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Isotropy of small scale turbulence

By R. A. Antonia 1 AND J. Kim 2

The degree to which local isotropy is satisfied has been examined using direct
numerical simulations for a fully developed channel flow. Attention is mainly given

to the high wavenumber part of vorticity and temperature derivative spectra. The

ratio of these spectra and their isotropic values depends on the particular quantity

considered, the departure from isotropy being more pronounced for the temperature
derivative than for the vorticity. When the Kolmogorov-normallzed wavenumber is

sufficiently large, isotropy is satisfied provided the (Kolmogorov-normalized) mean

strain rate is sufficiently small. This result appears to be independent of the quantity

considered and of the Reynolds number.

1. Introduction

The concept of local isotropy has been of central importance to the theory of
turbulence and continues to attract significant attention in turbulence, as can be

gleaned, for example, from the compendium of papers in the A. N. Kolmogorov
commemorative issue of the Proceedings of the Royal Society (1991). The concept

implies that the small scales become statistically independent from the large scales
or, perhaps more pertinently, from any orientation effects or bias introduced by
the mean shear. This implication and related questions, for example, "is local

isotropy achievable only at large Reynolds numbers?" or "do departures from local

isotropy persist irrespectively of the Reynolds number?", are issues which continue

to preoccupy, perhaps fascinate, turbulence researchers.
Before the previous questions can be adequately addressed, there is first the need

to decide how best to measure "local isotropy". This is not a straightforward task

given that there is a plethora of tests which can be applied (e.g. Monin and Yaglom,
1975; Mestayer, 1982) and that different tests may have different levels of sensitivity

(e.g. Antonia et aI., 1986). Not unrelated to these difficulties is the issue of whether
the word "local" is interpreted to signify "in physical space", as originally intended

by Kolmogorov (1941) or whether it is given a spectral interpretation. If the first of
these interpretations is adopted, the available evidence, which includes atmospheric

data at quite large turbulence Reynolds numbers, appears to point fairly unam-

biguously to a departure from local isotropy (e.g. Antonia et al., 1986; Sreenivasan,

1991). This departure appears to be especially emphasized in statistics, e.g. mean

squared values and skewnesses of spatial derivatives of the temperature fluctuation
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(e.g. Sreenivasan et al., 1979; Sreenivasan and Tavoularis, 1980). The second in-

terpretation allows the focus to be on high wavenumbers or small scales (e.g. Van
Atta, 1991; Antonia e_ al., 1986); with the caveat that there must be non-local

interactions between small and large wavenumbers (e.g. Domaradzky and Rogallo,

1991; Brasseur, 1991). This arguably provides a better framework for testing local
isotropy than seems possible under the first interpretation. It is worth underlin-

ing that while the practical applications which follow from the first interpretation

of the concept are well known, the spectral interpretation is not without practical

significance. For example, the measurement of spatial velocity and temperature

derivatives with parallel hot wires requires their separation to be selected appropri-

ately. This is not straightforward and the analysis (Wyngaard, 1969) which provides

a possible correction for the spectral attenuation of the derivative spectrum relies
on local isotropy.

Regardless of which interpretation is chosen, it is important to select turbulence

quantities which are representative of the small scale structure when testing for local

isotropy. In this context, velocity and temperature fluctuations could be less effec-
tive than their derivatives. Direct numerical simulations (DNS) can provide more

reliable data for spatial derivatives than measurements. DNS data in a turbulent

channel flow have been used (Antonia et al., 1991; Antonia and Kim, 1992) to test

for local isotropy using both the physical space and spectral interpretations of the
concept. The first paper (Antonia et al., 1991) showed that mean squared velocity

derivative values approximately satisfied isotropy only as the channel centerline is

approached, a result which appears consistent with Durbin and Speziale's (1991)

conclusion that the dissipation rate tensor cannot be isotropic when the mean strain

rate is not zero. The second paper (Antonia and Kim, 1992) focused mainly on the
high wavenumber part of velocity and pressure spectra; the results adequately sup-

ported local isotropy in a flow region characterized by relatively small mean strain

rates. There was no attempt, however, to quantify the dependence on the mean

strain rate. The present investigation extends the previous work in two important

ways. It focuses on quantities (the three spatial temperature derivatives and the
three components of the vorticity vector) which may have stronger contributions

from the small scale structure than simply velocity and scalar fluctuations. It also

attempts to relate the degree of local isotropy to the mean strain rate.

In this paper, ui, O, and wi denote the velocity, temperature, and vorticity fluc-

tuations, respectively, the subscript i (i= 1, 2, 3) denoting the streamwise (i = 1),

wall-normal (i = 2), and spanwise (i = 3) directions.

m w

2 Distributions of 02. and w_

Isotropy requires that the three components of 02 where 0 i -- O0/Ox,, and _
are equal. Figure 1 shows that this is approximately satisfied as the centerline of the

channel is approached. The presentation in Figure 1 clearly highlights the strong
anisotropy which exists in the wall region. Note that 0_ and w_ clearly dominate,2

near the wall. There__ is also reasonable__ similarity in the shapes of the__component

distributions of 0,2iand those of w_ except for the near-wall increase of w_, the mean
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FIGURE 1. Distributions across the channel of the mean square values of the

temperature derivatives and vorticity components. (a) 6"_,;(b)0., 2.

square longitudinal vorticity. The transport equation for 02.,,was first written by

Corrsin (1953) who compared it with the transport equation for w2; while the two

equations can be cast in similar forms, Corrsin noted that there are apparently

significant differences (due mainly to the solenoidal nature of wi, viz. V •wi - 0 or

tdi, i __ 0 and the lamellar nature of O,i, viz. V × O,i =- 0).

Figure 1 also underlines the significant Reynolds number dependence in the wall

region of almost all the quantities that are plotted. Apart from w_, which is virtually
unaffected, the remaining quantities are increased as h + increases.__In the sublayer,

the major increases are exhibited by w +2 (15%), w +2 (32%) and 0,+22 (92%). The

increases in w +2 and w +2 reflect the increased stretching of the streamwise and

spanwise vortices; speculatively, this stretching may increase the frequency (and

amplitude) of excursions of hot fluid away from the wall and cold fluid towards the
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+2
wall, thus accounting for the increase in 0,2 .

An effective method of assessing the departure from isotropy of 02. or w_ is to
examine invariant maps (Lumley and Newman, 1977; Lee and Reynolds, 1985) of
the anisotropy tensors corresponding to these quantities, the information displayed

on these maps being independent of the choice of co-ordinate axes. The temperature
dissipation anisotropy tensor which corresponds to 02. may be defined as

tt

t_ = o_0'_0''/_ 3,_ (1)
_0

where _0 = a_ is the average temperature dissipation (a is the thermal diffusiv-

ity). The second and third variants of t 0 are given by

1
II = -_t_iti_

1

llI= _tiitittti

(2)

(3)

and all the states that characterize tij are identifiable on a plot of -II vs III, as
shown in Figure 2a. Similarly, the vorticity anisotropy tensor may be defined as

wiw i 1
vii = °a_ - 5$ii, (4)

and its second and third invariants are given by expressions analogous to (2) and

(3). The AIM for vii was presented in Figure 7c of Antonia et aI. (1991). It is

reproduced in Figure 2b to allow comparison with the AIM (anisotropy invariant
map) of Figure 2a.

At the wall, the only component of _0 is a0,22 so that the top right cusp of

the AIM, with co-ordinates (2/27, 1/3), represents the one-component state of t O.
As x + increases through the sublayer, the data points lie very close to the upper

boundary of the AIM which represents the two-component state of tij (Figure 1

shows that 02 remains small by comparison to 022 and 02,1 ,3)- In the buffer region,
the invariants IIt and IIIt approach the left "axisymmetric" boundary (At - -1)

of the AIM. In the outer part of the channel, the trend is towards the isotropic state
(lit = III, = 0).

Figures 2a and 2b indicate a close similarity between the invariants of t 0 and vzj
in the buffer and outer regions of the channel. In particular, along the left axisym-

metric boundary, which Lee and Reynolds (1985) describe as disk-like turbulence,

two components are nearly equal (0,2 "_ 02-- ,3, w2 -_ w32) while the third (_',21or w_)
is somewhat smaller than the other two. There are, however, marked differences

between Figure 2a and Figure 2b in the near-wall region, reflecting the different

boundary conditions for tii and vO. At the wall, the one-component tij state cor-

responds to the two-component vii state. The rod-like behavior of vorticity (right

axisymmetric boundary in Figure 2b) appears to correspond to a two-component
state for the temperature dissipation.
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3 Spectra of wi and #,i

The comparison between the high wavenumber part of vorticity spectra and the

corresponding isotropic calculation is a useful way of assessing the degree of isotropy
of the small scale structure." Since vorticity is, like velocity, solenoidal (Wi,i ----

O, Ui,i -_-- 0), isotropic relations between two-point vorticity correlations are the
same as the corresponding relations between two-point velocity correlations. Using

Batchelor's (1953) notation,

Of (5)
g=f+2 Or

where g and jr are the lateral and longitudinal correlations respectively and r is

the magnitude of the separation between the two points, the Fourier transform of

(5) obviously applies to both velocity and vorticity fields. It is convenient here to
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consider spectra in terms of k3, the wavenumber in the spanwise direction. The

isotropic relations for either the vorticity or velocity spectra may be written as
follows

= = 4,.,. - (6)

0.,(k3) = = - k3 (7)

The spectra of wl, w_ and w2 are shown in Figure 3 for two flow locations (data for
h + = 392 only are presented). The asterisk denotes normalization by Kolmogorov

scales(length r/= v3/4_ -I/4 and velocity u_ = va/4-_1/4). At the channel centerline,

_b_t and _b_ are virtually identical at all k_, as required by the first equality in (6).
They are also in close agreement with the calculation given by the right side of (6).
By contrast to Figure 3a, the results at x + = 15 (Figure 3b) show that, except at

the crossing point, _b,0_is significantly different from _b_2. The latter distribution

seems to asymptote towards the isotropic calculation, Eq. (6), at sufficiently large

values of k_.
It is possible that the logarithmic scale on the ordinate of Figure 3 may mask

small departures from isotropy. To overcome this difficulty, the ratio of the DNS

spectral density to that obtained from Eq. (6) has been calculated at several x +

values and plotted using a linear scale in Figure 4. Note there is a significant region

of the channel for which the ratio may be assumed to be close to 1. In the case

of wl, this approximation has an uncertainty of about -t-20% when z + > 74. For

w2, the approximation is satisfied to about -t-5% for x + > 15. The sharp increase

in the ratio at the largest values of k_ is spurious and can be ignored. In order
to ascertain whether the spectral ratio used in Figure 4 is sensitive to departures

from isotropy, the ratio was computed, using DNS data for isotropic turbulence

(Rogallo, private communication). The results in Figure 5 [shown for _b,¢2 and
_b,,2; the isotropic calculations are based on 4_,01(kl) and _b,,,(kl )] suggest that the

sensitivity is adequate (better than +10%; the waviness in Figure 5 is a result of

fitting to the _01 and ul spectra and is therefore artificial).

The isotropic relation between the temperature derivative spectra is given by (e.g.

Van Atta, 1977; Browne et al., 1983)

= epo, = k-l  o.3(l )dk (8)
ka

The comparison between _b_, (k_) and the isotropic calculation, based on Eq. (8),
is shown in Figure 6. The'good agreement, almost independently of k_, at the

centerline (Figure 6a) contrasts with the total lack of agreement at x + = 15. The

ratio r_o,/(_o, )i,o, plotted in Figure 7, suggests that, in the wall region of the flow,

the anisotropy of the temperature derivative field is more pronounced than that of

the vorticity field (Figure 4). This increased anisotropy may be associated with the

mean temperature gradient T,2, where T is the mean temperature. For example,

T,2 appears explicitly in the transport equation for the skewness of 0,1. Sreenivasan
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FIGURE 3. Vorticity spectra at two locations in the flow (h + = 392). (a) x + = 392

(x2 - h); (b) x + = 15.

w

and Tavoularis (1980) noted that this skewness is non-zero only when U1,2 and T,2
are both non-zero.

4 Dependence on the mean strain rate

Figures 5 and 7 suggest that the departure from isotropy may depend on the mag-
nitude of the mean strain rate U1,2 (- S). It is fairly common to normalize S by a

time scale (q-'-i/2_) characteristic of the turbulence, e.g. Moin (1990) and Lee et aL

(1990). Durbin and Speziale (1991) showed that the dissipationw rate tensor deviates
from isotropy if Sq2/_ is not zero. A disadvantage of using Sq2/'_ is that it is zero at
the wall where S is largest. There are other possibilities for non-dimensionalizing

S. Uberoi (1957) used S/_,21/2, with u2,2 ]/2 representing a velocity gradient char-

acteristic of the turbulence, for characterizing the anisotropy. Another possibility is

to normalize S by the Kolmogorov time scale (v/'_)112; the ratio S/(_/u) 1/2 will be
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FIGURE 4. Wavenumber dependence of the ratio of the vorticity spectrum and

the corresponding isotropic spectrum at different locations in the flow (h + = 392).

Ca)_,; (b) ,,,2.

denoted by 5'*. Corrsin (1957,1958) argued that the necessary condition for local

isotropy to be a good approximation at a given wavenumber is that (u/_) 1/2, which

may be identified with a time scale characteristic of the transfer of energy to higher

wavenumbers, should be small compared with the inverse of the mean rate of strain,
viz.

<<_
or

S* << 1 (9)

The distribution of S* is shown in Figure 8 together with S/u_,2 ]12 and Sq-'_/2E (the

corresponding distributions at h+ = 180 are almost the same as those at h + = 400

in the wall region; at the wall S* is 2.6 at h + = 180 and 2.3 at h + = 400). Not
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the corresponding isotropic spectra for a direct numerical simulation of isotropic
turbulence.

unexpectedly, S* and S/U21,21/2 follow each other closely, the former being slightly

smaller than the latter in magnitude. S* or S/u2,---221/2is clearly better behaved than

S(q2/2"_), which increases from zero at the wall to a relatively large maximum near

x + = 10.

The ratios of vorticity or temperature derivative spectra and the corresponding

isotropic spectra are shown in Figure 9 in terms of S*, for values of k_ in the

range 0.1 to 0.7. One can identify a value of S*, S*i, say, for each of the three

quantities in Figure 9 below which the ratio can be assumed to be approximately

1 (independently of k_). The magnitude of S*i, is about 0.3 for wl while it is
almost 1 for w2. It is only 0.1 for 0,1; in this case, the departure from isotropy is
more evident than for vorticity, especially at smaller values of k_. It would appear

that while Corrsin's inequality (9) has general validity, significant relaxation of this

criterion is possible when the interest centers on specific quantities. For example,

it seems that S* < Smi n _- 0.2 may be suffÉcient for the small scale vorticity to be

isotropic.

A comment about the possible effect of Reynolds number seems $ propos here.

The evidence we have gathered here and in a previous paper (Antonia et al., 1991)

strongly suggests that provided S* _ S*i,, the magnitude of the Reynolds number
should have little effect on the degree of isotropy that can be achieved at sufficiently

large wavenumbers. The magnitude of the Reynolds number is, of course, important

in determining the extent of the flow region in which S* < S*,, is satisfied. This
can be illustrated by reference to the logarithmic region for which energy equilib-

rium (_ = -ul_-_S) is a reasonable approximation. At sufficiently high Reynolds

numbers, S _- U,./K (to is the von K£rm£n constant, U,- is the friction velocity),

-ulu2 _ U2 and S* _" (xx+) -1/2. For S* _ 0.2, this suggests that the region
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FIGURE 6. Temperature derivative spectra at two locations in the flow (h + = 392).
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x + > 60 should satisfy local isotropy; obviously, the physical extent of this region
should increase with Reynolds number.

Corrsin (1957,1958) argued that a necessary condition for local isotropy is given

by the inequality
1 S

- >> --_1/_ ' (10)
7/ u2

where the rightsidecan be identifiedwith a wavenumber, kp say,corresponding

to the turbulentenergy production. The presentdata suggest that in the region

where localisotropyisapproximatelysatisfied,k; < 0.1,suggestingthat (10),like

inequality(9),are unnecessarilyrestrictiveand may be relaxedsignificantly.

5 Conclusions

Invariantmaps of vorticityand temperature derivativeanisotropytensorsin a
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fully developed turbulent channel flow indicate a similar approach towards isotropy

as the channel centerline is approached. In the wall region, the nature of the

anisotropy is different for these two quantities.

For sufficiently large wavenumbers, vorticity and temperature derivative spectra

appear to satisfy isotropy provided the mean strain rates (suitably normalized) is

sufficiently small. As far as we can ascertain, this conclusion appears to be indepen-

dent of the Reynolds number. Using the Kolmogorov time scale to normalize the

strain rate, the value of S* at which the departure from isotropy is first observed
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Sl(- lv) l 2

FIGURE 9. Dependence on the Kolmogorov normalized strain rate of the ratio

of the vorticity or temperature derivative spectra and the corresponding isotropic

spectra for different values of the wavenumber (h + = 392). (a) wl; (b) ¢02; (c) 0,1.

depends on the quantity under consideration. This value appears to be apprecia-

bly larger for the vorticity than for the temperature derivative. For given values

of S* and of the Kolmogorov normalized wavenumber, the temperature derivative

spectrum exhibits a significantly larger degree of anisotropy than the vorticity spec-

trum. It is possible that the additional influence of the mean temperature gradient

is reflected in the stronger anisotropy of the temperature derivatives, but further

work would be needed to verify this possibility.
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