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Search for subgrid scale parameterization

by projection pursuit regression

By C. Meneveau 1, T. S. Lund _ AND P. Moln 2

The dependence of subgrid-scale stresses on variables of the resolved field is stud-

ied using direct numerical simulations of isotropic turbulence, homogeneous shear

flow, and channel flow. The projection pursuit algorithm, a promising new regres-
sion tool for high-dimensional data, is used to systematically search through a large
collection of resolved variables, such as components of the strain rate, vorticity,

velocity gradients at neighboring grid points, etc. For the case of isotropic tur-
bulence, the search algorithm recovers the linear dependence on the rate of strain

(which is necessary to transfer energy to subgrid scales) but is unable to determine
any other more complex relationship. For shear flows, however, new systematic

relations beyond eddy viscosity are found. For the homogeneous shear flow, the

results suggest that products of the mean rotation rate tensor with both the fluc-

tuating strain rate and fluctuating rotation rate tensors are important quantities

in parameterizing the subgrid-scale stresses. A model incorporating these terms
is proposed. When evaluated with direct numerical simulation data, this model

significantly increases the correlation between the modeled and exact stresses, as

compared with the Smagorinsky model. In the case of channel flow, the stresses are
found to correlate with products of the fluctuating strain and rotation rate tensors.

The mean rates of rotation or strain do not appear to be important in this case,

and the model determined for homogeneous shear flow does not perform well when
tested with channel flow data. Many questions remain about the physical mecha-

nisms underlying these findings, about possible Reynolds number dependence, and,

given the low level of correlations, about their impact on modeling. Neverthe-
less, demonstration of the existence of causal relations between sgs stresses and

large-scale characteristics of turbulent shear flows, in addition to those necessary

for energy transfer, provides important insight into the relation between scales in
turbulent flows.

1. Introduction

Of central importance to the numerical simulation of the large scales in turbu-

lent flows is the proper parameterization of the subgrid-scale (sgs) stress deviator,
defined as
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as a function of the resolved velocity field fii. Here 0 represents spatial filtering at

a particular scale r. The most widely used model is Smagorinsky's (1963):

where

= -2 c, (2)

1 0fii 0fi i
= + ) (31

is the strain rate of the resolved motion. The model constant C, can be prescribed

or can be determined dynamically based on information provided by the resolved

field, as in the recently developed dynamic model (Germano et al., 1991).

Although the Smagorinsky model has been in use for nearly thirty years, for

roughly half that period it has been known that the model provides only a very
crude estimate for the stresses. This fact was first demonstrated by Clark ct al.

(1979), where direct numerical simulation (DNS) data for homogeneous isotropic
turbulence was used to evaluate model predictions. Clark et al. found a correlation

coemcient of approximately 0.2 when comparing predictions of the Smagorinsky

model with the exact stresses. McMillan et al (1979) found that the correlation

coeffcient was even lower in homogeneous shear flow, being of order 0.1. Later,

Piomelli ct al. (1988) found similar results in turbulent channel flow.
When contemplating these extremely low correlation coefficients, it may seem

striking that the Smagorinsky model works at all. Of course, the resolution of this

paradox is that, by construction, the Smagorinsky model insures that there will

be a net drain of energy from the large scales to the subgrid-scale motions. This
is the primary objective of a subgrid-scale model, and as long as this requirement

is met, reasonable results may be expected. On the other hand, the Smagorinsky

model provides poor predictions of the individual elements of the stress tensor. It is

natural to expect that superior results could be obtained with a model that yields a

more accurate prediction of the stress tensor. The objective of this work is to seek

out potentially more accurate models.
The Smagorinsky model relates the subgrid-scale stress with only the resolved

strain rate. It is reasonable to expect that the stresses might also depend on other

resolved quantities such as the vorticity. If simple models based on a limited number

of such quantities are postulated, conventional least-squares fitting techniques can
be used to test the modeling hypothesis. Such a test was performed by Lund and

Novikov (1992), where the stresses were assumed to depend on the anti-symmetric

as well as the symmetric part of the velocity gradient tensor (rotation rate and

strain rate tensors, respectively). It was shown that the stress tensor could be
expanded in a series formed from products of these two tensors. Tests of this

expansion in isotropic turbulence revealed that inclusion of rotation rate did not

significantly improve the model prediction. The results of Lund and Novikov thus

suggest that it is necessary to search for other quantities on which the stresses could
depend. Velocity gradients taken at neighboring points or perhaps gradients filtered

at different (larger) scales are possible candidates which would not violate Galilean
invariance.
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Unfortunately, as the list of possible independent variables increases, the task of

finding statistically meaningful relations from the DNS data becomes unmanage-
able. In principal, if a multidimensional scatter-plot of rij as a function of several

independent variables is generated, a high-dimensional cloud of points would be

obtained. This may (or may not) exhibit some clustering around a most probable
behavior. If such a hypersurface exists about which the data appears preferentially

clustered, it would constitute a clear basis for modeling. However, finding such a

surface from the DNS data represents a difficult problem of regression in a high-

dimensional space of variables. Parametric regression, such as least-square error

fitting to some assumed functional form, is quite difficult because there is little
indication as to what such a function should be. Finding the surface by dividing

the high-dimensional space into small hypercubes and performing local smoothing
of the data is impractical because even large amounts of data become extremely

sparse in a high-dimensional setting (curse of dimensionality).

Although the challenges in performing a high-dimensional regression are apparent,
recent advances in statistical science allow such problems to be tackled. An elegant

method that circumvents many problems inherent to high-dimensional regression

was proposed by Friedman & Stuetzle in 1981. Known as the Projection Pursuit

Regression algorithm, this method was originally developed to analyze experimental

data in particle physics involving a large number of variables. The algorithm consists
of a numerical optimization routine that finds one dimensional projections of the

original independent variables for which the best correlations with the dependent

variable can be obtained. The dependent variable can then be written as a sum

of empirically determined functions of the projections. We shall use the projection

pursuit regression algorithm to investigate relationships between the subgrid-scale

stresses and quantities in the resolved field.

In section 2, we briefly summarize the projection pursuit method, present an

illustrative example, and comment on both its strengths and weaknesses. Section 3
describes applications to isotropic turbulence, both decaying and forced. Section 4

presents applications to homogeneous turbulent shear flow and section 5 to channel
flow simulations. The results obtained from these anisotropic flows suggest possible

modeling strategies that are explored at the end of sections 4 and 5. Section 6

summarizes this work and presents the conclusions.

2. Review of projection pursuit regression

The problem is to find the 'best' relation between a 'response' y and a set of

predictor variables Xl, x2,...xn. In our problem, y will be identified with each of
the elements of the sgs stress tensor, and the xi's will be the elements of resolved

rate of strain, vorticity, etc., i.e. all the variables that the stresses are assumed to

depend upon. When performing tests with DNS data, there will be a large number
of realizations (essentially at every grid-point) of the 'response variable' r (y) and

of the 'predictor variables' strain rate, vorticity, etc (xi, i = 1,2...rt).

Friedman & Stuetzle (1981) summarize the inherent problems of traditional meth-

ods, such as parametric regression and regression based on local smoothing. With
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the former, one has to assume a particular functional form and determine unknown

coefficients or parameters by some method such as least-square error fitting. Since
we do not wish to impose such relationships a priori, this is not a method of choice.

Local smoothing consists of fitting a hypersurface in a small hypercube of data and

repeating this in each cube. The regression surface is then the union of all these

local fits. In high-dimensional settings, this is practically impossible. Consider the
following example (Friedman k Stuetzle, 1081). Let x E R l°, i.e. n = 10. If the

width of the cube used for the local smoothing spans 10% of the range of each

variable, each cube will contain typically only a fraction equal to 0.1 l° of the data,

which is too sparse. On the other hand, if one requires each hypercube to contain

10 % of the data, then the window has to span 0.1 °"1 --. 80% of the range of the
predictor variables, which is too large.

Projection pursuit regression (ppreg henceforth) circumvents these difficulties by
projecting the high-dimensional data onto a single variable z = alXl + _r2x2 +

... + a,z,,. Local smoothing is then performed to obtain an empirically determined
function f(z) that follows the main trend of the data as a function of z. The

smoothing algorithm is described in Friedman & Stuetzle (1981) and consists of

several passes over the data (V as a function of z) to adjust the bandwidth of
the smoothing to the local conditions. The variance a_ =< (V - f(z)) 2 > -- <

(V -- f(z)) >2 of the data around f(z) is computed. The core of the algorithm

is a numerical optimization procedure in which the coefficients _, are selected so
_(I) andas to minimize the variance a_. Let the _'s thus found be denoted by c_i ,

let z (l) and fO)(zO)) be the corresponding univariate projection and the empirical
function giving a good fit for y as a function of z (1). The procedure is repeated

(2) and a smoothfor the residues, defined as y - f(1)(zO)), and a new projection ai
empirical function f(2)(z(2) ) are found. This procedure is repeated until the variance

stops to decrease appreciably by adding new projections. Finally, the model consists
of the sum

M

m---_l

(4)

For the case that the response variable is a linear combination of z, (i.e. y =

fll xl + ...fl, x,), ppreg reduces to the usual n-dimensional linear least-square error
fit (where the a's are the coefficients and f(1) is a linear function). In general

however, the functions f(") need not be linear. The fundamental advantage of

this procedure is illustrated in the following example. If y is the product of x's,

say y = zlz2, then this can be represented as a sum of two univariate functions

according to y = ¼(zO)) 2 - 1(Z(2))2, where z 0) = xl + z2 and z O) = xx - x2. The
ppreg algorithm is thus able to find some nonlinear relations without stipulating

them a priori.

As an illustrative example, we consider 1000 realizations of a ten-dimensional
random vector x where each xi is normally distributed with zero mean and unit

variance. Then y is prescribed as follows:
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y = + tanh(x + xT) + (5)

where _ is another Ganssian random variable with zero mean and variance of 0.1.
However, _ is not included in the list of predictor variables xi and, therefore, repre-
sents extraneous noise. Projection pursuit is applied to this artificially generated set

of data. The projections found by ppreg are, successively: a(1) = 0.60, c_ 1) = 0.72;

c_ 2) = 0.66, o_ ') = 0.74; and a_ :3) = -0.67, a_ 3) = -0.73; other a's are negligible.

The empirical functions (solid lines) resemble the tanh function in the first projec-
tion, parabolas in the latter two. The projected data are shown in Figures l(a)

to (c). If we least-square error fit a tanh profile through Figure l(a), we obtain

yl = 1.1tanh[1.3(O.69x6 + 0.72xr)]. The scatter plot in Figure l(b) is then y - yl vs
the second projection z (2) = 0.66z3 + 0.74x4. Parabolic fits through Figures l(b)

and 1(c) give y2 = 0.4(0.66z3 + 0.74x4) 2 and y3 = -0.4(-0.67x_ + 0.73x4) 2. (These

fits are not exactly equal to the empirical smoothing functions constructed by the

algorithm, this being the reason why the scatter plot of Figure 1(c) falls below the

smooth.) The final model then consists of yl + y2 + y3 which is plotted with the

original y in Figure l(d).
The residual noise is mainly due to the non-deterministic dependence of y with

respect to _. The initial correlation coefficient between y and e.g. x4 was 0.012,
while the correlation coefficient between y and the model, Ymoa, is now p = 0.96.

Finding such a non-trivial dependence from few data points in a 10-dimensional

space is quite remarkable.
Although impressive in the above example, ppreg is not fool-proof. For cases

when y depends on the xi's in ways that cannot be written as sums of functions

of linear combinations of xi's (such as divisions), ppreg is usually unable to find

good projections. Therefore, while the method works remarkably well for an entire
family of non-trivial relations, it cannot be considered entirely general.

In addition to application to sgs modeling to be reported in the following pages,

we believe that the ppreg method should be applicable to a host of other prob-

lems where large amounts of data need to be analyzed and functional dependencies

established (Reynolds-stress modeling, reacting flows, control, etc.).

3. Isotroplc turbulence

In this section, ppreg is used to search for possible functional dependence between
the residual stresses and a host of resolved variables in homogeneous isotropic tur-

bulence. Both decaying and forced isotropic turbulent fields are considered.

3.1 Flow-fields and calculations

Both the forced and decaying isotropic turbulent fields were generated on a 1283

mesh with the pseudo-spectral code of Rogallo (1981). For the decaying turbulence,

the energy spectrum was initialized according to
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FIGURE 1. Illustrative application of ppreg to a test case. (a) Response y as

a function of first projection z (]) = 0.69xs + 0.72x7 (symbols) and mean trend

f(l)(z(1)) found by local smoothing (solid line). (b) Second projection of y - y],

where Yl has been found by fitting a tanh profile through Figure l(a). Solid line:

f(2)(z (2)) found by the algorithm. (c) Third projection and f(a)(z(a)). (d) Response

variable y as a function of the sum of empirically determined fits in (a), (b) and (c).

This spectrum has its energy peak at wavenumber 8. The initial phases for the com-

plex velocity field were chosen randomly but in such a way that the divergence-free

condition was satisfied (see Rogallo, 1981 for more details on the initial conditions).

In order to develop realistic turbulence from the random phase initial condition,

the flow was allowed to evolve freely for 2.9 small scale eddy turnover times, vt0
where )_0 and(based on quantities derived from the end of the initial run; rt 0 = _'0

u'0 are the Taylor microscale and the rms turbulence intensity, respectively). Over

this period of time, the total turbulent kinetic energy decayed by 34%. The Taylor

microscale Reynolds number (u'A/v) was 45.3, and the velocity derivative skewness

was -0.32. The 3-D radial energy spectrum at the end of the run is plotted in
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FIGURE 2. 3-D radial energy spectrum for the decaying isotropic turbulence,

plotted in Kolmogorov units. The experimental data were taken from Comte-Bellot

and Corrsin (1971). The vertical line indicates the scale at which the velocity field

was filtered to obtain the synthetic large eddy field.

Kolmogorov units in Figure 2. Also shown are the experimental data of Comte-

Bellot and Corrsin (1971) at somewhat higher Reynolds number. Agreement with

the experimental data between 0.06 < krl < 0.4 indicates that realistic turbulence

has been achieved. The tail-up in the simulated spectrum at high wavenumbers

indicates some lack of resolution. It is generally believed (Rogallo, 1992) that this

will not adversely affect the data in the central portion of the spectrum used here.

The vertical line in Figure 2 indicates the scale at which the DNS data was filtered

in order to generate the synthetic large eddy field. This scale corresponds to four

grid spacings.

For the forced simulation, energy was added to the large scales by including an

anti-diffusion term (negative diffusion coefficient) in the Navier-stokes equations.
The diffusion coefficient was wavenumber dependent and non-zero only for modes

within wavenumber shells less than 3. The value of the coefficient for low wavenum-

bets was chosen such that the maximum wavenumber, scaled in Kolmogorov units,

was unity (i.e. kmaz/r I = 1). To generate realistic statistically stationary turbu-

lence, the flow was evolved from the random phase initial conditions for approxi-

mately 2 large scale eddy turn-over times. The Reynolds number, Rx, settled at

95.8, while the velocity derivative skewness settled at -0.486. The energy spec-

trum is shown in Figure 3, where again the vertical line indicates the scale used to

generate the large eddy field.

The sgs stresses rij and resolved rates of strain Sij and vorticity &k were computed

using a spectral cut-off filter with scale r corresponding to 4 grid points. The data
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FIGURE 3. 3-D radial energy spectrum for the forced isotropie turbulence. The

vertical line indicates the scale at which the velocity field was filtered to obtain the

synthetic large eddy field.

was sampled on every 8th grid point, producing a total of 16 3 realizations. Also

c_omputed at each 16 3 point were resolved variables at a scale twice as large as r,

Sij and _. The invariants of the tensors were computed as follows:

II_ = V/._.,.S.,., (6)

(7)

IIh = _k&k, (8)

and a similar list of invariants for the larger scale rates-of-strain and vorticity.

The search procedure consisted of considering separately each element of the

tensor r as the response variable. Each element of r, in turn, was assumed to

depend on all 24 of the predictor variables mentioned above (each element of the

tensors plus all invariants). The search is thus a high dimensional one indeed.

It is important to note that when performing independent searches for each ele-

ment of r, the resulting model expressions are not expected to be tensorially correct.

This weakness stems from the fact that the projection pursuit regression operates

most effectively on scalar data. The findings of projection pursuit are still quite

valuable, however, since they may be used to guide the construction of tensorially

correct models. Such a procedure will be followed here.
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3.2 Results

We begin with the decaying field and consider first the normal stress element

r11. To limit the scope of the search, we initiallyrestrict the predictor variables to
quantities filtered at scale r. Furthermore, since Sii = 0, we eliminate -{33 from the

search, reducing the list to 11 variables.

The main result is the following. The ppreg algorithm finds only one projection

(in which the variance of the data around a mean trend is reduced), namely that

corresponding to ,_,611.The coefficient a corresponding to $11 is close to unity, while
all others are less than 0.1. The same is true for all other tensor elements, i.e. the

only causal dependence appears to be between corresponding elements of rij and

5'ij. The smoothed dependence is approximately linear, but the variance about it is

still very large. The correlation coefficient between each element of the stress and
rate-of-strain tensors is, averaging over all 6 elements, about p = 0.26. Notice that

the Smagorinsky model requires the product between each rate-of-strain element

and the second invariant II_. Given the discussion in section 2, this could have
been detected by the present approach by yielding pairs of projections with similar

I l's for both II_ and Sij and canceling parabolic dependences. However, such
projections were found to produce more variance than the ones corresponding to

constant eddy viscosity. This was checked a posteriori by computing the correlation

coefficient between each element rij and the corresponding term -IIgSij. The

correlation was marginally smaller than for -_ij alone, about p = 0.25 on average.

The same procedure was repeated for the forced isotropic flow, and the same

observations were made. The correlation between rij and ._ij was even lower (about

0.12 instead of 0.26), but this was again the only causal dependence captured by

the algorithm. All other projections did not reduce the variance in any fashion, and
correlations with -II_Sij were again smaller than with Sij alone.

Inclusion of the velocity gradients filtered at a larger scale yielded projections
that include a weak linear dependence on these gradients but again in terms of the

same tensor elements only. In other words, for rll the 'best' (and only) projection

is onto $11 + 0.2311. Nevertheless, this leaves the correlation virtually unchanged
since $11 and Sll are themselves correlated. Similar results were obtained for other
tensor elements.

We also considered the possibility that the sgs stresses depend not only on the

resolved velocity gradients at the point in question, but at the 26 closest neighboring

grid-points as well. To do this, the 6 elements of ._ij at each point ,,_ij(x + ixr, y +

iyr, z + izr); ix, i v, iz = -1, 0, 1, as well as 3 vorticity components at each of these

points was considered. The dimensionality of the space of these predictor variables

is 243. It appears unrealistic to expect ppreg to perform adequately in such extreme

circumstances. In order to at least explore this direction, we considered rll(x, y, z)
and investigated how it depends on the first element of the rate-of-straln tensor at all
27 neighboring points on the coarse grid, i.e. the predictor variables were Sll(x +

ixr, y + i_r, z + izr), ix,iy,i: = -1,0, 1. The projection pursuit projected again

most strongly on Sll(x, !/, z) (a = 0.8), while the a's corresponding to neighboring

points were below 0.25. Inclusion of these weak dependencies left the correlation
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coefficient virtually unchanged. Since this test is incomplete (one should include all

243 elements in the test) the conclusion that the neighboring velocity gradient does
not affect the sgs stresses is somewhat premature. Nevertheless, the partial results

obtained here give no indication of any substantial influence.

3.3 The model of Bardina et al.

The only model which has been reported to yield high correlations when tested

with DNS data is the model of Bardina et al. (1983). The correlation between

7"ij and Bij = u/uj - u"iuj can be as high as 0.7 to 0.8 when the filter used in
creating the synthetic large eddy field from the DNS data is Gaussian. In spite of
this, experience shows that when the model is implemented in actual simulations,

it dissipates almost no energy, and a Smagorinsky term has to be added (giving

the mixed model, Bardina et al. 1983). This is puzzling since a high correlation

implies at least some alignment between the modeled stress and rate of strain tensor

required for dissipation. This issue is addressed below.

Using a Gaussian filter on the decaying isotropic data, we reproduced the quoted
correlation of 0.8. We found this result to be misleading, however, since the Gaus-

sian filter produces a 'large-scale' field that contains considerable contributions from
the 'small scales', as viewed from a spectral analysis. This 'small scale' information

is, of course, not available in an actual large eddy simulation if a spectral method is

used. The model of Bardina et al. can be viewed as a procedure for extracting the
'small scale' component of the synthetic large eddy velocity field generated from the

DNS data. While this procedure yields impressive correlations in tests with DNS

data, lack of the 'small scale' component in an actual large eddy simulation field

results in a model that may yield a very poor estimate for the real stresses. The

near lack of dissipation is probably symptomatic of this.

This hypothesis was tested by experimenting with different filters. We feel that

the cut-off filter is the most appropriate for generating the synthetic large eddy
field since it completely eliminates the 'small scale' information that will never be

present in a spectral large eddy simulation. We have repeated the tests of the model

of Bardina et al. using a cut-off filter to determine _. The second filtering, ui, was

chosen either to be Gaussian or a second cutoff at a scale twice as large as r. Using

this scheme, the model of Bardina et al. is written as

B', = - u_ (9)
As expected, the correlation between the sgs stress and the Bardina model dropped

to nearly zero when the cut-off filter was used to generate J'_. This was true inde-

pendent of the second filter type (_). As a consistency check, we found that when

B_j was included in the projection pursuit as predictor variable, no dependence on
this tensor was found.

4. Homogeneous sheared turbulence

In this section, we search for correlations between sgs stresses and resolved vari-

ables in homogeneous shear flow. The data was generated by Rogers (1987) on a
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1283 mesh using a variant of the Rogallo code. We considered three different re-

alizations, corresponding to times 10, 12, and 14, in units of the inverse imposed

mean shear, S =< dul/dx2 >. The mean velocity is in the zl direction and the
mean rotation in the z3 direction. Cutoff filtering was performed on a scale r = 4

grid-points, and every eighth _id point was sampled, as in section 3. The list of

predictor variables was again Sn, S22, Sl2, $23, S13, _1, _)2, _)3, II_, III_ and

IIk = [w[. Ppreg was repeated 6 times for each element of the sgs stress tensor.

4.1 Results

In contrast to the tests performed in isotropic turbulence, ppreg was able to

find several interesting projections in the case of homogeneous shear flow. Table
1 shows the individual tensor elements and the linear combination of predictor

variables z = ai xi that dominate the projections (chosen as those whose _ >

0.15). The functional dependence on each projection (f vs z) was found to be fairly

linear. The correlation coefficients between r O and -II_S_j (Smagorinsky model)

are contrasted in the same table with those between rij and the dominant elements

of the linear combinations found. On average, there is about a 100% improvement

above the Smagorinsky model.

Stress

TII

_2

_3

_2

v23

T13

z, (best projection) PI_,¢,-HY_,A

--0.39_1 t +0.41 S_+0.73St = +0.28Sta+O.l 7_2+0.15_'3 0.23

--0.21 Sit -- 0.28 $22 - 0.89 St :t -0.17,g't 3 0.14

0.76St t --0.2_2:_+0.24_12--0.23_t_--0.1 $7_2--0.44_a 0.07

-0.66_t-0.2,¢22-0._,¢_, 0.13

0.25,_t t --0.69S23--0.62,_t 3+0.23&2 0.06

0.1.5.._'t 2 -- 0.2.g'23 --0.56,._1a+0.68_1 -[-0.29_2--0.17_'3 0.21

P[",, ,=l

0.36

0.23

0.29

0.21

0.27

0.34

TABLE 1. Results of projection pursuit for homogeneous shear flow.

It can be appreciated that causal relations exist that are significantly different

from the Smagorinsky model. The coefficients showed only minor variations for the
other two times considered (St=10 and St=14). This robustness suggests that there

is a physical mechanism by which the large-scale field consistently influences the sgs
stresses, in addition to what is required energy transfer (i.e. alignment between rij

and Sij). Since the relations tabulated above cannot by themselves provide an
adequate relation between tensors, it could be that dependence on other quantities
has been omitted. The next section explores the dependence on other quantities

that may provide possible mechanisms for the observed degree of causality.
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4.2 Dependence on mean shear and modeling

An important consideration when developing a model for the sgs stress is that the
resulting model be in the form of a frame invariant tensor. Clearly, the individual

terms found in the previous subsection are not invariant under rotations of the
coordinate system. A tensorial relation must be found that is consistent with the

findings of ppreg on each tensor element. We attempt to find such a tensorial

relation in this section. To do this, we first observe that -_12 and t_ are important

contributors in the model for rl 1. These tensor elements of Sij and/_ij 1 -= --_CijkOJk

also correspond to the only non-zero elements in the mean strain-rate and mean

rotation tensors. This fact suggests that tensor products of the mean strain rate

and mean rotation with the fluctuating strain rate and fluctuating rotation would

reproduce some of the dependence found by ppreg for *'11. Analogous reasoning
holds for most of the other elements of r.

To proceed further, we define the mean strain and rotation rate tensors as

0i)0 (10)

0n,i= -{ 0 0 (11)
0 0 0

and postulate a model of the following form:

"r/_ = -- 2c1 r2II$Sij +

c2r2(SikEkj + _itSkj)* + car2(Rik_tj + _ikRtj)* +

c4r2(Sik_kj -- _ikSkj) + csr2(RikEtj - _tkRkj),

(12)

where ()* indicates trace-free part (note that some of the terms are naturally trace-

free). The first (Smagorinsky) term is also present in the ppreg results and thus is

included here. To see more clearly how this model reproduces some of the trends

of Table 1, note, for instance, that the [11] element of the product between Sii and

Y_ij is linear in S12 and that between/_ij and fli) will be linear in w3. Again, similar

correspondences can be found for other elements of r.

Since Eq. (12) is linear in the coefficients ci, these can be determined by the usual

least-squares technique. This procedure is easily derived as follows. Write Eq. (12)
symbolically as

l"_j = ct(mk)ij, (13)

where (rnk)ij is the kth trace-free model tensor in Eq (12). When the DNS data is
used, the above expression can be compared with the exact trace-free part of the

subgrid-scale stress, (r*x)i 1. The error in representing the stress via Eq. (13) is

given by
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eij= (r*x)i/-- ck(mt )ij. (14)

Assuming the ck to be constant in space, the global square error is minimized with

respect to the c_ by enforcing the following condition

0

Oc---'t< eijeii >= 0, (15)

where <> indicates an average over space. This operation leads to the following

matrix equation for the ck

ct =< (mt)ij(mk)ij >-'< (mt)ij(r_x)ij > (16)

Note that this procedure is rather general and does not require that all five terms

in Eq (12) be included. Any subset of the five terms can used as a basis and

corresponding coefficients solved for via Eq. (16). This feature will be used to
determine which combinations of the five terms are most effective in maximizing

the correlation between the modeled and exact subgrid-scale stresses.

The quality of the fit is measured in terms of the tensorial correlation coefficient

< (r*x)ijMiJ > (17)
77= X/< (r_x),j(*. r*ex),j" >< MijMij >'

where Mij = ck(mk)ij is the composite model tensor.
The procedure developed above was applied to the homogeneous shear flow data

base. Correlation coefficients were determined for all possible combinations of one

to five model components. Figure 4 shows the results of this study where the high-
est correlation coefficient obtained for a given number of model tensors is plotted

against the number of tensors used.
The correlation increases as more model tensors are included. The increment

in improved correlation, however, deceases as more terms are added. In fact, the

correlation coefficient when just three terms are used is nearly identical to that
when all five terms are included. This fact suggests that at least two of the terms in

Eq. (12) are not particularly useful. The relative importance of the various terms
are summarized in Table 2, where the optimal combinations of terms that give rise

to the correlations in Figure 4 are listed.

Note that when only one term is used, the optimal choice is not the Smagorinsky

model (term 1), but rather term 4, r2(Sitf_kj - f/itS_j). For reference, the cor-

relation produced by the Smagorinsky model alone is shown as the square symbol
in Figure 4. The Smagorinsky model is seen to be only slightly inferior to term 4.
When two or more terms are included, the Smagorinsky model is always present.

Terms 2 and 5 enter the list in the last two positions and do not significantly im-

prove the correlation. It is interesting to note that both of these terms contain the

mean shear. It is also interesting that terms 3 and 4 are proportional to the mean

rotation, and it is these terms that are most effective in increasing the correlation.

This point will be discussed further in the following section.
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0.22

i 0.20

i 0.18

0.16

0.14

Number of model tensors

FIGURE 4. Correlation coefficient between the exact homogeneous shear flow sgs
stress and subsets of the terms in the model of Eq. (12). For a given number of

model tensors, the correlation coefficient plotted is the highest one obtained when

all possible combinations of the five terms was considered.

Number of terms Best combination

1 4

2 1,4

3 1, 3, 4

4 1, 2, 3, 4

5 1, 2, 3, 4, 5

TABLE 2. Optimal subsets of the model terms in Eq. (12) applied to homoge-
neous shear flow.

When terms 1, 3, and 4 are used, there is slightly more than a 50% improvement

over the Smagorinsky model. This compares with roughly 100% improvement for
the tensoriaily incorrect model listed in Table 1. This discrepancy is due to the fact

that not ali of the terms contained in Table 1 can be reproduced by the model of

Eq. (12). Nevertheless, a simple tensorially correct model was found that captures

some of the trends found by projection pursuit.

The coefficients of terms 1, 3, and 4 are 8.52 × 10 -3, -3.03 × 10 -2, and 4.16 × 10 -2

respectively.
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5. Channel flow

In this section we consider DNS of channel flow. The data were generated with a

pseudo-spectral code as detailed in Kim et el. (1987). The Reynolds number based

on the wall friction velocity was 395, and 256 x 193 x 192 grid points were used.

The data was cutoff filtered in the streamwise and spanwise directions only, with

a filter size of four grid cells. All results presented here were generated on a single

plane of data at _ = 0.126 ( y+ = 49.8 ) where h is the channel half width.

5.1 Results

As a starting point, the correlation between the exact stresses and the Smagorin-

sky model was investigated. Individual correlation coefficients were computed for

each of the tensor elements, and these were found to be very low (p __ 0.07 on

average). This trend is shown in Figure 5 in the form of a scatter plot of rl2 vs

--S12.
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FIGURE 5. Scatter plot of sgs stress r12 as a function of rate-of-strain element $12

in DNS of channel flow, at y/h = 0.126.

No causal dependence appears to exist between the two variables. The ppreg

algorithm was then applied to the data using all elements of Sii, ¢bt and the invari-

ants as 11 predictor variables. A sequence of several projections was found for each

element of vii. This list of projections was reduced to a single one for each element

of vii by retaining the one that reduced the variance most strongly in each case.

These optimal projections are listed in Table 3.

As opposed to the results for homogeneous shear flow, the functional form between

vii and these projections was found to be non-linear. As an illustration, a scatter

plot between r12 and the projection z12 = 0.77S23 + 0.39S13 - 0.3&1 is shown in

Figure 6. The main trend of _'12 as a function of z12 appears to be quadratic.
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Stress

rll

T22

T33

T12

T_3

T13

z,(bestprojection)

-0.8-q13 + 0.51_2

-o.4_= - 0.s6u_

0.45S23 + 0.85S13 + 0.17_

P[,-,j ,- I1._+j]

0.12

0.10

0.02

0.77S23+ 0.39S13 - 0.3_i 0.10

-0.51S]1 - 0.43S22 + 0.35S12+

0.47.¢_3- 0.295_3- 0.17(_, -_2 +v3) 0.05

0.82S11+ 0.48S22- 0.23_2 0.05

P[_'s,'q

0.44

0.21

0.36

0.34

0.27

0.31
..... J

TABLE 3. Results of projection pursuit for channel flow.
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FIGURE 6. Scatter plot of sgs stress r]2 as a function of best projection onto

elements of filtered velocity gradient tensor, found by ppreg. Same data as in

Figure 5.

Similar behavior was found for all other tensor elements, the trend being strongest

for the [11], [33], [12], and [131 components. To quantify the causality between the

stresses and the corresponding z's, the correlation coefficients between individual

elements of r and the corresponding z 2 were computed. Since each of the observed

quadratic trends had a minimum close to the origin, it is sufficient to consider the
single term z 2. These correlation coefficients appear in the last column of Table

3. Notice that when compared with the correlation produced by the Smagorinsky

model, more than a four-fold increase is detected. This trend can also be observed
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by comparing Figure 5 to Figure 6.

5.2 Modeling

As in section 4.2, the expressions in Table 3 are by themselves not valid relations
between tensors. Unlike the linear relationship found in shear flow, the elements of

r depend quadratically on the projections in channel flow. For example, the model
for r12 is (0.77S_3 + 0.39S13 - 0.30_1) 2. The tensor model found for homogeneous
shear flow may not be of much use in this case since it is not able to produce the

non-linear products that result from squaring the projection. The quadratic non-

linearities suggest that it may be possible to model the stresses in terms of various

tensor products of the strain and rotation rates. Such a model is

r_ = -- 2clr2II_Sij +

' + c3r (R kRki) +

c, r2(  k/i i -/i k ki) + csr2(Si S*tk , - hi S ,S,i)/II ,

(18)

where 0* again indicates trace-free part. This model was studied by Lund and
Novikov (1992) and represents the most general relation between the subgrid-scale
stress and the strain and rotation rate tensors.

The least-squares fitting procedure was applied to the above model as well as the

model of Eq. (12). The resulting correlation coefficients are shown in Figure 7.
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FIGURE 7. Correlation coefficients for the terms in the models of Eqs (12) and

(18) applied to channel flow data.

As expected, the model developed for shear flow (Eq. (12)) does not offer much

improvement here. The non-linear model of Eq (18), on the other hand, considerably
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Number of terms Best combination

1 4

2 3, 4

3 1, 3, 4

4 1, 3, 4, 5

5 1, 2, 3, 4, 5

TABLE 4. Optimal subsets of the model terms in Eq. (18) applied to channel
flow.

increases the correlation relative to the Smagorinsky model. As in the shear flow
case, only two or three terms contribute significantly to the increase in correlation

coefficient. The ranking of terms in Eq. (18) is summarized in Table 4.

As in the shear flow, the Smagorinsky model does not produce the highest corre-
lation when used in isolation. In fact, it produces the lowest correlation of any single

term, while term 4, the best one, produces a correlation coefficient that is roughly

2.7 times higher! Furthermore, the Smagorinsky model does not enter the list until

three or more terms are included and adds little to the correlation at that point.

When three terms are included, the correlation coefficient is about 3.2 times higher
than that provided by the Smagorinsky model. This compares with an average of

improvement of a factor of 4.4 obtained by the projection pursuit algorithm. Thus
the model of Eq. (18) incorporates quite well the findings of projection pursuit into
a tensorially correct model.

As in the shear flow, the rotation rate enters as an important parameter. In both

the shear and channel flow, the best single term is the product of strain and rotation

rate (actually, it is the mean rotation in the shear flow and the local rotation in

the channel flow). The observed strong dependence on this term is perhaps not

too surprising since it is representative of vortex stretching. Although there is a

connection with vortex stretching, thestrain, rotation product does not remove
energy from the large scales ( i.e. (SitRk,j -/_itStj)Sij = 0). Thus, by itself, this

term would not be a useful model, and a term that has a non-zero projection on

the strain rate (such as the Smagorinsky model) must be added.

The coefficients of terms 1, 3, and 4 are 1.13 x 10 -3, -1.38 x 10-2, and -8.71 x 10 -3

respectively.

The above collection of predictor variables is by no means exhaustive. Examples
of other dependencies that could have been included are the mean velocity gradients

Eij and _ij and the distance from the wall Ai (a vector).

6. Summary and conclusions

A novel regression algorithm has been used to explore DNS data in an effort

to determine improved models that parameterize the sgs stresses for large eddy
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simulation. In addition to the rate of strain, several other variables have been

considered. These include rotation, velocity gradients filtered at larger scales, and

velocity gradients at neighboring points as well as the invariants of the strain and
rotation rate tensors. DNS data from isotropic turbulence, homogeneous shear flow,
and turbulent channel flow have been considered.

For isotropic turbulence, no statistically robust relations were found other than
the small correlation between the stress and rate-of-strain tensor required for energy

transfer. This finding may imply that, other than the weak relation between the
stress and rate of strain, the large-scale velocity gradients in isotropic flow do not

dictate the behavior of the small scales giving rise to the sgs stresses. Given that

the ppreg algorithm is not guaranteed to find all existing trends, we can not state
this conclusion with absolute certainty. Nevertheless, it is very likely that for the

Reynolds number range considered, there is no strong, simple connection between

large scale velocity gradients and sgs stresses in isotropic turbulence.

Entirely different behavior was observed in turbulent shear flows. Individual

components of the stress tensor were found to depend on several elements of the

fluctuating strain and rotation rate tensors. The dependence was found to be linear
in the case of homogeneous shear flow and quadratic in the case of channel flow.

In the case of homogeneous shear flow, the observed dependence was used to guide
the construction of a model that involved tensor products of the mean strain and

rotation rate with their fluctuating counterparts. This model was shown to produce
a correlation between modeled and exact stresses that was 50% higher than that

given by the Smagorinsky model. The proposed model for homogeneous shear
flow did not carry over to channel flow, and only marginal improvement over the

Smagorinsky model was observed. The results of projection pursuit were again used

to guide the construction of a model for channel flow. This model was considerably
more successful, yielding more than a 200% improvement over the Smagorinsky
model. Whereas the shear flow model did not extend well to channel flow, the

channel flow model did perform reasonably well in shear flow, yielding correlations

that were roughly 90% of those achieved with the shear flow model.

One interesting finding of this work is that mean strain and rotation rates enter

in the parameterization of the subgrid-scale stresses, at least in the case of homoge-
neous shear flow. This is at variance with the view that at large Reynolds numbers

the small scales should be nearly isotropic and unaligned with the large-scale mo-

tions (Kolmogorov, 1941). Indeed, recent experimental measurements of Saddoughi

(1992) confirm small-scale isotropy at high Re. Of course, the low Reynolds num-
ber data used here does not provide a sufficient range of scales to realize small

scale isotropy, and, consequently, the subgrid scales have some residual alignment

with the mean gradients. It is thus conceivable that the observed dependence on

the mean quantities would disappear if the Reynolds number and hence the scale

separation were increased.

On the other hand, it is not clear that traditional measures of isotropy (spectra,

structure functions etc.) have a direct connection with the behavior of the sgs
stresses. Alternately, the observed dependence on the mean quantities could also
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be present in a slightly different form at higher Reynolds number. In this view, the
shear and rotation produced by large scales of size, say, br (where r is the filter size

and b > 2) may take on the role of mean shear and rotation as far as the small

scales are concerned. We did not find such trends in the isotropic flow using b = 2,

but it is possible that such a trend requires large separation (b >> 2) and higher

Re. Unfortunately, this issue cannot be addressed using DNS data at low Reynolds
numbers.
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