Rain-Rate Data Base Development and Rain-Rate Climate Analysis

Robert K. Crane University of Oklahoma June 14, 1993

Report to the NAPEX-17 Meeting Pasadena, California

Abstract

The single-year rain-rate distribution data available within the archives of CCIR Study Group 5 have been compiled into a data base for use in rain-rate climate modeling and for the preparation of predictions of attenuation statistics. The four year set of tiptime sequences provided by J. Goldhirsh for locations near Wallops Island were processed to compile monthly and annual distributions of rain rate and of event durations for intervals above and below preset thresholds. A four-year data set of tropical rain-rate tip-time sequences were acquired from the NASA TRMM program for 30 gauges near Darwin, Australia. They have also been processed for inclusion in the CCIR data base and the expanded data base for monthly observations at the University of Oklahoma.

The empirical rain-rate distributions (edfs) accepted for inclusion in the CCIR data base were used to estimate parameters for several rain-rate distribution models: the lognormal model, the Crane two-component model, and the three parameter model proposed by Moupfuma. The intent of this segment of the study is to obtain a limited set of parameters that can be mapped globally for use in rain attenuation predictions. If the form of the distribution can be established, then perhaps available climatological data can be used to estimate the parameters rather than requiring years of rain-rate observations to set the parameters. The two-component model provided the best fit to the Wallops Island data but the Moupfuma model provided the best fit to the Darwin data.

Rain-Rate Data Base Development and Rain-Rate Climate Analysis

ī,

1

I II PA III I

international

de Manuelle ander 1. h

=

=

THE REPORT OF THE PARTY OF THE

1. The data banks

Rain-rate observations from the CCIR data banks, the measurements made by J. Goldhirsh at Wallops Island, and the archives of the TRMM observation program for Darwin, Australia were combined to compile a new rain-rate data base. The format of this data base is displayed in Table 1 for observations from Wallops Island. The categories indicated in the headings for each column were agreed by Study Group 5 at their last set of meetings in Geneva. It is noted that no observers have as yet provided all the data that are requested. An output from the ACTS Propagation Experiment should be complete entries for the data base.

Table 2 displays information stored in the OU data base that are used for rain-rate climate analysis but go beyond the requests of the CCIR. They include the model parameters for several different models employed to represent the empirical distribution function (edfs) and the errors that result from using the models.

Summary plots are available for each gauge site. Figures 1 and 2 display the summary data for Wallops Island Gauge #1 and for the Darwin data from Annaburro. The columns G and C give the root-mean-square difference in the natural logarithms between predictions, for the Global and CCIR rain-rate climate zones. From the figure for Wallops Island, it is evident that the climate zone models fit the observations quite closely and only a small seasonal variation is present. For Annaburro, the climate zone models do not fit very well and a large seasonal variation is present.

The new data bank includes both annual and worst month edfs and monthly data at 0.01%, 0.1% and 1% of a month for displaying seasonal variations. These data can be readily compared with models as illustrated in Figure 3. Two plots are given, one for the annual distribution and the other for the worst month. For the Crane "Global" model and the expected year-to-year and location-to-location variability of observations relative to that model, the annual data fit well within the expected distribution bounds. For the worst month observations, the rain-rate values are larger than expected but still within the expected bounds for a single year of observation (a single sample).

The data from Wallops Island and from Australia were also used to prepare empirical distributions of times above and below selected rain rate thresholds. These data were fit to exponential distributions by month to explore their dependence on year, season, etc. The exponential model was used instead of the lognormal model that is often quoted in the literature because, if the correlation time for the rain process is fixed and the process is assumed stationary, theory predicts the exponential form. Empirically, it also provides a good fit to the observations. As with most statistical problems, insufficient data are available to select one model over the other, but the theoretical argument is compelling. Sample results from monthly exponential distribution fits are displayed in Figures 4 and 5 for Wallops Island Gauge #1. The average duration of intervals with rain rates in excess of 10 mm/h is 6 minutes and the distribution of a verage durations may be approximated as normal. The average duration of a rain event (above 0.1 mm/h) is 5 hours (300 minutes).

2. Models for observed rain-rate distributions

The observed rain-rate distributions are samples from a random process. Figure 3 displays two such samples and model predictions that bound the expected range (5% to 95%) for the observed distributions. The expected distributions are shown to be smooth functions of percent time (or of rain rate). The observed random variables are only constrained to be monotonically increasing with decreasing percentage of time. A model to represent the observed distribution should depend on few parameters to provide a maximum of smoothing (or averaging) to reduce the statistical variations. Three such models were employed to represent the observed distributions, the Crane two-component model (5 parameters), the lognormal model (3 parameters), and the Moupfuma model (3 parameters). The latter is a function that performs well in least squares curve fitting over a partial range of the reported distributions. The two component model is constrained to mimic weather radar observations. It often performs less well than the simpler lognormal model. In this case, more parameters do not automatically provide for a better fit.

The results of the use of these models on the Wallops Island observations, the Darwin observations and the entire CCIR data base are presented in Table 3. For the data from Wallops Island, the two-component model performed best with a root-mean-square fitting error in the natural logarithm of the rain rate of 0.06 (-> 6.2%). For the data from Australia the Moupfuma model performed the best with an error of 0.17 (-> 18.5%). For all the other data in the CCIR data banks the lognormal model did the best (-> 17.5%) followed by the two-component model then the Moupfuma model.

Currently, the CCIR is intent on selecting a model to be used to parameterize rainrate observations. Study Group 5 is pushing the use of the Moupfuma model. It works better than the other models for data from the tropics but works less well at mid-latitudes. It has the advantage over the two-component model of using only three parameters. However, the Moupfuma model is strictly a curve fitting procedure and does not provide a probability distribution. The other two models are constrained to provide probability distributions.

Although the physically based two-component model performs well at midlatitudes, an improved model is needed for tropical regions. Work at OU continues to find a model that performs well in both tropical and mid-latitude regions, produces a probability distribution, and has integral constraints such that the parameters of the model can be readily estimated from climatological data. For the lognormal and two-component model, one of the parameters can be set using the total annual accumulation of rain fall. It should be possible to set a second parameter based on the statistics of the monthly accumulations. Finally, extreme value information may be useful in setting a third parameter. The intent is not to find a statistical relationship between the parameters and climatological data but to find integral constraints that directly determine the parameters. The parameters can then be mapped based on the available mappings of climatological data.

Wallops Is_VA-1

Ŧ

Annaburroo_AU

WIGauge1_60_Avg_Dur_0.1

Real Truck

And the second second

į

Ē

n of Year 5 mm/h	%]																																				
Fraction R > 0	ت ز د د																																				
Duration	[days]	365	366	365	365	365	366	365	365	365	366	365	365	365	366	365	365	366	365	365	365	366	365	366	365	365	365	366	365	365	365	366	365	365	365	366	376
	End Date	37_12	38 12	39_12	90_12	37_12	38_12	39_12	90_12	87_12	38_12	39_12	0_12	38_12	39_12	90_12	37_12	38_12	39_12	90_12	37_12	38_12	37_12	38_12	39_12	90_12	87_12	38_12	39_12	90_12	37_12	38_12	39_12	90_12	87_12	38_12	<. <
	tart Date	101	101	10	01	10	<u>01</u>	10	10	101	10 1	10	10	2 10	10	01	101	<u>101</u>	- 01	01	107	10	10	10	10	010	107	2 IO	10	10	10	<u>101</u>	10	01	10	201	
RG	[cm^2] S	8	38	8	8	87	38	8	8	8	88	8)6	88	58	8	87	88	8	8	8	88	8	80	88)6	8	38	5 8	8	8	38	8	8	.8	8	
Accumulation	[mm/tip]																				··- i				-												
RG Integration	Time [s]																						-	.													
RG Resolution	[mm/h]																																				
Rain	Type																																				
CCIR	Zone	Х	К	К	K	K	Х	Х	X	K	K	K	К	Х	Ж	К	K	×	К	×	×	X	X	х	х	×	K	×	×	K	Х	×	Х	X	×	К	
RG Ahinde	amsl [m]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
RG Aneitude	[deg] E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
RG I atimula I	[deg] N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5a	Country	SN	SN	SU	SU	SU	US	SU	SU	SU	SU	SU	SU	SU	SU	SU	SU	SU	SU	US	SU	SU	SU	SU	SU	SU	US	SU	SU	SU	SU	SU	US	SU	SU	SU	
	RG Site Name	VALLOPS_IS_VA	VALLOPS IS VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS IS VA	VALLOPS IS VA	VALLOPS IS VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS IS VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS IS VA	VALLOPS IS VA	VALLOPS_IS_VA	VALLOPS IS VA	VALLOPS IS VA	VALLOPS IS VA	VALLOPS IS VA	VALLOPS IS VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS IS VA	VALLOPS_IS_VA	VALLOPS_IS_VA	VALLOPS_IS_VA	AVLIOPS IS VALUE	
Eveniment	Number	RW10101 W	RWI0102 W	RW10103 W	RW10104 W	RW10201 N	RW10202 W	RW10203 N	RW10204 W	RWI0301 W	RWI0302 W	RW10303 N	RW10304 V	RW10402 N	RWI0403 W	RW10404 V	RW10501 W	RW10502 W	RW10503 W	RW10504 N	RWI0601 W	RW10602 W	RW10701 W	RW10702 W	RW10703 N	RW10704 N	RW10801 N	RW10802 W	RWI0803 N	RWI0804 W	RW10901 N	RW10902 N	RW10903 W	RW10904 N	RW11001 W	RW11002 W	

Ì

Ē

113

Page 1

% year 5 RR >	0.1		0.17	0.13			0.16	0.13			0.12			0.1				0.16			_			0.19					0.13			0.13					
% year 3 RR >	0.37	0.29	0.58	0.47	0.24	0.21	0.57	0.48	0.3	0.34	0.48	0.44	0.28	0.33	0.32	0.33	0.34	0.57	0.33	0.28	0.22	0.28	0.3	0.7	0.4	0.25	0.23	0.43	0.49	0.28	0.31	0.47	0.2	0.2	0.23	0.39	0.42
% year 2 RR >	0.9	0.78	1.35	1.07	0.65	0.66	1.23	1.01	0.71	0.83	1.27	0.94	0.68	0.87	0.83	0.76	0.79	1.09	0.81	0.67	0.59	0.7	0.71	1.44	0.93	0.78	0.56	1.01	1.01	0.8	0.74	1.05	0.58	0.58	0.65	0.95	1.02
% year 1 RR >	2.66	2.29	3.63	2.52	2.08	1.89	2.86	2.37	2.18	2.28	3.15	2.1	2.08	2.97	2.16	2.36	2.34	2.57	2.07	2.09	1.99	2.17	2.21	3.43	2.24	2.19	1.96	2.82	2.26	2.33	2.23	2.43	1.71	1.9	1.9	2.78	2.33
% year 0.5 RR >	4.97	4.2	6.65	4.52	3.93	3.79	5.22	4.22	4.24	4.3	6.05	3.91	4.13	5.68	4.09	4.57	4.24	4.9	4.01	4.5	3.74	4.21	4.23	6.51	3.82	4.29	3.85	5.95	3.71	4.41	4.15	4.76	3.22	3.73	3.7	5.57	3.98
% year 0.3 RR >	7.07	6.3	9.57	6.81	5.37	5.58	7.52	6.06	5.86	6.3	8.44	5.55	6.1	8.34	5.84	6.64	6.11	7.81	5.73	6.85	5.15	6.29	5.94	9.79	5.24	6.18	5.7	9.5	5.4	6.33	5.73	7.19	4.67	5.3	5.44	8.21	5.86
% year 0.2 RR >	8.86	8.73	12.83	9.57	6.71	7.49	10.14	8.17	7.34	8.15	11.03	7.55	8.09	12.03	7.34	8.56	7.89	10.63	7.32	9.33	6.41	8.13	7.67	14.63	7.33	8.1	7.61	14.39	7.24	8.25	7.21	9.88	6.3	7.01	7.19	11.15	7.84
% year 0.1 RR >	12.75	14.56	21.73	18.27	9.76	12.91	17.68	14.91	10.67	13	19.47	13.08	13.61	21.15	12.11	12.18	12.29	18.59	11.25	14.25	9.3	12.09	12.06	27.65	14.14	12.51	11.92	27.21	12.07	12.86	11.13	17.34	10.36	10.62	10.77	18.52	12.87
% year 0.05 RR >	19.27	23.59	35.81	30.93	15.62	20.74	25.84	25.16	18.36	22.94	33.46	22.48	23.4	32.62	19.95	18.9	21.85	32.77	18.28	24.6	12.85	18.06	18.08	42.42	23.34	20.49	18.45	46.42	20.92	21.93	17.56	31.67	19.06	15.57	16.95	29.81	20.55
% year 0.03 RR >	26.47	32.21	46.98	43.47	22.5	28.71	34.77	36.21	29.53	31.71	45.73	31.97	35.62	44.27	27.73	27.71	33.53	41.6	25.01	34.66	16.65	24.98	23.59	55.54	29.95	28.28	27.43	59.73	28.7	31.24	24.26	41.8	27.55	21.95	22.4	38.67	29.39
% year 0.02 RR >	34.02	39.18	55.94	53.5	30.15	35.31	40.49	47.36	41.85	38.66	57.42	38.68	46.1	50.37	35.9	36.74	43.73	49.86	33.01	42.16	20.19	33.03	29.59	67.7	35.82	33.65	35.04	68.9	34.46	40.45	30.32	49.62	34.77	28.11	27.81	49.51	36.33
% year 0.01 RR >	47.68	53.82	69.26	.89	46.42	49.4	52.04	62.52	62.49	49.54	79.36	54.16	63.23	66.37	53.37	53.88	56.93	65.77	45.16	58	27.23	58.13	40.26	85.24	46.33	48.77	50.35	81.21	44.11	57.5	41.73	61.87	50.17	38.87	37.03	66.67	48.09
% year 0.005 RR >	59.67	66.24	86.07	86.6	59.34	62.86	64.84	72.86	76.02	63.19	100.06	67.84	77.2	86.16	72.44	69.29	64.91	84.94	67.16	72.86	35.98	75.62	52.47	100.89	58.34	62.52	64.11	101.35	53.98	71.34	52.47	70.65	62.84	51.11	50.68	79.05	64.66
% year 0.003 RR >	70.06	79.78	101.23	102.28	67.6	69.38	77.92	82.3	84.96	77.83	107.76	78.7	89.95	106.03	87.33	76.65	71.49	110.45	81.06	82.3	41.34	90.12	62.02	116.49	64.54	82.58	68.51	109.01	62.37	85.6	61.51	82.3	73.52	58.13	59.55	87.33	73.97
% year 0.002 RR >	75.55	87.45	110.66	108.97	73.66	72	88.12	90.72	92.95	87.45	115.04	100.44	104.36	117	94.56	82.74	75.51	134.33	91.39	94.77	44.1	94.97	70.68	121.36	79.6	98.27	74.42	127.49	68.17	96.62	66.25	88.64	77.9T	62.94	65.54	94.56	79.53
% year 0.001 RR >	86.23	93.99	125.65	120.49	83.63	77.02	99.57	115.32	110.97	96.81	132.12	120.49	119.8	127.01	102.91	108.81	84.52	163.46	118.55	109.21	50.68	114.48	76.92	136.3	93.21	108.81	81.53	134.44	77.04	109.29	72.58	98.79	87.95	74.45	74.42	108.01	91.39
Experiment	RWI0101	RWI0102	RWI0103	RWI0104	RWI0201	RW10202	RW10203	RW10204	RW10301	RW10302	RW10303	RW10304	RW10402	RW10403	RW10404	RW10501	RW10502	RW10503	RW10504	RW10601	RW10602	RWI0701	RW10702	RWI0703	RW10704	RW10801	RW10802	RW10803	RW10804	RW10901	RW10902	RW10903	RW10904	RW11001	RW11002	RWI1003	RW11004

Page 2

1.00

11

- Mirchen magnesetterten -

ì

а 4

_

Ę

ŧ

`. .

	% wM	% wM	WW %	% wM	<u></u> Мм %	W %	% wM	W %	% wM	% wM	% wM	% wM	% wM	% wM	% wM	% w.M
Experiment	0.001 RR >	0.002	0.003	0.005 RR >	0.01 RR >	0.02 RR >	0.03 RR >	0.05 RR >	0.1 RR >	0.2 RR >	0.3 RR >	0.5 RR >	I RR >	2 RR >	3 RR >	5 RR >
RWI0101	127.5	127.5	127.5	114.5	75.24	59.07	52.64	43.68	27.53	13.72	11.43	10.04	7.16	4.32	2.98	1.13
RWI0102	101.93	101.93	101.93	101.93	94.5	85.25	79.09	63.72	50.19	32.23	17.85	7.49	3.92	1.96	1.16	0.38
RW10103	129.47	129.47	129.47	129.47	119.8	101.5	87.91	67.12	49.24	32.9	22.6	13.38	7.08	3.72	2.21	0.69
RW10104	136.6	136.6	136.6	132.96	122.5	114	104.9	80.6	62.4	32.93	17.56	10.43	7.11	3.14	1.21	0.6
RW10201	101.96	101.96	101.96	99.24	85.62	75.89	68.1	48.43	25.17	9.13	8.12	6.73	4.93	3.06	2.21	1.42
RW10202	89.95	89.95	89.95	86.37	82.65	70.21	64.82	60.96	42.67	25.17	19.06	9.77	3.77	1.63	0.87	0.25
RW10203	102.14	102.14	102.14	99.41	84.52	64.32	56.74	49.17	38.74	23.17	19.37	10.85	5.24	2.96	1.82	0.71
RW10204	151.8	151.8	151.8	145.43	134.6	89.58	74.29	64.41	40.08	24.6	17.45	10.56	6.19	2.86	1.38	0.62
RW10301	129.23	129.23	129.23	129.23	111.6	88.74	73.22	63.87	39.88	21.67	12.32	6.86	5.53	3.47	2.36	1.3
RW10302	108.06	108.06	108.06	105.18	94.95	82.21	64.49	49.24	34.19	23.68	16.12	9.05	3.16	1.79	0.99	0.4
RW10303	143.23	143.23	143.23	137.22	127	110	105.8	91.58	61.6	34.21	19.89	12.53	8.43	4.75	2.2	0.65
RW10304	170.52	170.52	170.52	144.49	106.7	66.98	60.62	44.59	30.85	15.5	9.62	6.06	3.46	1.85	1.37	0.64
RW10402	135.13	135.13	135.13	128.62	108	93.9	85.39	72.75	52.93	27.9	16.64	8.53	3.45	1.72	0.85	0.35
RW10403	144.53	144.53	144.53	140.67	128.6	104	78.88	61.81	47.09	30.39	22.92	11.7	6.88	3.85	1.1	0.39
RW10404	102.6	102.6	102.6	102.6	96.59	80.43	66.13	48.31	25.45	15.37	11.43	8.51	5.81	2.79	1.24	0.56
RW10501	136.97	136.97	136.97	136.97	85.25	73.14	65.73	50.62	24.71	11.91	10.62	9.54	7	3.8	2.49	1.19
RW10502	101.04	101.04	101.04	96.17	84.12	76.22	71.73	62.85	49.94	27.47	14.71	8.2	3.88	2.05	1.07	0.4
RW10503	173.15	173.15	173.15	173.15	162.3	116.5	82.9	63.12	44.2	26.29	19.02	12.99	6.79	2.59	1.61	0.79
RW10504	143.23	143.23	143.23	122.15	91.14	80.43	68.48	59.25	30.85	17.21	12.55	9.29	6.37	3.12	1.35	0.4
RW10601	120.3	120.3	120.3	114.5	100.6	82.16	70.99	48.16	29.99	15.61	12.1	10.37	7.33	4.64	3.34	1.56
RW10602	71.48	71.48	71.48	68.17	50.51	28.93	25.09	21.74	13.89	9.57	8.5	5.8	3.69	2.1	0.86	0.34
RW10701	151.8	151.8	151.8	128.62	113	87.32	72.45	56.81	23.85	15.28	10.18	8.72	6.39	3.92	2.75	1.45
RW10702	80.52	80.52	80.52	72.54	69.42	54.84	47.51	36.01	23.89	13.64	8.75	6.41	3.81	1.66	0.86	0.38
RW10703	162.35	162.35	162.35	158.02	122.3	116.4	103.1	93.86	76.92	55.84	40.5	26.76	10.07	4.08	1.99	1
RWI0704	96.63	96.63	96.63	96.63	85.25	63.74	55.21	46.44	37.9	28.47	22.66	15.39	6.79	2.35	1.48	0.68
RWI0801	160.89	160.89	160.89	121.36	101.9	82.84	58.87	49.24	29.01	13.49	8.94	7.56	5.57	3.59	2.57	1.35
RWI0802	80.94	80.94	80.94	78.78	68.29	61.6	55.21	44.96	29.01	16.51	10.26	5.76	3.32	1.47	0.54	0.19
RW10803	143.23	143.23	143.23	137.22	124.2	105.6	101.7	90.66	71.9	57.79	46.37	30.09	10.28	3.86	1.62	0.39
RW10804	101.04	101.04	101.04	75.21	73.35	58.12	52.41	46.56	37.9	27.13	21.27	13.51	6.9	2.86	1.47	0.79
RWI0901	135.13	135.13	135.13	109.3	105.4	87.8	68.97	49.91	37.06	20.5	11.74	7.72	5.61	3.79	2.83	1.61
RW10902	143.23	143.23	143.23	136.32	84.52	58.12	44.82	31.13	18.72	11.48	7.78	6.32	4.2	1.93	1.01	0.26
RW10903	96.2	96.2	96.2	93.63	87.6	78.87	70.09	64.32	55.31	43.44	35.31	22.8	7.04	2.46	1.67	0.62
RW10904	135.51	135.51	135.51	86.18	81.42	77.47	65.73	56.38	42.24	26.07	17.5	9.77	4.91	1.95	1.21	0.68
RW11001	101.32	101.32	101.32	76.58	64.32	55.14	40.93	30.43	19.28	11.21	9.92	8.16	5.51	3.58	2.59	1.53
RW11002	85.1	85.1	85.1	72.38	67.85	51.74	42.29	35.76	25.82	18.32	12.59	6.05	3.33	1.61	<u>9</u> .0	0.36
RW11003	160.89	160.89	160.89	128.62	93.73	71.91	67.85	61.8	45.22	33.48	26.87	17.12	6	3.6	1.47	0.56
RW11004	128.66	128.66	128.66	125.23	89.58	74.41	63.2	51.04	37.6	20.39	15.79	11.47	6.62	2.87	1.59	0.69

.

Dec R 0.01	um⁄h	10.25	4.05	14.77	13.15	10.02	6.63	2.05	23.52	11.24	3.43	9.28	13.87	13.15	2.9	9.96	12.2	3.73	8.26	9.12	17.59	8.26	25.25	4.34	28	18.96	25.25	6.17	13.15	26.42	23.52	17.59	18.64	15.4	27.54	5.19	35.33	42.07	
Nov R 0.01	h/mm	31.72	26.65	53.54	52.40	20.67	29.93	71.6	32.91	20.1	40.03	80.43	41.98	39.18	44.97	38.89	37.58	66.12	29.93	37.77	60.14	18.8	13.26	31.72	85.25	19.92	31.05	28.5	56.74	18.4	37.77	39.18	54.02	18.4	25.37	23.22	42.43	16.89	
R 0.04	h/mm	66.98	23.13	50.08	30.93	23.13	50.08	34.64	20.94	29.19	23.52	40.2	44.59	46.47	35.33	26.88	25.05	33.34	32.79	13.15	69.82	30.06	51.75	35.33	33.34	46.47	49.85	35.33	47.25	44.59	26.42	42.61	15.86	63.2	57.36	26.76	31.45	15.86	
Sep R 0.01	ų/um	73.73	38.11	58.86	122.49	56.74	29.93	35.96	23.72	83.5	25.14	50.51	23.72	29.93	19.92	50.51	58.86	26.08	66.12	80.43	57.26	50.51	22.65	47.66	46.31	8.83	52.02	52.4	66.12	40.03	105.4	50.51	66.12	29.93	64.32	35.96	79.59	16.89	
Aug R 0.01	4 Mun	49.26	53.77	81.13	75.24	5.7	42.07	21.21	79.85	80.78	56.26	64.02	55.99	60.4	63.2	78.43	56.26	39.69	48.07	35.33	100.6	30.94	89.58	69.42	83.13	27.3	26.42	68.29	119.8	45.16	23.82	84.52	39.69	39.04	21.82	54	79.75	39.5	8 4
Jul R 0.01	um/h	75.24	94.50	119.81	78.43	85.62	82.65	56.99	64.02	5.11	94.95	127	72.38	108	128.6	63.20	80.78	84.12	162.3	53.08	39.5	33.77	113	31.45	122.3	31.86	101.9	66.67	124.2	50.08	83.13	49.85	87.6	46.47	26.42	67.85	76.55	75.24	
Jun R 0.01	um/h	14.90	21.91	93.73	14.06	59.51	14.06	70.85	51.21	111.6	63.74	101.5	33.93	58.86	108.9	66.12	85.25	31.72	120.8	40.39	76.81	5.12	80.43	42.43	114	85.25	99.34	63.74	55.54	8.16	70.85	44.01	51.13	47.66	60.14	11.14	93.73	3.89	
May R 0.01	nm/h	53.08	56.99	63.20	63.20	46.47	24.93	33.34	134.6	29.68	23.13	26.42	106.7	71.91	75.24	96.59	35.79	47.25	69.82	91.14	48.18	14.53	31.86	44.59	70.99	70.99	29.68	64.02	63.2	73.35	44.59	35.95	69.82	81.42	43.85	33.34	50.08	89.58	
Apr R 0.01	- u u u u	24.43	31.05	17.74	41.06	32.01	31.72	40.52	39.18	17.9	25.14	21.37	85.25	22.58	16.39	56.74	19.71	24.43	16.38	42.43	29.93	42.43	26.37	22.38	23.22	50.51	31.05	26.65	21.12	44.01	29.93	14.06	18.8	14.06	14.9	12.51	23.72	25.37	
Mar R 0.01	u/um	21.21	47.87	52.21	15.65	18.64	40.2	84.52	15.86	26.88	49.39	51.06	18.33	67.85	60.4	10.37	24.93	60.66	63.2	13.09	38.1	16.59	25.98	47.25	79.75	28	33.77	34.75	84.52	24.93	25.25	29.68	60.4	17.43	23.82	23.52	80.78	20.59	
Feb R 0.01	mm/h	12.75	31.17	57.77	45.78	15.18	50.96	24.15	18.07	13.51	44.62	43.2	26.29	36.13	30.47	16.10	13.52	37.48	45.78	17.04	3.16	25.36	6.14	40.59	55.78	37.26	19.14	26.88	36.32	37.26	28.75	24.09	35.03	32.3	15.32	27.75	34.78	27.13	
Jan R 0.01	mm/h	19.75	19.75	15.40	13.32	15.58	6.97	10.56	17.81	19.48	18.64	16.59	17.81	13.71	13.94	18.64	28	13.15	17.59	14.12	37.27	14.96	18.96	17.78	13.94	24.93	16.59	16.94	12.41	21.82	16.81	14.18	13.63	28.36	20.84	17.3	9.46	25.98	57
Experiment	Number	RWI0101	RWI0102	RWI0103	RW10104	RWI0201	RW10202	RW10203	RWI0204	RW10301	RWI0302	RW10303	RW10304	RWI0402	RW10403	RWI0404	RW10501	RW10502	RW10503	RW10504	RW10601	RWI0602	RWI0701	RWI0702	RW10703	RWI0704	RW10801	RWI0802	RW10803	RWI0804	RWI0901	RW10902	RWI0903	RWI0904	RW11001	RWI1002	RWI1003	RW11004	

ł

-

dina da contrar

A NUMBER OF TAXABLE PARTY.

-

Page 4

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	S S S	Nov	Dec
Lxperiment	K U.I	R U.I	к U.I mm/h	к u.l	K 0.1 mm/h	R U.I	R U.I	K U.L	R U.I	R U.I	h d'um	r u.i mm/h
RW10101	13.70	8.53	10.48	11.66	15.95	2.02	21.81	7.87	19.67	27.53	14.72	6.42
RWI0102	12.61	12.50	19.31	6.58	15.49	1.63	50.19	21.27	13.01	13.67	7.47	2.70
RWI0103	5.64	6.82	21.72	9.28	15.61	38.42	49.24	31.73	27.10	25.28	13.88	4.27
RW10104	7.06	11.49	5.76	19.50	24.57	6.15	22.99	20.75	62.40	9.45	34.22	6.98
RW10201	10.81	7.66	7.71	12.23	10.8	15.17	25.17	3.19	17.31	9.92	7.05	6.08
RW10202	3.34	15.24	15.49	11.04	6.96	2.28	42.67	20.07	10.35	10.43	10.38	2.92
RWI0203	5.84	7.17	19.95	16.23	6.11	38.74	31.36	10.39	20.18	14.83	23.36	1.4
RWI0204	7.4	8.59	6.5	12.29	39.57	10.66	27.76	40.08	9.22	5.37	15.55	7.53
RW10301	12.3	8.92	7.92	9.47	9.3	28.48	1.71	23.07	39.88	9.67	8.67	7.02
RWI0302	8.8	12.1	18.28	8.99	8.83	19.47	34.19	20.88	8.81	12.09	9.8	2.68
RWI0303	6.47	6.41	24.64	9.92	8.7	38.31	61.6	32.47	14	19.23	18.37	2.02
RW10304	8.92	9.51	7.67	16.21	23.43	5.33	30.85	20.47	5.42	8.94	23.18	8.18
RW10402	7.58	11.4	20.39	10.26	11.95	7.92	52.93	9.73	8.2	15.78	9.41	6.68
RW10403	5.64	5.79	22.42	11.1	9.24	47.09	39.85	20.47	9.62	11.51	11.2	2.33
RW10404	8.17	9.52	6.27	16.67	25.45	7.43	10.78	13.38	6.15	6.21	24.13	6.49
RW10501	13.5	9.17	10.17	8.85	12.52	24.1	24.71	12.13	14.28	13.74	11.35	7.04
RW10502	7.31	13.38	23.73	10.62	8.23	2.2	49.94	13.44	9.53	11.07	12.25	2.82
RW10503	6.95	6.17	19.31	10.3	6.88	40.76	44.2	15.14	34.69	14.06	13.37	3.5
RW10504	7.64	6.47	7.63	20.09	30.85	6.28	10.02	10.55	6.79	4.58	21.13	5.85
RW10601	16.42	2.2	14.2	12.95	14.52	29.99	8.14	17.87	8.4	26.97	13.74	7.9
RW10602	10.91	6.75	6.31	10.82	7.74	0.89	13.89	12.82	7.37	13.44	9.3	2.82
RW10701	13.01	2.47	7.59	14.02	11.75	23.85	22.55	5.39	10.29	18.57	7.17	8.58
RWI0702	11.95	9.77	10.48	8.23	18.19	7.39	8.83	23.89	11	16.02	12.29	2.87
RW10703	5.57	9.3	24.32	11.82	17.19	18.73	76.92	47.65	21.22	12.69	8.46	3.39
RWI0704	9.36	11.99	7.21	14.71	37.9	20.56	7.76	9.59	2.77	9.73	8.88	6.78
RW10801	11.85	8.09	8.66	14.31	12.81	21.29	29.01	4.15	14.93	22.41	9.32	8.73
RW10802	10.51	7.97	9.8	9.6	11.11	69.9	10.22	29.01	10.97	16.69	13.43	2.99
RW10803	5.72	9.12	20.43	9.43	16.31	11.32	71.9	61.47	20.74	15.48	10.6	2.2
RW10804	8.86	11.31	7.33	12.49	37.9	2.31	14.64	7.64	2.59	11.49	7.9	7.3
RW10901	12.57	9.48	7.71	11.07	11.28	37.06	18.72	4.69	29.82	13.58	10.68	9.21
RW10902	8.38	8.95	10.15	8.1	12.82	4.98	17.52	18.72	12.91	16.65	13.37	3.42
RW10903	5.55	10.02	21.44	10.75	15.91	11.54	55.31	15.05	12.36	9.84	11.16	4.01
RW10904	9.67	14.56	9.33	5.79	42.24	1.75	4.99	11.26	3.04	11.09	6.72	3.9
RW11001	13.61	10.16	9.05	2.89	14.4	14.5	2.26	6.02	12.72	19.28	7.42	8.53
RW11002	10.43	7.36	8.59	7.56	11.58	1.44	20.64	25.82	10.59	12.61	10.24	2.51
RW11003	5.36	9.73	16.94	10.78	14.06	26.25	12.08	45.22	24.84	15.28	8.7	5.85
RW11004	8.45	96.6	7.85	9.19	32.2	2.35	37.6	15.72	4.28	8.12	8.72	9.14

to be the t

1

Nov R1 mm/h n	6			1		0	2	2	2		3	2	1		15	2		2	2	5	0	5		=	2	2	9	6	3	5	õ	-	6	સં	ö	0	Ŕ	
	Ξ	2.53	50	2.27	1.14	2.83	2.45	1.28	1.28	2.89	2.18	2.08	1.51	3.11	2.06	2.3	3.34	2.48	1.85	1.9	3.19	1.34	3.81	2.92	1.48	16.0	3.32	2.93	1.42	2.12	3.45	2.94	0.98	1.27	3.33	3.51	1.86	
R O G	2.85	3.75	4.48	1.12	0.72	1.64	3.53	0.45	1.09	2.81	4.28	0.72	1.81	2.46	0.65	1.01	2.61	3.36	0.33	1.47	3.03	1.47	2.78	3.53	0.91	1.35	2.49	2.98	1:0	1.56	2.93	2.3	0.9	0.22	2.9	3.1	0.84	1. 1.
Sep R 1 mm/h 1	0.90	2.46	7.08	1.89	8.1	2.05	2.68	0.41	2.42	2.43	3.03	0.86	0.62	2.25	0.65	1.34	1.95	6.79	0.72	0.76	2.26	1.13	2.24	3.9		1.71	2.27	3.14	0.51	0.58	2.21	1.67	0.28	0.61	1.99	5.23	0.55	
Aug R 1 mm/h 1	0.20	2.13	6.18	<u>9</u> .0	0.25	1.27	4.84	1.82	0.02	1.37	8.43	1.65	0.12	1.45	1.20	0.16	1.34	2.28	0.96	0.24	1.76	0.14	2.06	10.07	1.9	0.16	2.69	10.28	1.93	0.16	2.02	4.11	2.15	0.18	2.18	9	0.93	
Jul R1 mm/h	1.41	2.84	5.71	1.23	0.3	3.77	2.75	1.56	0.1	2.46	2.56	0.78	3.33	2.98	0.65	0.63	3.36	3.38	0.62	0.85	0.91	1.54	0.8	7.06	0.78	1.6	0.9	9.03	1.09	0.18	0.75	7.04	0.07		0.44	0.68	1.9	
Jun R1 mm/h	0.14	0.14	2.58		0.72	0.17	2.3	0.36	1.37	0.37	1.4		0.24	2.81		0.82	0.22	0.63	0.06	0.42	0.11	1.62	0.58	1.75	0.15	1.51	0.64	0.25		2.07	0.52	0.68		1.34	0.18	0.87		
May R 1 mm/h	2.44	0.59	2.83	7.11	1.02	1.28	1.56	6.19	1.14	2.44	2.49	2.67	1.77	1.84	5.81	1.8	1.33	1.42	6.37	2.39	1.3	2.05	3.56	2.16	6.79	2.18	2.34	1.71	6.9	2.05	4.2	1.77	4.91	2.19	2.1	1.76	6.62	
Apr R 1 mm/h	3.45	2.68	3.84	2.69	3.23	3.48	4.27	2.91	3.42	3.07	4.02	2.82	3.45	3.51	2.97	2.03	3.88	2.51	3.8	1.96	3.4	2.97	3.44	4.83	2.33	2.45	1.97	3.52	2.62	2.49	3.73	3.74	1.53	0.09	3.23	4.08	1.67	-
Mar R I mm/h	5 8	3.92	6.40	3.10	2.05	2.94	5.24	2.82	2.19	3.02	6.1	2.7	3	4.97	1.92	2.36	2.75	4.96	2.31	2.17	0.57	1.61	1.07	5.99	3.23	1.75	1.63	5.15	2.92	1.72	1.62	4.75	3.08	7	1.54	4.44	3.01	
Feb R 1 mm/h	3.10	2.67	1.71	3.26	3.27	3.05	2.23	3.55	3.18	3.16	1.9	3.46	2.91	0.96	2.71	2.79	3.09	1.94	1.88	0.18	1.75	0.17	2.49	1.85	2.1	2	2.25	0.99	2.18	1.76	2.57	1.78	2.18	2.43	2.35	1.51	2.44	
Jan R∣ Mm/h	7.16	3.57	1.86	2.68	4.93	1.5	1.67	2.67	5.53	2.33	1.51	2.92	1.51	0.88	3.08	5	3.15	1.29	3	7.33	3.69	6:39	2.91	0.89	3.18	5.57	2.59	1.08	3.19	5.61	2.09	1.18	2.91	5.51	2.81	1.17	3.12	
Experiment Number	RWI0101	RW10102	RWI0103	RW10104	RWI0201	RW10202	RW10203	RW10204	RW10301	RW10302	RW10303	RW10304	RW10402	RW10403	RW10404	RW10501	RW10502	RW10503	RW10504	RW10601	RW10602	RW10701	RW10702	RWI0703	RW10704	RW10801	RW10802	RW10803	RW10804	RW10901	RW10902	RW10903	RW10904	RW11001	RW11002	RW11003	RW11004	

:

i i

104 - 1401

allocate interest interest and an addition

4 **1**

a de la terre a la companie de la companie de

i i na ja i na

Page 6

-

.

K Kaun Kau [mm] [m		L Kain	1.02		-). 				
	n Kau mm			Kau m	Kain [mm]	Kain [mm]	Kain [mm]	Kaın [mm]	nin (inn	Kain [mm]
		1								
						_				

ł

periment	Jan Snow	Feb Snow	Mar Snow	Apr Snow	May Snow ?	Jun Snow	Jul Snow	Aug Snow ?	Sep Snow ?	Oct Snow ?	Nov Snow ?	Snow ?
M0101												
WI0102												
W10103												
W10104												
W10201												
W10202												
W10203												
WI0204												
WI0301								_				
WI0302												
WI0303												
W10304												
W10402												
W10403												
W10404												
M10501												
W10502												
W10503			ļ									
W10504												
W10601												
W10602												
M10701												
W10702												
WI0703												
WI0704												
W10801						1						
WI0802												
WI0803			•									
W10804												
1060IM												
W10902												
W10903												
W10904												
W11001									., -			
W11002												
W11003			ļ									
W11004												

Page 8

: <u></u>

ĩ.

and being the second of the second second

ī

Ē

Ē

,

			;				:	-	6	ļ		
Experiment Number	Uptime [%]											
RWI0101				,								
RWI0102												
RWI0103												
RWI0104												
RW10201												
RW10202												
RWI0203												
RWI0204												
RW10301												
RW10302												
RWI0303												
RWI0304												
RW10402												
RW10403												
RW10404												
RW10501												
RW10502												
RW10503					-							
RW10504												
RW10601												
RW10602												
RWI0701											_	
RWI0702												
RW10703												
RW10704												
RW10801												
RW10802												
RWI0803												
RWI0804												
RW10901												
RW10902												
RWI0903												
RW10904												
RW11001												
RW11002												
RW11003												
RW11004												

. . . .

.

.

1

S il i	Ī	Γ			Ī											Ī																				
1 2 2 1 2 1 2 1 2 2																								-		_										
ž 2 E		-			_														_																_	
Rair		 			_																				-	-			-	_						
Sep Rain	(unn)																																			
Aug Rain [mm]	[man]																																			
Jul Rain II	frant																																			
Jun Rain Imm													-																							
May Rain Imm]	Immi																																			
Apr Rain	í ínni									-										h																
Mar Rain	[11mm]																	-																		
Rain Bain	ſumi																																			
Jan Rain	ſ																																			
Rain Rain	(mm)																																			
ilobal A		18	8	D2	D2	D2	D2	D2	D2	D2	D2	5 D	8	2 2	2	D2	D2	D2	5	D 2	D2	B	D2	D2	D2	8	2	D2								
0-0	່ <u>ບ</u>	0	<u> </u> 0	υ	ט	ບ່	υ	0	υ	9	Ŀ	0	<u></u> 0	υ	ט	U	с С	<u>.</u>	υ	υ	ט	υ	ບ່	U	ΰ	ט	υ	ບ່	υ	ט	<u>ບ</u> ່	υ	ט	U	U	0
11 Labert	Updat 6/11/02	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93	6/11/93
	menus		E	8	8	e	e		e		Ű	9	•	U	ى ە		U	c	U	0	U	v	U	•	U	5	e	ų	e	U	•	v	U	•	ų	ų
		Gauge	Gauge	Gauge	Gauge	Gaug	Gaugt	Gauge	Gauge	Gaug	Gaug	Gauge	Gaugi	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug	Gaug
	Lences	4	Ł	sh	sh	sh	sh	sh	sh	sh	sh	sh	sh	Å	k k	sh	sh Å	ł	h.	sh k	, h	ł,	sh h	sh	łs	łs	sh	sh	sh	ď.	sh	de de	r P	sh	чя	42
	Keit	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhir	Goldhii	Goldhii	Goldhii	Goldhin	Goldhii	Goldhi	Goldhii	Goldhii	Goldhii	Goldhi	Goldhi	Goldhii	Goldhin	Goldhi	Goldhii	Goldhi	Goldhii	Goldhi	Goldhi	Goldhi	Goldhi	Goldhi
iment		18	0103	104	0201	202	0203	0204	0301	0302	0303	0304	0402	0403	2	0501	0502	0503	0504	1090	2090	1070	0702	0703	0104	0801	0802	0803	0804	1060	0902	80	1000	1001	1002	1003

Page 10

:

ļ

÷

-

ļ

to a file-chemication of a damage

A ANN BULLE I THE TOTAL AND A AND A

•

	Jan	Feb	Mar	Apr	May	ľ	ā	Aug	Sep	g	Nov	Dec
Experiment Number	EX S [mm]	Ex S Imm]	Ex S [mm]	Ex 5 [mm]	Ex 5 Imm]	Ex 5 [mm]	Ex 5	Ex 5	Ex 5 [mm]	Ex 5	Ex 5	Ex 5
RWI0101								Ĩ				hum
RWI0102												
RWI0103												
RW10104												
RWI0201												
RW10202												
RWI0203												
RWI0204			ŧ									
RW10301												
RW10302												
RW10303												
RWI0304												
RW10402												
RW10403												
RWI0404												
RW10501		-										
RW10502												
RW10503						_						
RW10504												
RW10601		-										
RW10602												
RW10701					-							
RWI0702			-						-			
RWI0703												
RW10704												
RW10801		Ī						-				
RWI0802												
RW10803							-					
RW10804												
RWI0901					-	İ						
RW10902												
RW10903												
RW10904				++	~							
RW11001		4						•				
RW11002												
RW11003												
RW11004		-										

Page 12

4

	Global	CCIR	Two		
	Climate	Climate	Component	Lognormal	Moupfuma
All					
Average	1.09	0.70	0.37	0.29	0.13
Standard Deviation	0.78	0.51	0.25	0.20	0.22
Root-Mean-Square-Error	1.33	0.86	0.45	0.35	0.26
Number of EDFs	207	207	182	195	201
Sample Dispersion					
Wallops Island					
Average	0.42	0.26	0.06	0.11	0.12
Standard Deviation	0.08	0.15	0.02	0.03	0.03
Root-Mean-Square-Error	0.43	0.30	0.06	0.11	0.12
Number of EDFs	37	37	37	37	37
Sample Dispersion					
Darwin. Australia					
Average	1.83	1.09	0.58	0.45	0.16
Standard Deviation	0.34	0.44	0.11	0.10	0.06
Root-Mean-Square-Error	1.87	1.18	0.59	0.46	0.17
Number of EDFs	100	100	100	100	100
Sample Dispersion					
All from CCIR					
Average	0.37	0.36	0.18	0.11	0.10
Standard Deviation	0.23	0.21	0.12	0.11	0.38
Root-Mean-Square-Error	0.43	0.42	0.22	0.16	0.39
Number of EDFs	70	70	45	58	64
Sample Dispersion					

Ĥ	wo-Component				
	P cell	R cell	P debris	R debris	StDev debris
All					
Average	0.224	39.7	2.41	2.45	1.35
Standard Deviation	0.211	77.5	1.22	3.63	0.40
Root-Mean-Square-Error					
Number of EDFs	182	182	182	182	182
Sample Dispersion	0.94	1.95	0.51	1.48	0.30
Wallops Island					
Average	0.097	22.5	3.20	1.31	1.13
Standard Deviation	0.062	4.7	0.87	0.32	0.15
Root-Mean-Square-Error	-				
Number of EDFs	37	37	37	37	37
Sample Dispersion	0.64	0.21	0.27	0.24	0.13
Darwin, Australia					
Average	0.359	24.4	2.91	1.03	1.63
Standard Deviation	0.192	13.7	0.70	0.89	0.26
Root-Mean-Square-Error					
Number of EDFs	100	100	100	100	100
Sample Dispersion	0.54	0.56	0.24	0.87	0.16
All from CCIR					
Average	0.027	87.8	0.65	6.55	0.89
Standard Deviation	0.047	145.3	0.35	5.43	0.21
Root-Mean-Square-Error					
Number of EDFs	45	45	45	45	45
Sample Dispersion	1.72	1.65	0.53	0.83	0.24

Page 2

. When the matter in

=

and and an an analysis and the second structure of the second structure of the second second second second second

	Lognormal D rain	D rain	CtDev rain
All	1 10111		
Average	2.24	3.33	1.48
Standard Deviation	1.31	5.47	0.45
Root-Mean-Square-Error			
Number of EDFs	195	195	195
Sample Dispersion	0.58	1.64	0.31
Wallons Island			
Average Average	3 17	1 33	1 34
Standard Deviation	60.0	0.53	010
Doot Maan Course-France	1	2	
NUUL-IVICAII-34UAUC-E-1101 Number of EDEs	72	72	77
	10	10	
Sample Dispersion	0.29	0.40	0.0/
Darwin. Australia			
Average	2.87	16.0	1.83
Standard Deviation	0.73	1.11	0.24
Root-Mean-Square-Error			
Number of EDFs	100	100	100
Sample Dispersion	0.25	1.21	0.13
All from CCIK			
Average	0.55	8.76	0.94
Standard Deviation	0.44	7.52	0.24
Root-Mean-Square-Error			
Number of EDFs	58	58	58
Sample Dispersion	0.79	0.86	0.25

Page 3

ţ

Ì

	CCIR		Moupfuma		
	RR 0.01%	RR 0.1%	LnA	Bex	Uex
И	. ±				
Average	72.1	23.7	0.25	-0.67	-0.034
Standard Deviation	30.6	13.4	1.04	0.49	0.020
Root-Mean-Square-Error					
Number of EDFs	207	200	201	201	201
Sample Dispersion	0.42	0.57	4.08	0.73	0.59
Wallops Island					
Average	55.2	14.5	0.44	-0.78	-0.038
Standard Deviation	12.5	4.5	0.13	0.09	0.011
Root-Mean-Square-Error					
Number of EDFs	37	37	37	37	37
Sample Dispersion	0.23	0.31	0.31	0.12	0.30
Darwin. Australia	4				
Average	6.76	33.3	0.00	-0.35	-0.033
Standard Deviation	13.3	10.6	0.46	0.06	0.006
Root-Mean-Square-Error					
Number of EDFs	100	100	100	100	100
Sample Dispersion	0.14	0.32	343.11	0.17	0.18
	1999 1999 1999				
	-	1	1	•	
Average	44.2	13.7	0.55	-1.10	-0.033
Standard Deviation	23.4	9.4	1.69	0.63	0.034
Root-Mean-Square-Error					
Number of EDFs	70	63	64	64	2
Sample Dispersion	0.53	0.69	3.09	0.57	1.02

Page 4

-

and a second