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Triad interactions in the dissipation range

By S. Kida 1, R. H. Kraichnan 2 , R. S. Rogallo _ , F. Waleffe 4 , and Y. Zhou 4

Nonlocality of the triad interactions in the dissipation range of developed turbu-

lence is investigated by numerical simulation and the quasi-normal theories. It is

found that the energy transfer is dominated by nonlocal triad interactions over the

wavenumber range 0.1 < k/kd < 4, where kd is the Kolmogorov wavenumber. The

nonlocality of the interaction has a close relation with the power of an algebraic

prefactor of the exponential decay of the energy spectrum in the far-dissipation

range.

1. Introduction

The triad interaction is the fundamental coupling among the various Fourier

components of a turbulent velocity field and transfers energy predominantly from

lower to higher wavenumbers. Properties of the triad interactions were studied by

Kraichnan (1971) and have recently been analyzed numerically using data from
numerical simulations (Domaradzki 1988; Yeung & Brasseur 1991; Domaradzki &

Rogallo 1990; Ohkitani & Kida 1992) and by an analysis of interactions among

helical waves (Waleffe 1992).
In the inertial range where the energy spectrum obeys the Kolmogorov -5/3

power form,
E(k) = CK 2/3k -5/3, (1.1)

where _ is the energy dissipation rate and CK is the Kolmogorov constant (Kol-

mogorov 1941), the interaction is local in the sense that triad interactions of scale
disparity (see (3.4) for definition) greater than 10 (100) contribute only 15% (1%)

of the energy flux (Kraichnan 1971; Ohkitani & Kida 1992). Although the locality
of the triad interaction is very weak, it is compatible with Kolmogorov's (1941)

concept of local energy cascade.
The nature of triad interactions in the dissipation range is expected to be different

from that in the inertial range because the energy spectrum decreases very rapidly

(exponentially) in the dissipation range. In this paper, we investigate the interac-
tions by analyzing numerical turbulence and by its comparison with the prediction

of the quasi-normal closure theories.
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2. Fundamentals

We consider the energy dynamics of the motion of an incompressible viscous fluid

in an infinite domain. The equation of motion is written in the Fourier representa-
tion as

= i-_Pjtl(k) Z u_(p)u_(q) - vk2uj(k) + f/(k) (2.1)
p-Fq.+-k=O

with the continuity equation

ks_(k) = 0, (2.2)

where _j(k) isthe xj (j = 1,2,3) component of the Fouriercoefficientof velocity

at wavevectork,

P#_l(k) = kt 6#t k2 ] + kl 6.j_ k2

is a third order tensor, v is the kinematic viscosity, and _(k) is the external forcing.

Here the time argument t is omitted for brevity, the asterisk denotes the complex
conjugate, and repeated subscripts are summed over 1 to 3.

The energy spectral density at wavevector k,

E(k) = ] I_(k)l 2 (2.4)

evolves according to

÷
which is derived by multiplying (2.1) by _ and taking the real part.

The first term on the r.h.s, of (2.5) represents the rate of energy transfer to the

Fourier mode k through the nonlinear interactions with all the other modes, the

second the energy dissipation by the viscosity, and the third the energy input by
the external force.

The energy transfer function T(k) is written as

where

T(k) = _ T(klp,q), (2.6)

P,q

T(klp, q) = - ½Im {Pjki(k)_j(k)_'k (P)_l(q)} _k+p+q (2.7)

is the triad energy transfer due to the interaction among three wavevectors k, p,
and q that constitute a triangle (k + p + q = 0). Through a triad interaction,

energy is exchanged among the three modes involved, with the total energy being
conserved. That is, the following detailed balance of energy holds;

T(klp, q)+T(p]q,k)+T(q[k,p) =0. (2.s)
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Consequently, the sum of the energy transfer function over all the wavevectors

vanishes,

E T(k)= E T(klp'q) = 0" (2.9)
k k,p,q

Since the flow field is statistically isotropic, it is convenient to average each term in

(2.5) over spherical cells in the wavevector space. We introduce the band-averaged

energy spectrum

E(k)Ak = E E(k'), (2.10)

k-½At<lk'l<k+½Ak

the band-averaged energy transfer function

_'(k)Ak = E T(k'), (2.11)

_-½Ak<lk'l<k+½Ak

and the band-averaged forcing spectrum

k-½/,k<lk'l<k+½"k

(2.12)

The energy spectrum equation (2.5) is then written for the band-averaged quantities

as

O._,(k) _'(k) 2vk2E,(k) + $'(k). (2.13)

The triad energy transfer function T(klp, q) is also averaged over a spherical cell

as

T(k] p,q)(Ak)3 = E T(k'[p', q'). (2.14)

k-½ Ak<_lk'l<k-l-½ A k

p-½Ak_<lp'l<p+½ Ak

q--½At_<lq'l<q+½ Ak

The energy transfer function is then written as

_(k) = (Ak) 2 _ T(klp, q). (2.15)
P,q

The detailed balance of energy (2.8) and the conservation of total energy by all the

triad interactions (2.9) are written respectively as

_'(klp, q) -4-_'(plq, k) -4-_'(qlk,p) : 0 (2.16)

and

E _'(k) = O. (2.17)
k
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FIGURE 1. Energy Spectrum in the dissipation range. The decay with wavenumber
is essentially exponential.

3. Numerical Simulation

The equations of motion (2.1) and (2.2) are solved numerically in a periodic cube
with an instability forcing,

= C i(k) for [kl < k0. (3.1)

The constant C is chosen to force the flow field to equilibrium with a specified

range of forced scales k0 = 3 and a specified range of resolved scales, in Kolmogorov
units, kmax/k d _- 4. The Fourier-spectral method (Rogallo 1981) is employed for

the spatial resolution, and time is advanced with a second-order Rungc-Kutta pro-

cedure. The alias errors arising in the nonlinear terms is removed by a combination

of coorclinate shifting and spectral truncation. The computational mesh (in physi-
cal space) is 2563 . The initial flow field is taken after over five large-scale turnover

times from forced turbulence created at a lower resolution (1283) at about the same

Reynolds number (Rx _ 65). The 2563 field was then advanced until an equilibrium
between transfer, and dissipation was achieved at the higher wavenumbers. We will

study that transfer here in some detail. The Kolmogorov dissipation wavenumber,

ka = (v3/e) '/4 (3.2)

is about 30, so that the maximum resolved wavenumber km_x = 121 retained in the

simulation is about four times the Kolmogorov wavenumber.

$.I Energl./ spectrum

The energy spectrum at the final time of the simulation is shown in a semi-

logarithmic plot in figure 1. The nearly straight line indicates that the energy
spectrum decays essentially exponentially with wavenumber. In order to examine
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FIGURE 2. Logarithmic derivative of the energy spectrum function.

For E(k) = A(k/kd)aexp[-flk/kd] the slope of the curve gives -/3 and the in-

tersection on the vertical axis gives a. _, simulation data; .... , least-square

fit over .5 _< k/kd < 3 gives _ = -1.6, _ = 5.2.

the shape of the spectrum more precisely, we compare it with an exponential form

with an algebraic prefactor

E(k) = A(k/kd)aexp[-tJk/kd]. (3.3)

In figure 2, we plot the logarithmic derivative of the energy spectrum. If the spec-

trum has the form (3.3), the slope of the line and its intersection with the verti-

cal axis give the values of/3 and a, respectively. Since this is an instantaneous

spectrum, the fluctuations are quite large. Nevertheless, the least squares fit over

0.5 < k/kd < 3 gives a = -1.6 and /3 = 5.2, which are consistent with those
observed before in numerical simulations by other researchers (Kida & Murakami

1987; Kida ef al. 1990; Kerr 1990; Sanada 1992). More recently however, Chen

(1992 private communication) has simulated the dissipation range at RA _ 15 to

much higher k/kd. He finds a = 2.16 and j5 = 7.35 by a least-square fit over the

range 5.2 _< k/kd <_ 10.4. The data from the present simulations do not coincide

with Chen's for k/kd _< 4, suggesting that the results are sensitive to Reynolds

number. There may also be some effect due to the method of forcing. Incidentally,

the exponential shape of the energy spectrum in the far-dissipation range has also

been observed in experiments (Sreenivasan 1985).

There is a theoretical prediction of the power in the algebraic correction. The

quasi-normal theories of turbulence (Kraichnan 1959; Tatsumi 1980; Lesieur 1987),

which will be discussed in some detail in the next section, predict _ = 3 in the

far-dissipation range. This value of a is quite different from those observed in the
numerical simulations. But it should be remembered that the dissipation range is

restricted to k/kd < 2 --, 3 in the simulations mentioned above so that it is not

clear whether this discrepancy results from a failure of the quasi-normal theories
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FIGURE 3. The energy-spectrum balance: , transfer 2"(k); , dissipation
2vk2F_,(k); _, departure from equilibrium I_'(k) - 2vk2/_(k)l. The equilibrium

between transfer and dissipation is apparent over most of the wavenumber range.

or from the low wavenumbers considered. As a matter of fact, there is a numerical

suggestion that the spectrum may be consistent with positive values of o_ less than

3 over the wavenumber range 4 < k/kd < 10 for a low Reynolds number (Rx _ 15)

flow (Domaradzki 1992 private communication).
In order to see the dominant terms of (2.13), we plot T(k) and 2vk2E(k) in

figure 3. Recall that the forcing term F(k) in (2.13) is restricted to low wavenum-
bers (k/ka < 0.1). We see that both 2vk2E(k) and 7'(k) vary exponentially with

wavenumber and that they are in equilibrium. Their difference is less than their

magnitude by more than two orders of magnitude over most of the wavenumber

range (k/kd > 1, say).

3.P, Tried energy transfer

The triad energy transfer function 7"(kip, q) is most efficiently calculated by an

alias-free spectral method applied to filtered fields (Domaradzki & Rogallo 1990).
In figure 4, we plot 7"(kip , q) for k/kd = 2 and k/kd = 3. The finest band-width

is employed, i.e. Ak = 1. The solid and broken curves denote the positive and

negative values, respectively. We recognize the following characteristics in _'(klp, q).

First, there are strong dipoles at the corners q << p _ k and p << q _ k of the
boundary. The signs of the dipoles are positive (negative) on the smaller (larger) side

of wavenumber p/k or q/k. Second, the most significant part of T(klp , q) is localized

near the boundary p + q = k, and the thickness of this part decreases as k/kd

increases. The magnitude of T(klp, q) decreases exponentially with wavenumber

away from this boundary. The value of 7"(kip, q) in the blank region is too low to
draw clear curves.

The first characteristic was also observed in the inertial range (Kida & Ohkitani

1992) and represents the energy transferred to larger wavenumbers by nonlocal inter-

actions. The second characteristic, on the other hand, is peculiar to the dissipation
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FIGURE 4. The triad energy transfer function _'(k[p, q) for the numerical tur-

bulence. (a) k/kd = 2, (b) k/kd = 3 The solid and broken curves represent the

positive and negative parts, respectively. The contour levels are logarithmic, rather

than linear, and are separated by a factor of 4.
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FIGURE 5. The triad energy transfer function T(k[p,q) for the numerical tur-

bulence. (a) k/kd = 2, (b) k/kd = 3. The solid and broken curves represent the
positive and negative parts, respectively. The contour levels are logarithmic, rather

than linear, and are separated by a factor of 4.

range. This arises from the rapid (exponential) decay of the energy spectrum with

wavenumber in the dissipation range in contrast with the slow (algebraic) decay in

the inertial range.
Similarity in the contours evidently is not obtained over the whole domain of

7"(kip, q) plotted in figure 4. Since, however, the dipole parts are very similar
in figures 4(a) and (b), we enlarge the corner region and replot the contours in

figures 5(a) and (b), respectively, with wavenumbers normalized by the Kolmogorov
wavenumber ka instead of k. This scaling of the wavenumber is suggested by the

closure theory (see (4.12)).
The close resemblance of figures 5(a) and (b) implies that the shape of the dipoles

of _(k IP,q) is similar near the corners if the wavenumber is scaled by the Kolmogorov
wavenumber.
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FIGURE 6. The (p/k,q/k) domain of integration for T(klp, q). The measure of
scale disparity is s = max(k,p,q)/min(k,p,q). (a) s < 2, (b) s > 2.

8.8 Nonlocality of triad interaction

The triad energy transfer function _'(k [p, q) represents the energy exchange among

three wavenumbers with magnitudes k, p, and q. In order to express the scale

locality of the triad interaction, we introduce the scale disparity parameter (Zhou
1992), the ratio of the maximum to the minimum of the triad wavenumbers,

max( k , p, q)

s = min(k,p, q)" (3.4)

It follows by definition that s > 1. This scale disparity parameter measures the scale

locality of the triad interaction. If s is smaller, the interaction is more local, and

vice versa. In figure 6, we indicate the (k, p, q) domains for relatively local (s < 2)
and relatively non-local (s > 2) triad interactions.

Let us denote by _'(k[s)Ak the contribution to the energy transfer from triad

interactions with scale disparity parameter between s - _As and s + ½As. Then,
we have

= _(klp, q ). (3.5)
P,q

In figure 7, we plot T(kls), obtained by summing up the terms in the r.h.s, of

(3.5) numerically for k/kd = 2 and k/ka = 3. It is seen that _'(kls ) may have a

scale similarity with skd/k.

4. Closure Theory

In the quasi-normal closure theories (see Tatsumi 1980; Lesieur 1987), the energy

transfer term in the energy spectrum equation (2.13) is expressed in terms of the
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FIGURE 7. The scale disparity of energy transfer T(kls): --, k/kd = 2; .... ,

klkd = 3. (a) local scaling: s, (b) non-local scaling skd/k.

energy spectrum function under the assumption that the fourth-order cumulants of

the velocity are negligible:

Q2 _, ,E(p)E(q)
T(kip, q) = Okv, 16k-pq((Bkl,, + _,tqp,

E(k)E(q) E(k)E(p) '_
-- Bipq k2q2 B_qp k2p2 /,

(4.1)

where

akpq = (k 2 -- q2)(p2 _ q2) + k2p2 (4.2)

and

Q2 = 2k2p2 4- 2k2q 2 4- 2p2q 2 - k 4 - p4 _ q4. (4.3)

Here 0kpq, the relaxation time of the triple moments of velocity, takes different forms
in the various theories. In the far-dissipation range (k,p,q >> kd), however, it has

the common expression
1

Okr¢ = u(k2 4- p2 4- q2)" (4.4)

In the far-dissipation range of statistically stationary turbulence, the first two

terms balance in (2.13),
T(k) = 2vk2E(k). (4.5)

In this section, we omit the hat (^) because we are considering the continuous limit

(infinite size of the periodic cube). The summation in (2.15) of the energy transfer
function converts into the integral

T(k) = i ia, T(klp, q)dpdq, (4.6)

where the integration is carried out under the condition that the three wavenumbers

k, p, and q constitute a triangle.
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FIGUaE 8. The triad energy transfer function T(klp , q) for the quasi-normal closure

theory with E(k) cx (k/kd)-l"eexp[-4.9k/kd]. (a) k/kd = 2 and (b) k/kd = 3. The

solid and broken curves represent the positive and negative parts, respectively. The

contour levels are logarithmic, rather than linear, and are separated by a factor of
4.

By substituting (4.6) with (4.1)-(4.4) and (3.3) into (4.5) and taking the leading

terms in the limit of large wavenumber k >> kd, we obtain a = 3 (Tatsumi 1980).
This value of a is not consistent with the results of the numerical simulation as

mentioned in section 3. The reason for this discrepancy is not known at present.

As will be discussed in the next section, other values are consistent with the theory

if the relaxation time Okpq is suitably modified (see (5.1)). We therefore proceed

to examine the behavior of the triad energy transfer function expressed as (4.1) for
the spectrum (3.3) with a = -1.6.

In figure 8, we show the contours of T(klp , q) expressed by (4.1) with the spectrum
(3.3) with a = -1.6 and/_ = 4.9 for both k/kd = 2 and k/kd = 3. Contrary to

the simulation data (figure 4), we can see contour lines at very low levels clearly.
The same characteristics of T(klp , q) observed in figure 4 are also observed here.

That is, (i) there are strong dipoles at the corners of the boundary of the triangle

condition, (ii) T(klp , q) is positive where either p or q is less than k and negative

otherwise, (iii) the magnitude of T(klp , q) decreases rapidly as point (p,q) moves
away from the boundary p + q = k, and (iv) it decreases more rapidly as k/kd

increases. Moreover, the shape of the contours in figures 4 and 8 is very similar.

The agreement is better for positive contours than for negative ones.

The difference in the shape of the contours can be seen more clearly in figure

9, which is an enlargement of figure 8 near q << p _, k. As will be discussed in

the next subsection, the slight difference in the shape of contours seems to be the

main reason for the discrepancy in the behavior of T(kls ) between the numerical
simulation and the closure theory.

It should be mentioned here that the influence of the forcing term may not be
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FmURE 9. The trim energy transfer function T(klp, q) for the quasi-normM closure

theory with E(k) cx (k/kd)-_'eexp[-4.9k/k,]. (a) k/kd = 2 and (b) k/kd = 3. The
solid and broken curves represent the positive and negative parts, respectively. The

contour levels are logarithmic, rather than linear, and are separated by a factor of
4.

negligibly small. Since the fluid is forced at wavenumbers less than 3, the contours

at q/kd < 0.1 are directly affected by the forcing term.
So far, we have examined only the case of a = -1.6. In order to see the depen-

dence of T(klp, q) on the value of a, we plot in figure 10 the contours of T(klp, q) for

various values of a ranging from 3 to -2. It is seen that the domains of the positive

and negative parts are insensitive to the value of a, but the shape of the contours
other than the zero level changes depending on the value of a. For a large value of

a, the positive and negative peaks of T(klp, q) are far from the corners. They move
toward the corner as a decreases. For a > 0, the peaks are away from the corner,

but for a < 0, a positive and a negative peak merge into a dipole at the corner (see

(4.12)). As will be shown in the next subsection, the dominant interactions in the
energy transfer are local for a > 1 and nonlocal for a < 1.

$.I Scale Disparity of Energy Transfer

Let T(k[s)ds be the contribution to the energy transfer to Fourier modes at
wavenumber k due to triad interactions for which the scale disparity parameter lies

between s and s + ds. The contribution from all the triad interactions of scale

disparity less than s is then written as

f'T(kls')ds' = f / T(klp, q)dpdq. (4.7)
All

rntx_k,p,q)

The derivative of (4.7) gives the scale disparity of energy transfer

d/ /T(kls) = _ T(klp, q)dpdq. (4.8)
Ak

The integration of T(k[s) over all s gives the energy transfer T(k), i.e.

r(k) = r(kls)ds. (4.9)
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quasi-normal closure theory for E(k) (x (k/kd)"exp[-4.9k/kd], -2 < ,_ < 3
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The integral (4.7) is written explicitly for s _< 2 as (see figure 6)

[ak/o aklo /,

and for s > 2 as

$
T(kls')ds' = 2 dp dq + dp dq

a_12 -l, -l)k/, /,

+ dp dq+ dp dq T(klp, q)(4.1Ob)
ak /s kl(s-l) -k

Differentiating (4.10a) and (4.10b) with respect to s we obtain

T(kls) = _ / T(klp, k/s)dp+ k T(klsk, q)dq

+ pT(klp, p/ )dp

=2{k f( ' T(klp, k/s)dp+kf "j'_- ,-l)_/, ,-1)k

1 [,_/(,-1) }+ _ ak pT(kIP'p/s)dp

(s < 2) (4.11a)

T(klsk, q)dq

(s > 2) (4.11b)

By substituting the expression (4.1) for T(klp, q) from the quasi-normal closure
theory with the energy spectrum (3.3) into (4.11a) and (4.11b), we can calculate

T(kls ) explicitly. The scale disparity transfer function behaves differently depending
on the values of a and k/kd. In figure ll(a), we plot T(kls) for k/kd = 1, 2, and
3 with a = 3. The interaction is localized around s = 2. The peak of the scale

disparity parameter moves little as k/kd increases. In figure 11(b), we plot T(kls )

for k/kd = 1, 2, and 3 with a = -1.5. The interaction becomes more nonlocal as

k/kd increases, and the peak of the scale disparity parameter moves linearly with

k / kd for large k / kd.
In order to examine the wavenumber dependence of the transfer function, we

replot it in figure ll(c) against skd/k for k/kd = 2, 3, and c_ (see below for k/kd =

oo). The scale disparity of the energy transfer seems to approach a universal form

for large values of k/kd. The approach is faster for large values of s.
As demonstrated in figure 10, the triad energy transfer function T(klp, q) for

small c_ (see below (4.12) for the critical value) has a double peak at the corners

q << p _ k and p << q _ k. This peak becomes steeper for larger values of k/kd

because of the exponential decay of the energy spectrum. This enables us to make
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FIGURE 11. The scale disparity of energy transfer T(kls) in the quasi-normal

closure theory with E(k) (x (k/kd)%xp[-4.9k/kd]. (a) , = 3, (b,c) , = -1.5.

----, k/kd = 1; .... , k/kd = 2;-----, k/kd = 3; _, k/kd = _.

a local analysis around the corner to estimate the asymptotic behavior of T(kls )

for large values of k/kd. The triad energy transfer function (4.1) with the energy
spectrum (3.3) behaves around q << p _ k as

T(klp, q) = ( q-a(q2 _(p

(4.12)
The energy transfer function T(k) is calculated by integrating T(kIp, q) with respect

to p and q over thewhole range, When, < 1, the integral is localized at the corners

q << p _ k and p << q _ k so that the asymptotic expression (4.12) can be used.
The result is

fO _ /k+qT(k) = 2 T(klp, q)dp
Jk-q

(. - 2)(. - 1) e -ak/td (4.13)
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for -2 < a < 1,where F is the Gamma function. Note that the integral is localized

at the corners and converges only when -2 < _ < 1.

Substituting (4.12) into (4.11b), we obtain

A2kd ( k _°-I e -_t/td
T(kls) = 2v/_o+ 2 \_d/

x a-(_+2) (2a2(1 - a) - _e -l/a + 2a2(1 +a)e 2#') ,(4.14)

where kd

a = -_s. (4.15)

Note that we consider here the case k/kd :>>1 so that s :>> 1 for a finite value of a.

The asymptotic form (4.14) of T(kls ) for large values of k/kd is drawn for _ = -1.5

and/_ = 4.9 in figure ll(c).

5. Discussion

The triad interaction in the dissipation range has been investigated by analysis of

numerical turbulence data and the quasi-normal closure theory of turbulence. The

results of the numerical simulation suggest that the motion at the Kolmogorov dis-

sipation scale couples directly with the smaller scales and that the triad interaction
is nonlocal in scale, at least in the wavenumber range 0.1 < k/kd < 4 investigated

here. The closure theory, on the other hand, suggests that the locality of the triad

interaction depends crucially on the power a of an algebraic prefactor of the expo-

nential decay of the energy spectrum at large wavenumbers. It is local or nonlocal

for _ > 1 or a < 1, respectively.
In the EDQNM and related quasi-normal closure theories, the triad energy trans-

fer function is expressed by (4.1). The form of the relaxation time Okpq differs from

theory to theory but has the common asymptotic form (4.4) in the far-dissipation

range where a balance between energy transfer and dissipation requires a = 3 in-
stead of the value _ _ -1.6 found in the numerical simulation.

It is interesting, however, to note that if the relaxation time is assumed to be

independent of the wavenumber in the far dissipation range, say equal to the Kol-

mogorov time scale

Okvq o¢ _ = 1
Vkd2 , (5.1)

then any value of a (including a = -1.6) is compatible with the energy balance

equation (4.4). As shown below, however, this is not the case in the EDQNM theory.
In the EDQNM theory, the relaxation time takes the form

1

Okvq = v(k2 -k p2 -I-q2) + p(k) + p(p) -t- p(q)' (5.2)

where p(k) = A(f: r2E(r)dr) 1/2 is the eddy damping rate and ), is an adjustable

constant which may be related to the Kolmogorov constant CK as )_ = 0.154CK 3/2
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(Andr_ & Lesieur 1977). Note that _ = 0.37 for CK = 1.8. The first term in the

denominator in (5.2) represents viscous damping and the second the relaxation by

straining motions of comparable and larger scales. The relaxation time has the
following asymptotic forms for small and large wavenumbers for CK = 1.8:

2.3

Okpq = k2/3 + p_/3 + q213 (k,p,q << kd) (5.3a)

1

= u(k2 +p2 + q2) (k,p,q >> kd) (5.3b)

The integrals in (5.2) tend to the energy dissipation for large wavenumber,

e/2v = r2E(r)dr. (5.4)

The peak of the integrand lies around r = 0.15kd, and the majority of the integrand
is covered in the wavenumber domain r < 0.5kd (see Kida & Murakami 1987). The

two effects are comparable at wavenumber

k,p,q _ )tl/2 /21]4kd ,_ 0.5kd. (5.5)

Around these wavenumbers the relaxation time is written as

1 1
Okpq (5.6)

u(k2 + f + q2) + u(k2 + f + q2 + 0.78kd2)"

We may conclude from (5.3) and (5.6) that there is no region of constant 0kpq in
the EDQNM theory.

It is possible that the value of o_ ,_ -1.6 observed in wavenumber range 0.1 <

k/kd < 4 is simply a tangent and that it approaches 3 in the limit of large wavenum-
bers. If so, the transfer may be dominated there by local triad interactions.
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