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On the local nature of the energy cascade

By C. Meneveau 1, T. S. Lund 2 AND J. Chasnov 2

The local nature of the energy cascade in space and time is studied using direct

numerical simulation of decaying and forced isotropic turbulence. To examine the

concept that large scales evolve into smaller ones, we compute the Lagrangian corre-
lation coefficient between local kinetic energy at different scales. This correlation is

found to peak at a Lagrangian tlme-delay that increases with scale separation. The

results show that, on average, the flow of energy to smaller scales is predominantly

local in physical space and that the view of eddies decaying into smaller ones while

transferring their kinetic energy appears to be, on average, quite realistic. To ex-

amine the spectral characteristics of the cascade under unsteady conditions, a pulse

of large-scale energy is added to the large-eddy simulation of forced isotropic tur-

bulence. As time progresses, the evolution of this pulse through bands of increasing

wavenumbers is studied.

1. Introduction

The theoretical framework underlying most turbulence modeling hypotheses is

the Kolmogorov phenomenology, in which the cascade of energy from large to small

scales occupies the central stage. It is postulated that the rate at which energy is

dissipated is dictated by the large-scales and that the transfer of energy is mainly

local in wave-number space. The -5/3 decay exponent in the inertial range, its

extent, isotropy of small-scales, and so on, follow directly from these assumptions.

This spatially averaged view is of importance for modeling at the Reynolds averaged
level and is consistent with the 1941 version of Kolmogorov's theory. In the realm

of sub-grid scale modeling for Large Eddy Simulations (LES), a slightly stronger

version of the Kolmogorov phenomenology is at work. Spatial features of the energy

cascade have to be taken into account, and the equilibrium between the local energy

flux (or subgrid-scale energy production) and rate of dissipation is used to derive

the popular Smagorinsky model. A spatially local version of the energy cascade is

also invoked in models for small-scale intermittency (Kolmogorov, 1962; Meneveau

& Sreenivasan 1991). In spite of the wide use of these ideas, the hypothesis that

kinetic energy originally associated with some large-scale structure gets transferred
to smaller flow structures that have evolved from the bigger one has never been

directly tested. The purpose of the present work is to perform such an explicit test

using direct numerical simulations. Several issues complicate this task. To properly
account for the time needed for the energy transfer between scales as well as to

take sweeping by the large scales properly into consideration, the flow structures

1 Johns Hopkins University

2 Center for Turbulence Research

PI_O'EDtN_. PAGE BLANK NOT FILMED



48 C. Meneveau et al.

have to be followed in time in a Lagrangian fashion. Also, proper statistical means
have to be employed to ensure that the observed trends are robust. The calculation

methods and results are presented in section 2.

The Kolmogorov phenomenology can also be used to make predictions about

how the cascade should react to overall unsteadiness at the large scales. In a recent

article, Lumley (1992) used the Kolmogorov phenomenology to predict that an

energy pulse at largest scales will tend to 'propagate' along the spectrum, only to
'arrive' at small scales at some later time. This hypothesis is tested using simulations

of forced isotropic turbulence. The results of these tests are reported in section 3.

Conclusions are presented in Section 4.

2. Spatial structure of the energy cascade

Let the local kinetic energy of the flow-field composed of scales smaller than r',

at location x and time t be denoted by er, (x, t). As defined more precisely below,
the effect of advection by scales larger than r' is excluded from er, (x, t). Let us

assume that at a certain instant and position this local energy is larger than the

corresponding spatial average. The question we wish to address is how such a pulse

will evolve in time if the underlying turbulent structure is followed as it is advected

through space. The simplistic view of the energy cascade as consisting of large

eddies breaking down to form smaller ones would suggest that if we follow a fluid
element initially located at (x, t) in a Lagrangian fashion, this pulse should become

associated with local kinetic energy at decreasing scales as time progresses. In other

words, we would expect that after following a fluid element with excess energy at
scale r' for some time, we would find an excess of energy not at scale r', but at some

smaller scale, say r = r'/2. To quantify such an effect statistically, it is useful to

compute the correlation coefficient between local kinetic energies at different scales.
Several alternative definitions for the local kinetic energy will be used. The first

is the trace of the subgrid-scale stress tensor (minus the Leonard term),

(t) _ "_'-" (1)e r' X, -_- Uktl k -- U k U k.

The hat represents low-pass spatial filtering at scale r';

(x, t) = / a(x', t)Gr, (x - x')dSx ', (2)ar'_

where Gr, is a filter of characteristic scale r'. e,-,(x, t) as defined according to Eq.

(1) is the total kinetic energy minus the resolvable portion of the large scale kinetic

energy. Decomposing the original velocity uk into uk = ff_ + u_ shows that this

definition also includes cross-terms of the form u_. We shall also consider the

kinetic energy of the small scales only, defined as

e_,(x, t) ' '= ukuk. (3)

Notice that these definitions of local kinetic energy differ from the local wavelet

spectrum (Meneveau, 1991) in the sense that they include the energy of all scales
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smaller than the characteristic scale r' rather than just that of a particular spectral

band.

The spatial filtering to be used can be of several forms. First, a spectral cut-off

filter is considered, i.e.

7r

Gr,(k) = 1 if Ikl < r-7, (4)

and zero otherwise. Gr,(k) is the Fourier transform of Gr,(x - x'). We shall also

consider Gaussian filter,

6 1 6(x-

G_, (x - x') = p exp _ j ,
(5)

and top-hat filter,

1 r t

Gr,(X-x') = _ if Ix-x' I < _. (6)

At instant t0, we compute the local energy at scale r', at some position x0. At

later times, the local kinetic energy at a smaller scale r < r' is computed at position

displaced from x0 along the trajectory of a particle moving with velocity u,;

x = Xo + ft(x, t)dt, (7)

where tilde now represents filtering at a smaller scale r. This posterior and smaller-
scale local kinetic energy is defined either as

e (x, to + t) = - (8)

or as in Eq. (3), by replacing the filtering at scale r' (hat) by filtering at scale r

(tilde).
Finally, the correlation coefficient between the two local kinetic energies depend-

ing on the Lagrangian time delay t and the scale ratio b = rl/r is defined as

< ebr(Xo,to)e_(x, to + t) > -- < eb_(xo,to) >< cr(x, to + t) >

p(b,t) =
(9)

Here Orebr2 and a se, are the variances of the local kinetic energies at scale br and r,
respectively. Figure 1 illustrates the variables to be computed.

The correlation coefficient p(b, t) will be used as a measure of how fluctuations of

local energy propagate between different scales of motion as the underlying turbu-

lent structures evolve in space and time. It can be measured for different definitions

of local energy as well as different types of filters.
The next section describes the direct numerical simulations from which p(b, t) is

measured.
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FIaURE 1. Sketch of local energy at 'large' scale r t = br, and at 'smaller' scale r

after following a fluid particle for some time t.

2.1 Description of flow fields

Both forced and decaying isotropic turbulent fields were considered. They were
generated with a pseudo-spectral code (Rogallo, 1981) on a 128 cubed mesh. The

initial phases for the complex velocity field were chosen randomly but in such a way

that the divergence-free condition was satisfied (see Rogallo, 1981 for more details
on the initial conditions). Forcing was achieved by adding an anti-diffusion term

(negative diffusion coefficient) to the Navier-stokes equations. The diffusion coeffi-

cient was wavenumber dependent and non-zero only for modes within wavenumber
shells less than 3. The value of the coefficient for low wavenumbers was chosen

so that the maximum wavenumber, scaled in Kolmogorov units, was unity (i.e.

k,_az/r I = 1). To generate realistic steady-state turbulence, the flow was evolved

for approximately 2 large scale eddy turn-over times. The Reynolds number, Rx,
settled at 95.8, while the velocity derivative skewness settled at -0.486. The en-

ergy spectrum is shown in Figure 2, where the vertical lines indicate the cut-off

wavenumber at scale r (4 mesh spacings) and the maximum value of r', equal to
2.6r. Note the tall-up in the energy spectrum at high wavenumbers. This results

from the desire to achieve maximal Reynolds number for the given resolution. The

dissipation range is not fully resolved, and, as a result, energy piles up there. It

is generally believed (Rogallo, 1992) that the tail-up at high wavenumber will not

adversely affect the data in the central portion of the spectrum used here. To gen-

erate data for the Lagrangian test, the simulation was run for approximately an

additional 2 small scale eddy turnover times. In order to follow the evolution in

time with sufficient accuracy, the entire velocity field was stored at 14 intermediate

times, each separated by roughly 1/6th of the turn-over time associated with scales

of size r (as estimated by (SijSo)-I/2).
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For the decaying turbulence, the energy spectrum was initialized according to

k 4  10,
This spectrum has its energy peak at wavenumber 8. In order to develop realistic
turbulence from the random phase initial condition, the flow was allowed to evolve

freely for 1.4 small scale eddy turnover times (based on quantities derived from the

end of the initial run; rt0 = _ where ,X0 and u_0 are the Taylor microscale and the
U 0 • •

rms turbulence intensity, respectively). Over thin period of time, the total turbulent

kinetic energy decayed by 20%. The Taylor microscale Reynolds number (u_X/v)

was 56.1. The 3-D radial energy spectrum at the end of this initial run is plotted

in Kolmogorov units in Figure 3. Also shown are the experimental data of Comte-
Bellot and Corrsin (1971), as well as two additional spectra for the later times t6

and t13 discussed below. The simulation spectra collapse reasonably well with the

experimental data for wavenumbers beyond the energy peak (where the universal

scaling is expected to hold). As in the forced simulation, there is a noticeable energy

pile-up at the highest wavenumbers.
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FIGURE 2. 3-D radial energy spectrum for the forced isotropic turbulence.

Data for the Lagrangian test was generated by evolving the flow approximately

an additional two small scale eddy turn-over times, with 13 velocity fields saved at

intervals of 1/6 of a turn-over time. Over this period of time, the kinetic energy

decayed an additional 43%. The velocity derivative skewness changed from -0.382
to -0.302 in progressing from to to t13, while Ra changed from 56.1 to 35.2. The

vertical lines in Figure 3 correspond to the cut-off wavenumber of the scale r (4

mesh spacings in physical space) and the maximum r t = 2.6r considered.
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FIGURE 3. 3-D radial energy spectrum for the decaying isotropic turbulence,

plotted in Kolmogorov units.

2.2 Calculations and results

The filtered velocity _ was computed at scale r and sampled on a 323 mesh for

each time to to t13. Also computed were the local energies ebr and er at every point
of the coarse 323 mesh. For each grid-point on this mesh, Eq. (7) was integrated

numerically using Euler's method with time increment At = t,+l -- tn and using

multilinear interpolation to find the velocity between grid points. The local energy

at t = 0 (to = 0, say) of the larger scales (up to br) is computed for positions

x0 corresponding to each grid point, and the final energy at scale r is obtained by
multilinear interpolation of the field er at the end-points of the Lagrangian tracking,

at all times tl to tla. This calculation was repeated for different ratios b = r'/r

between the larger scale and smaller-scale energies, in a range 1 < b < 2.6, where r

is kept fixed and r' is increased.

First, we consider spectral cut-off filtering and the definition of local kinetic en-
ergy as the trace of the subgrid-scale tensor, according to Eq. (1). The results

corresponding to the forced field are shown in Figure 4, and the results pertaining

to the decaying field are shown in Figure 5. The time delay t has been normalized

with the characteristic time-scale corresponding to the lower cut-off scale r at tla:

Is,- v/< >. (11)
The upper curve corresponds to b = 1 and represents the Lagrangian autocorre-

lation function of the local kinetic energy. It exhibits the expected overall decorre-
lation time of the order of a few turn-over time scales of structures of size r.

The curves for b > 1, on the other hand, do not peak at t = O, but at some later
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FIGURE 4. Correlation between local energies at different scales, as a function of

Lagrangian time-delay. The flow is forced isotropic turbulence. The local energies
are computed as the trace of the subgrid-scale stress tensor, using cut-off filtering.
Different curves are for different scale separation; from top to bottom curve (at

t=O): b=l.O,
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FIGURE 5. Same as Figure 4, but for the decaying isotropic turbulence simulation.

time. This time (Tb),,,,,_ is an increasing function of the scale-ratio b. It implies
that to exhibit maximum correlation between energy occurring at different scales

some time must be allowed to pass. Pulses of higher local energy tend, on the

average, to correlate better with pulses at smaller scales only after allowing the
cascade to proceed for some time. As the ratio between scales becomes larger, this
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time increases.

To verify that the approximate integration scheme to compute the Lagrangian

path is sufficiently accurate for present purposes, the calculation is repeated using

an even coarser resolution in time. This can be done by using every second field

at L0, t2, t4... t12. The symbols in Figure 6 show the resulting correlation (for the

forced flow, for b = 1, b = 1.4 and b = 2) as compared to the lines corresponding
to the higher temporal resolution employing all fields to, tl, t2,.. etc. Only minor

variations (less that 0.015 in the correlation coefficient) are visible, and we conclude

that the procedure is sufficiently accurate.
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FIGURE 6. Test of sensitivity of results on accuracy of time integration, for the

forced isotropic flow using the trace of the subgrid-scale tensor. Different solid
curves are, from top to bottom: b = 1, 1.4, 2.0. The circles are obtained from a

tlme-step that is twice as large, i.e. using every second of the stored fields only.

Next, we consider the second possible definition of local kinetic energy in terms
of the product of small-scale velocities (Eq. (3)). Figure 7 shows the resulting

correlations for the forced isotropic flow-field. The overall trend is the same as

before, but the time at which the curves peak is slightly reduced.

The importance of different types of filtering is now quantified. Figures 8 and 9

show the correlation as a function of Lagrangian time for the Gaussian and top-hat
filters. The local energy is now defined again according to Eq. (1). It is clear that

considerable differences are present in terms of the peak time-delay as well as the

magnitude of the correlation. Nevertheless, the basic trend of a time-delay that

increases with scale separation is robust.

Finally, as an illustration of how the cascade of energy is associated with de-
creasing length-scales when following a fluid particle, we plot b-l as a function of

the peak time-delay (Tb)m_z in Figure 10. It contains all results pertaining to the

cut-off filtering and the mean trend through the results pertaining to the Gaussian
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FIGURE 7. Same as Figure 4 but using Eq. to define local energy, and cut-off

filtering applied to the forced isotropic flow.
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FIGURE 8. Same as Figure 4, but using a Gaussian filter.

and top-hat filter calculations. It can be seen that the data is consistent with a

reduction in scale by a factor of 2, in a time that is of the order of IS[ -l .

Considerable scatter about this mean behavior is seen to exist. The largest vari-

ability is due to the filter type: The decrease in length-scale is considerably faster

for the Gaussian or top-hat filter as compared to the spectral cut-off filter. The re-

sults for b > 2.5 are physically not very meaningful since the large-scale br already

approaches the peak in the energy spectrum.
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FIGURE 9. Same as Figure 4, but using a top-hat filter.
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FIGURE 10. Plot of 1/b as a function of the corresponding time delay at which the

two-point energy correlation peaks. It can be viewed as a decrease in length-scale

of eddies as a function of time. Symbols are for the cut-off filtering. ,, : decaying
flow, local energy according to Eq. (1); o : decaying flow, local energy according

to Eq. (3); o : forced flow, local energy according to Eq. (1); [] : forced flow, local

energy according to Eq. (3); -- : mean trend through symbols; .... : mean

trend through all results corresponding to Ganssian and top-hat filtering.

3. Spectral evolution of sharp pulse of energy

In this section, we consider the temporal evolution of a sharp pulse of kinetic
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energy originally present at low wavenumbers in the spectrum. To attain high

Reynolds numbers, a large-eddy simulation was employed to study this case. We
consider a high Reynolds number forced 1283 LES using the subgrid-scale model

described in Chasnov (1991). The method of forcing entails adjusting the energy
of each Fourier mode in the first wavenumber shell 1 <= k < 2 to a fixed value.

The component distribution of the energy and the Fourier phases in the first shell

evolve according to the Navier-Stokes equations. A long-time evolution of this

forced flow together with the subgrid scale model results in an approximate k -5/3

energy spectrum over the entire range of computational wavenumbers. The spectral

subgrid-scale model used here contains both an eddy-viscosity and a stochastic
backseatter term, that effects most strongly the evolution of modes closest to the
cut-off wavenumber.

Starting from this fully-developed statistically-stationary inertial subrange, we
have doubled the energy in the first band of wavenumbers at an initial time t = 0

by a simple rescaling of the Fourier amplitudes and followed the cascade of this

energy to higher wavenumbers as a function of time. Figure 11 shows the results
of this calculation. We plot the time-evolution of the energy in logarithmic bands
of wavenumbers from the initial instant of time. The n th band plotted represents

the energy in the Fourier modes with wavenumbers between 2 "-1 <= k < 2 n.

The energies are normalized by their values at t = 0. A plot of the energy in the
first band would be a horizontal line at a value of two, and we expect that, for

large-times, a statistically asymptotic state would develop where all the normalized

energies approach a value of two.
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FIGURE 11. Time-evolution of the energy in logarithmic wavenumber bands after

a pulse of energy was added to the first band. Band n represents the energy in
wavenumbers 2 "-1 <= k < 2" normalized to its value at t = 0. Band 1 would be

represented by a horizontal line at a value of 2.
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There is evidently a large amount of statistical fluctuation in the data so that we

limit ourselves to qualitative observations based on this single realization. A large
eddy-turnover time based on the length of the computational box and the initial

root-mean-square velocity may be computed and corresponds to approximately t =
3. The initial pulse of energy is, therefore, seen to become distributed more-or-

less evenly among all the wavenumber bands on the order of a large-eddy turnover

time. Furthermore, the cascade appears to proceed in a manner such that most

of the energy is passed locally in wavespace (for 1 <= t <= 2, the normalized

energy level of the bands are ordered consecutively), but some of the energy is
passed to all higher wavenumber bands (the normalized energy levels do not rise

in a delayed step-like fashion, but rather begin to rise early on). Also, the time
difference between consecutive peaks in Figure 11 is seen to decrease for the bands

corresponding to larger wavenumbers, implying shorter turn-over times-cales for the
smaller scales of motion.

These results are in qualitative agreement with the scenario described in Lumley

(1992), where at each step in the energy cascade most of the energy is passed to the

next higher wavenumber band while a diminishing fraction of the energy is passed
to all other higher-wavenumber bands.

4. Summary and conclusions

First, it was shown that 'pulses' of kinetic energy of flow-structures at a particular

scale will propagate to smaller scale structures as fluid particles are followed in

time. This effect leads to a peak in the correlation between local energy at different
scales occurring after a time delay. It was also shown that the time needed for a

length-scale reduction factor of b -- 2 is of the order of the 'characteristic' time

scale in the energy cascade. Although these important qualitative results were very

robust, quantitatively they were strongly dependent on filter type and on the precise
definition used to compute the local energy density. Also, the increase in correlation

after a Lagrangian time-delay was typically not very large. This is to be expected

since the 'forward' flow of energy to smaller scales is itself a weak effect, coming
from the difference between local forward flux and backscatter.

Secondly, unsteadiness in the large-scales of the flow were studied from the spec-

tral point of view. A pulse of energy added at low wavenumbers in a high Reynolds

number forced isotropic turbulence was observed to propagate to higher wavenum-

bers such that the energy levels increased faster in wavenumber bands closest to the

initial pulse and slower in wavenumber bands farther away. The energy of the ini-

tial pulse was seen to be more-or-less evenly distributed among all the wavenumber
bands in a time on the order of one large-eddy turnover time.
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