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Abstract

The single-year rain-rate distribution data available within the archives of CCIR
Study Group 5 have been compiled into a data base for use in rain-rate climate modeling
and for the preparation of predictions of attenuation statistics. The four year set of tip-
time sequences provided by J. Goldhirsh for locations near Wallops Island were

processed to compile monthly and annual distributions of rain rate and of event durations
for intervals above and below preset thresholds. A four-year data set of tropical rain-rate

tip-time sequences were acquired from the NASA TRMM program for 30 gauges near
Darwin, Australia. They have also been processed for inclusion in the CCIR data base
and the expanded data base for monthly observations at the University of Oklahoma.

The empirical rain-rate distributions (edfs) accepted for inclusion in the CCIR data
base were used to estimate parameters for several rain-rate distribution models: the

lognormal model, the Crane two-component model, and the three parameter model
proposed by Moupfuma. The intent of this segment of the study is to obtain a limited set
of parameters that can be mapped globally for use in rain attenuation predictions. If the
form of the distribution can be established, then perhaps available climatological data can
be used to estimate the parameters rather than requiring years of rain-rate observations to

set the parameters. The two-component model provided the best fit to the Wallops Island
data but the Moupfuma model provided the best fit to the Darwin data.
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1.Thedatabanks

Rain-rateobservationsfrom the CCIR databanks,the measurementsmadeby J.
Goldhirsh at Wallops Island, andthe archivesof the TRMM observationprogram for
Darwin, Australia werecombinedto compilea new rain-ratedatabase. The format of
this data base is displayed in Table 1 for observationsfrom Wallops Island. The
categoriesindicatedin the headingsfor eachcolumnwere agreedby Study Group5 at
their lastsetof meetingsin Geneva.It is notedthatnoobservershaveasyet providedall
thedatathat arerequested.An outputfrom theACTSPropagationExperimentshouldbe
completeentriesfor thedatabase.

Table 2 displaysinformationstoredin theOU databasethat areusedfor rain-rate
climate analysisbut go beyond the requestsof the CCIR. They include the model
parametersfor severaldifferentmodelsemployedto representtheempirical distribution
function (edfs)andtheerrors thatresultfrom usingthemodels.

Summaryplots are available for eachgaugesite. Figures 1 and 2 display the
summarydata for Wallops Island Gauge#! andfor the Darwindata from Annabu_o;
The columns G and C give the root-mean-square difference in the natural logarithms
between predictions, for the Global and CC_ rain-rate climate zones. From the figure
for Wallops Island, it is evident that the climate zone models fit the observations quite
closely and only a small seasonal variation is present. For Annaburro, the climate zone
models do not fit very well and a large seasonal variation is present.

The new data bank includes both annual and worst month edfs and monthly data at
0.01%, 0.1% and 1% of a month for displaying seasonal variations. These data can be
readily compared with models as illustrated in Figure 3. Two plots are given, one for the
annual distribution and the other for the worst month. For the Crane "Global" model and

the expected year-to-year and location-to-location variability of observations relative to
that model, the annual data fit well within the expected distribution bounds. For the
worst month observations, the rain-rate values are larger than expected but still within the

expected bounds for a single year of observation (a single sample).

The data from Wallops Island and from Australia were also used to prepare

empirical distributions of times above and below selected rain rate thresholds. These data
were fit to exponential distributions by month to explore their dependence on year,
season, etc. The exponential model was used instead of the lognormal model that is often
quoted in the literature because, if the correlation time for the rain process is fixed and
the process is assumed stationary, theory predicts the exponential form. Empirically, it
also provides a good fit to the observations. As with most statistical problems,
insufficient data are available to select one model over the other, but the theoretical

argument is compelling. Sample results from monthly exponential distribution fits are
displayed in Figures 4 and 5 for Wallops Island Gauge #1. The average duration of
intervals with rain rates in excess of 10 mm/h is 6 minutes and the distribution of average

durations may be approximated as normal. The average duration of a rain event (above
0.1 mrn/h) is 5 hours (300 minutes).
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2. Models for observed rain-rate distributions

The observed rain-rate distributions are samples from a random process. Figure 3

displays two such samples and model predictions that bound the expected range (5% to
95%) for the observed distributions. The expected distributions are shown to be smooth
functions of percent time (or of rain rate). The observed random variables are only
constrained to be monotonically increasing with decreasing percentage of time. A model

to represent the observed distribution should depend on few parameters to provide a
maximum of smoothing (or averaging) to reduce the statistical variations. Three such
models were employed to represent the observed distributions, the Crane two-component
model (5 parameters), the lognormaI model (3 parameters), and the Moupfuma model (3
parameters). The latter is a function that performs well in least squares curve fitting over
a partial range of the reported distributions. The two component model is constrained to
mimic weather radar observations. It often performs les.s well than the simpler lognormai
model. In this case, more parameters do not automatically provide for a better fit.

The results of the use of these models on the Wallops Island observations, the
Darwin observations and the entire CCIR data base are presented in Table 3. For the data

from Wallops Island, the two-component model performed best with a root-mean-square
fitting error in the natural logarithm of the rain rate of 0.06 (-> 6.2%). For the data from
Australia the Moupfuma model performed the best with an error of 0.17 (-> 18.5%). For
all the other data in the CCIR data banks the lognormal model did the best (-> 17.5%)

followed by the two-component model then the Moupfuma model.

Currently, the CCIR is intent on selecting a model to be used to parameterize rain-
rate observations. Study Group 5 is pushing the use of the Moupfuma model. It works
better than the other models for data from the tropics but works less well at mid-latitudes.
It has the advantage over the two-component model of using only three parameters.
However, the Moupfuma model is strictly a curve fitting procedure and does not provide
a probability distribution. The other two models are constrained to provide probability
distributions.

Although the physically based two-component model performs well at mid-
latitudes, an improved model is needed for tropical regions. Work at OU continues to
find a model that performs well in both tropical and mid-latitude regions, produces a
probability distribution, and has integral constraints such that the parameters of the model
can be readily estimated from climatological data. For the lognormal and two-component
model, one of the parameters can be set using the total annual accumulation of rain fall.

It should be possible to set a second parameter based on the statistics of the monthly
accumulations. Finally, extreme value information may be useful in setting a third

parameter. The intent is not to find a statistical relationship between the parameters and
climatological data but to find integral constraints that directly determine the parameters.
The parameters can then be mapped based on the available mappings of climatological
data.
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