4 6 10 18 27 42 57 72 79 83 86 92
9305 5 7 10 28 47 56 77 t02 119 128 135 140

Year5 3 5 7 15 30 46 57 78 94 104 111 127
Yrsl-5 3 6 9 18 32 45 56 75 95 111 125 148
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APPENDIXB:Monthly and Annual Rain Attenuation (dB) in Excess of Clear Air (50% @ OdB)
Measured in Austin, Texas, at a Frequency of 11.2 GHz with an 5.8" Elevation Angle. The Fade
Margin of the System was Nearly 25 dB. The Data have been Low-Pass Filtered with a 180 s
Window.

Time I Attenuation at Percentage

yymmJ 3 2 I 1 031021o, oo 1oo31oo21oollo 1ooo31ooo=1ooo,
8806 0.8 1.1 1.6 3.5 8.415.6120.1j23,1
8807 1.0 1.4 1.8 3.1 5.2 7.5110.3 17.923.1

8808 1.0 1.2 1.5 2.7 5.1 7.1 10.8 16.621.3 ;'3.8 71
8809 1.0 1.3 1.6 2.8 5.8 9.013.517.320,823.2
8810 0.6 0.7 0.9 1.2 1.6 3.0 4.8 8.413.0=22.31

8811 0.6 0.7 0.8 1.0J 1:4 1.8 2.4 4.5 10.1 14.9 16.7 18.2 20.5 21.2 21.5 21.7
8812 0.8 1.0 1.2 1.5 2.1 2.6 2.8 3.0 3.4 3.6 3.7 4.0 5.9 6.4 6.6 6.7

8901 1.01 1.3 1.7 2.8 4.2 5.9 8.1 12.6 16.620.3
8902 0.7 0.8 0.9 1.1 1.3 1.6 2.0 2.8 6.1 9.010.211.5 13.1 13.814.1 14.3

8903 0.8 1.1 1.7 3.7] 6.1 8.4 10.7 16.9 .)0.4 22.2 23.1
8904, 0.8 1.1 1.3 2.0 4.6 7.4 9.5 16.322.7

L

8905 0.6 1.3 2.1 8.6 18.6
Year1 0,9 1.1 1.4 2.4 4,8 7.7 11.6 18.9.>3.5

8906 0,9 1.3 1.9 4,0 6.1 10.221.5
8907 0,6 1.0 1.2 1.6 2.5 4.0 6.4 12.2 15.2 16.6 17.7

8908 1.0 1.2 1.5 2.3 4.6 7.0 10.4 16.520.8
8909 0,9 1.1 1.2 1,5 1.9 2.4 3.7 6.1 10.9 16.2 17.521.4
8910 0,8 1.1 1,3 2.6 5,2 6.2 7.1 15.223.9
8911 0,7 0.9 1,1 1,6 3.0 4.1 4.9 6.1 7.3 7,8 8.4 9.9 10.6 10.8 10.8 10.9
8912 0.5 0.6 0.6 0.8 0.9 1.0 1.2 1.4 1.5 1.6 1.6 1.7 1.7 1.7 1.8 1.8

9001 Lo.8 1.0 1.2 1.4 1.7 2.0 2.2 2.8 3.6 4.0 4.3 5.1 8.9 9.6 9.9 10.1
9002 0.9 1.4 2.2 3.8 5.6 8.1 11.1 15.1 17.3 19.1 20.8 21.5 22.1 22.6 22.9 23.0
9003 0.8 1.1 1.3 2.1 4.3 5.4 6.1 7.0 8.1 9.6 12.0 14.6 17.216.2 18.5;18.8
9004 0.7 1.0 1.4 4.5 6.6 9.7 12.3 22.3
9005 0.8 1.1 1.6 4.0 1.9 16.9 19.5 23.8

Year2 0.9 1.1 1.4 2.3 4.4 6.1 8.2 15.1 21.7

9006 0.7 0.8 1.0 1.2 1.7 2.3 3.9 13.9 20.323.2 23.724.2
9007 1.2 1.8 2.6 4.1 6.6 9.6 11.8 15.2 18.8 20.3 21.6 22.8 23.4
9008 0.9 1.2 1.4 1.9 2.7 4.3 7.1 12.2 19.022.2 24.024.1
9009 1.2 1.6 2.2 4.0 5.5 7.4 9.1 12.415.719.8 !1.823.224.0
9010 0.9 1.1 1.5 4.1 6.7 9.011.8121.924.3
9011 0.8 1.2 1.7 3.4 5.5 6.7 8.3 16.9 ->2423.8 24.3
9012 0.7 0.9 1.0 1.3 1.6 1.9 2.3 3.3 4.6 5.6 6.2 7.7 8.2 8.7 8.8 8.9
9101 1.4 2.7 4.1 7.5 10.0 12.1 13.7 16.1 19.3 20.5 !1.3 23.9 24.3
9102 0.7 1.0 1.3 2.9 8.3 10.2 11.6 14.2 17.2 19.1 23.1 24.3
9103 0.7 0.9 1.2 2.0 3.1 42 5.4 9.1 11.5 13.3 14.6 15.5 15.8 16.6 16.9 17.0

9104 1.0 2.2 3.9 6.5 9.6 17.622.6 24.2
9105 1.0 1.5 2.2 4.6 8.8 14.7 18.9 22.9!24.1

Year3 1.0 1.3 1.8 3.7 6.5 8.911.217.022.424.2

9106 1.0 1.6 2.3 4.1 6.4 0.212.3118.524.0
9107 0.9 1.2 1.6 2.7 6.0 9.9 12.1 15.7 18.1 19.2 19.9 20.4
9108 1.1 1.6 2.3 4.7 10.7 5.7 19.623.1 !4.0
9109 1.3 1.7 2.3 3.9 6.0 8.1 9.6 11.7 16.2 19.6 20.723.9
9110 0.9 1.31 1.8 4.6 1101 5.017.920.521.422.022.222.4
9111 0.8 1.0 1.1 1.4 1.9 2.4 3.3 9.1 13.1 18.721.022.422.7
9112 2.3 3.8 5.4 6.9 12.5 7.0 19.3 21.6 22.1 22.2 22.2
9201 1.1 1.4 1.6 2.3 3.1 3.7 4.1 4.6 5.1 5.7 5.9 6.3 7.8 8.4 8.8 9.0
9202 1.6 2.2 2.8 4.8 7.4 8.7 9.811.215.1 23.023.1

9203 0.9 1.4; 2.8 5.3 8.4 i 1.7 14.5 18.5 21.2 22.1 22.5
9204 0.7 1.1 1.7 3.51 5.3J 6.5 7.1 8.3 9.4 10.4 10.8 2.6 15,7 16.6 16.8 17.0
9205 1.4 1.41 3.9 9.7 !20,8 21,8 22.0 22.4 22.6 22.7 22.8123.0

Year4 1.2 1.7 _ 2.4 4.5 7.9 1,5 14.920.5 22.1 22,522.9 24.2

9206 1,0 1.7 2.7 6,1 112 20,9 22.2 22,6
9207 0,8 1.0 1.2 1,5 2,1 2.9 4.0 5.4 8.710,211.7 14.915.8 16.1 16.216.3
9208 0,9 1,3 1.6 2,9 5,5 8,410.1 14.9 21.7
9_.'_:J 0,9 1.1 1.5 3.7 7,4 14.1 18.421.5 _.0 22.3
9210 0,7 0.8 1.0 1,3 2,2 4.411.820.0 22.0
9211 1,0 1.7 2.7 5,6 8.9 1.2 13,2 16.9 18.8 20.7 21.3 22.2
9212 0,9 1.2 1,6 2.6 3,5 5.0 6.3 7.6 8.5 9.2 9,8 1,8 14.6 15.2 15.4 15.7

9301 09 1.1 1.4 2.4 4.4 6.0 7.5 12.2 14.9 16.3 18.2 19.7 21.0 21,5 ._1,822.0
9302 0,9 1.2 1.6 2,6 3,9 5.4 6.4 9.1 12.315.8 17.3 21.221.8
9303 0.9 1.2 1.5 2,0 3,2 5.1 7.0 9.9 13.8 17.919.9 22.1
9304i 0.9 1.1 1.5 3.1 5.4 7.5 10.3 17.6 21.6 .>2.0
9305 1.0 2.0 3.5 5.8 8.8 15.2 19.021.2 21.8

Year'5:0.9 1.2 1.6 3.1 5.7 8.4 11.1 18.2 21.8 22.1 22.3 22.7

Yrs1-51.0 1.3 1.7 3.2 5.9 3.7 1,7 18.4 ,>2.1 23.324.3
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