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Behavior of streamwise rib vortices

in a three-dimensional mixing layer
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The structure and behavior of a streamwise rib vortex in a direct numerical sim-

ulation of a time-developing three-dimensional incompressible plane mixing layer
is examined. Where the rib vortex is being stretched, the vorticity vector is pri-

marily directed in the vortex axial direction and the radial and azimuthal velocity
distribution is similar to that of a Burger's vortex. In the region where the vortex

stretching is negative, there is a change in the local topology of the vortex. The
axial flow is decelerated and a negative azimuthal component of vorticity is induced.
These features are characteristic of vortex breakdown. The temporal evolution of

the rib vortex is similar to the evolution of an axisymmetric vortex in the early

stages of vortex breakdown. The effect of vortex breakdown on other parts of the
flow is, however, not as significant as the interaction between the rib vortex and
other vortices.
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1. Introduction

In the main, the term vortex breakdown has been associated with large scale flows.

In aeronautics, vortices generated by swept leading edges and the trailing vortices

generated at wing tips are observed to undergo vortex breakdown. In such flows,
vortex breakdown is characterized by the sudden deceleration of the axial flow, with

an associated sudden expansion of the core. Downstream, the flow is unsteady and

seemingly disorganized. With the exception of a few idealized flows designed to

study vortex breakdown in isolation, our knowledge of vortex breakdown is based

solely on such large scale flows.
Recently, there have been suggestions that vortex breakdown occurs naturally

over a much wider range of flows and scales than has previously been expected.
One example is the breakdown of the side vortices associated with a jet in cross-flow

(Kelso 1991). Orszag (1991) has suggested that vortex breakdown may be present
in the results of computations of homogeneous isotropic turbulence reported by

She, Jackson and Orszag (1990). He observed that coherent structures in homoge-

neous isotroplc turbulence (which are tube-like vortical structures recently referred

to by the term 'worms') have characteristic flow features suggestive of vortex break-
down. He observed that the tangent of the helix angle (ratio of azimuthal to axial

component) of the velocity vector is larger than that of the vorticity vector. This

represents one of the necessary conditions for vortex breakdown developed by Brown
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FIGURE 1. Diagram of the structures in a plane mixing layer.

and Lopez (1990) on the basis of steady, axisymmetric swirling flow theory. Chen et

al. (1990) have also suggested that vortex breakdown may occur within the three-

dimensional plane mixing layer flow computed by Moser and Rogers (1992). It is
this latter suggestion that is the subject of investigation in this study.

The flow computed by Moser and Rogers (1992) is a three-dimensional, incom-

pressible plane mixing layer formed between two streams moving at differing veloc-

ities. In such a plane mixing layer, spanwise vortices, called 'rollers', are generated

by the Kelvin-Helmholtz instability of the layer. These rollers undergo 'pairing'
whereby neighboring rollers co-rotate and amalgamate. Three-dimensional insta-

bility of the mixing layer also gives rise to counter-rotating 'rib' vortices which exist

in the region between the rollers (the 'braid' region) and extend from the bottom

of one roller to the top of the next (Figure 1). The vorticity in the rib vortices

is predominantly perpendicular to that of the rollers. An observed change in the

character of the local topology along a rib vortex, from stable focus/stretching to

unstable focus/contracting, was taken by Chen et al. (1990) as evidence for vortex
breakdown. We wish to determine whether the phenomenon of vortex breakdown

is indeed responsible for the observed change in local topology.

The approach used in the present study to identify vortex breakdown is to project
flow field quantities in the vicinity of the rib vortex onto a locally cylindrical polar

co-ordinate system. The cylindrical polar co-ordinate system is constructed such

that the axial direction corresponds to the axis of the rib vortex. Local topology (ex-
plained in detail in section 2), axial velocity, azimuthal vorticity, and enstrophy are

all examined in this co-ordinate system. Comparisons are made with axisymmet-

ric vortex breakdown in confined swirling flows as computed by Brown and Lopez

(1990). Vortex-vortex interactions are also investigated to determine whether they
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or the vortex breakdown are responsible for the observed spiralling of the rib vortex

core.
The motivation behind the present research is twofold. Firstly, vortex breakdown

can make a significant contribution to mixing. If it occurs in a flow such as the plane

mixing layer, which is undergoing a transition to turbulence, mixing associated
with vortex breakdown may provide a mechanism for transition. Secondly, if vortex
breakdown can occur in a coherent structure in the mixing layer flow, it may also

be occurring in coherent structures in other flows, such as in the worms found in

homogenous isotropic turbulence.

2. Global and local classifications of flow field topologies

Complex flow fields can be interpreted by classifying their topology. This can
either be done globally or locally. In the global approach, developed by Perry

and Fairlie (1974) and extended by Chong, Perry, and Cantwell (1990), the critical

points of the flow field are identified. The critical points in a flow field are those

points where all three velocity components are simultaneously zero relative to a

global observer. A local Taylor series expansion of the velocity field with respect
to space co-ordinates is made at each of these critical points, and the invariants
of the resulting 3 × 3 Jacobian matrix, the velocity gradient tensor A, are used to

completely classify the topology of this critical point.
In the local approach, the co-ordinate system translates without rotation while

following the fluid particle. That is, each point in the flow field is considered to be

a critical point since the velocity of each point is zero relative to a local observer.

The topology of each point in the flow is then classified, as in the global approach,

by considering the local velocity gradient tensor at each point in the flow. Due to
the Galilean invariant nature of the velocity gradient tensor and hence any property

based on this tensor, the local topological classification of each fluid flow point is

independent of the observer. This local classification of the flow field was first used

by Chen et al. (1990) and is the approach used in this study.
The velocity gradient tensor can be decomposed into its symmetric and antisym-

metric parts, i.e.

c3u.i = Sij + Wij,
Aij = cgx---_

where
Oui

is the rate-of-strain tensor and

. Oui Ouj

wij = 0x,)/2'

is the rotation tensor. Aij, Sq and Wii are all tensors of second order.
For a second order tensor, A, where A1, A2, and ,_3 are the eigenvalues and el,

e2, and e3 are the eigenvectors, then

(A - ,_I)e = 0,



150 J. M. Lopez and C. J. Bulbeck

and the corresponding characteristic equation

det[A - hi] = 0,

may be written as

A 3 + PA 2 + QA + R = 0.

The invariants P, Q, and R are

P = -Sii,

Q = (p2 _ sijSji - wijwji)/2,

R = (_p3 + 3PQ - ,_iSjkSkl -- 3WijWitSki)/3.

For an incompressible flow as is being considered here, P = 0, and the topology of
the flow is completely classified by Q and R.

The characteristic equation A3 + QA + R = 0 can have (i) all real distinct roots,

(ii) all real roots with at least two equal, or (iii) one real root and a conjugate pair of

complex roots. The curve 27R 2 +4Q 3 = 0 separates the regions of real and complex

roots. Chong, Perry and Cantwell (1990) define regions where the velocity gradient

tensor has complex eigenvalues as vortex cores, i.e. regions where Q > -3(R/2)2/3
are vortical in nature. The eigenvalues of the velocity gradient tensor determine the

local kinematics of the flow, and these are determined by the invariants Q and R.
If Q > -3(R/2) 2/3, then a conjugate pair of complex eigenvalues result, and hence

the trajectories will be spiralling locally. Whether the spirals are stable or unstable

is determined by the sign of the real eigenvalue, which in turn is determined by the

sign of R. If R > 0, then the spiral is unstable, and to conserve mass, the local
topology is of the unstable focus/contractlng (UFC) type. For R < 0, it is of the

stable focus/stretching (SFS) type. For the degenerate case of R = 0, the trajectory

is a closed loop rather than a spiral. For Q < -3(R/2)2D, the local flow is strain

dominated, and for R < 0, the topology is of the stable node/saddle/saddle (SNSS)

type, and for R > 0, it is of the unstable node/saddle/saddle (UNSS) type.

3. Determination of the rib vortex axis

The following discussion centers on the flow case 'HIGH1P' of Moser and Rogers

(1992) in which the initial conditions of the calculation involved a high-strength
three-dimensional perturbation. The structure of the vortex was determined at

non-dimensional time t = 28.5, after a pairing of the main rollers had occurred.

Chen et al. (1990) have suggested that vortex breakdown may be occurring at this

time based on their observation of a subsequent change in the local topology along
the vortex core.

In order to describe the structure of the vortex, its associated velocity and vortic-
ity fields, a co-ordinate system that is peculiar to the vortex is required rather than

one using the co-ordinate system in which the governing equations are cast. A local

cylindrical polar co-ordinate system is chosen where the axial direction is tangent

to the axis of the vortex. A difficulty arises in defining the axis of the vortex. Here,
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FIGURE 2.
t = 28.5.

Location of the vortex axis projected onto x-y and x-z planes at time

a distinction is made between the 'centerline' and the 'axis' of the vortex. If the

modal decomposition of the azimuthal components of the vortex velocity and vor-

ticity fields are dominated by even modes, then the centerline and the axis coincide.
If, however, the odd modes dominate, then the centerline spirals around the vortex

axis.

There has been much controversy over what constitutes the centerline of a vor-

tex (e.g. Yates and Chapman 1992). In regions where the vortex is predominantly

axisymmetric, its centerline can be reasonably approximated by either the loci of
enstrophy local maxima, or a vortex line extending from a point of maximum en-

strophy in the vortex core. The vortex core is taken to be the region enclosed by
the maxima of the azimuthal component of velocity. The axis of the vortex has

been determined by both methods and the location of the axis projected onto x - y

and x - z planes are given for t = 28.5 in Figure 2. There is very little difference in

the determined axis from either method for x < 8.

The structure of the rib vortex at t = 28.5 can be described in terms of three

distinct regions. Region I extends from the mid-braid plane to the axial loca-
tion where the local topology changes from stable focus/stretching to unstable fo-

cus/contracting. The mid-braid plane is the z - y plane mid way between two
spanwise rollers (see Figure 1), and in the time-developing calculations of Moser

and Rogers (1992), this plane is a symmetry plane. Region II extends downstream

from the point of topology change. The structure of the vortex in regions I and II
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FIGURE 3. Spanwise Z, and vertical Y, locations of the vortex axis in terms of

distance along the axis at times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5.

is dominated by the axisymmetric azimuthal mode. The rib vortex then evolves to

a stage where it is no longer dominated by the axisymmetric mode. This region is
denoted as region III. Region III does not appear at the earlier times considered
since the centerline does not spiral about the axis at these times.

4. Temporal and spatial evolution of the streamwise rib vortex

The development of the rib vortex was investigated by analyzing the flow field

at three non-dimensional times, t = 22.3, t = 25.3, and t = 28.5 (where the first

pairing occurs at t = 23.4). At each time, the vortex axis was determined by the

techniques outlined in section 3. The vortex axes are shown in Figure 3. The

parameter s is the distance along the vortex axis from the mid-braid plane. Local

cylindrical polar co-ordinates were determined at each of the three times. At any

point on the vortex axis, the axial direction ax is defined as being tangent to the
vortex axis, positive downstream. The radial direction r is defined in terms of the

axial direction ax and the vertical direction y by r = ax x y. Figure 4 illustrates
the local cylindrical polar co-ordlnate system.

The distribution of azimuthal velocity across the vortex core at a streamwise

location downstream of the mid-braid plane but upstream of the topology change
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the vortex.

Local cylindrical polar co-ordinate system defined along the axis of

(s = 1.0) at time t = 28.5 is shown in Figure 5. The point s = 1.0 lies in region I.
Also shown is the azimuthal velocity for a Burger's vortex given by

r (1 - exp(-oT))
v0(r) = _ v_ '

where 7 = r2/2, F = 2.2 and a = 18. Both F and a have been fitted to the data from

the mixing layer calculation. Despite the highly three- dimensional nature of the
flowfield, in region I the azimuthal velocity of the rib vortex is nearly axisymmetric

and well described by the equation for a Burger's vortex.

Figure 6 shows the variation in the velocity gradient tensor invariants, Q and R,

along the vortex axis as well as the vortex stretching, wiSi.iw.i, at the three times
considered. The instantaneous exponential stretching rate for a vortex element is

given by
d

= _ log II_(t)ll,

where w is the vorticity vector. In the inviscid limit (Dresselhaus and Tabor 1991),
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FIGURE 5. Radial distribution of azimuthal velocity at axial location s = 1.0 and

azimuthal locations 8 = 0 and 8 = _r, denoted by o and compared with a Burger's
vortex azimuthal velocity distribution for F = 2.2 and oL= 18.

this may be expressed as

I,J

where _b is the unit vector in the direction of w. A related term, odiSijo3 j is referred

to as 'vortex stretching'. A vortex intensifies if it is being stretched, i.e. wiSijwj
is positive. The imposed axial strain will cause a decrease in the cross-sectional

area of the vortex, and to conserve angular momentum, the angular velocity, and

hence vorticity, will increase. There is a strong negative correlation between the

vortex stretching and the third invariant R, i.e. when one is positive, the other is

negative. Since the second invariant is positive in the vortex core region, positive

vortex stretching corresponds to a local topology of the stable focus/stretching type
and negative vortex stretching to the unstable focus/contracting type.

Figure 7 shows the radial variation of the local topology along the vortex axis at

0 = 0 and Ir at the three different times. The light regions correspond to a stable fo-

cus/stretching type topology and the dark regions to an unstable focus/contracting
type topology. Along the centerline, the local topology changes from stable fo-
cus/stretching to unstable focus/contracting, and this denotes the boundary be-

tween regions I and II. This boundary moves downstream at a non-dimensional

speed 0.37.

7
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FIGURE 6. Variation of the vortex stretching term, ¢oiSijwj, and the second and

third invariants of the velocity gradient tensor, Q and R, with distance along the

vortex axis s, at times (a) t = 22.3, (b) t = 25.3, and (c) t = 28.5.
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FIGURE 7. Local topology in the vortex core region of the streamwise rib vortex

at times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5.
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FIGURE 8. Axial velocity in the vortex core region of the streamwise rib vortex at

times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5.

Figure 8 shows contours of axial velocity. It may be seen that deceleration of the

axial flow is associated with the topology change. Furthermore, the axial velocity

in the region of the topology change is approximately equal to, or perhaps a little

greater than, the speed at which the boundary between regions I and II moves

downstream, indicating that the boundary is advected downstream by the local

velocity.
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FIGURE 9. Azimuthal vorticity in the vortex core region of the streamwise rib

vortex at times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5.
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FIGURE 10. Enstrophy in the vortex core region of the streamwise rib vortex at

times (a) t = 22.3, (b) t = 25.3 and (c) t = 28.5.

In Figure 9, the distribution of the azimuthal component of vorticity is shown.

In region I, for all three times, the azimuthal vorticity is nearly zero. The vorticity
vector is almost entirely directed in the axial direction. Just upstream of region

II, a negative component of azimuthal vorticity appears. It has a local extremum

off the axis. This negative component of azimuthal vorticity off the axis induces
a retardation of the axial flow. This scenario is entirely consistent with the early
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FIGURE 11. Axial distribution of the tangents of the helix angles of velocity and

vorticity at the radius of maximum azimuthal velocity at time t = 28.5.

stages in the evolution of an axisymmetric vortex beginning to undergo vortex
breakdown.

Figure 10 shows contours of enstrophy. The maximum enstrophy is at the center

of the vortex and has diminished to about half its maximum value at the topoi-

ogy change. Where the azimuthal vorticity is at its maximum, the enstrophy has

decreased to approximately one fifth of its maximum value.

The ratio of the tangents of the helix angles of the velocity and vorticity vectors

in region I at the edge of the vortex core is much larger than one (see Figure
11). This indicates that the streamwise rib vortex, which is nearly axisymmetric

in region I, has a structure which satisfies a necessary condition for an inviscid,

axisymmetric vortex to undergo vortex breakdown. The primarily axially directed

vorticity vector is locally turned into the negative azimuthal direction, and the

corresponding induced velocity results in a deceleration of the axial flow as detailed
in Brown and Lopez (1990). The temporal and spatial developments, particularly

of azimuthal vorticity, are similar to those found by Brown and Lopez (1990) for

an isolated axisymmetric vortex in the early stages of vortex breakdown. Contours

of the azimuthal vorticity from that study are presented in Figure 12. Initially, the
azimuthal vorticity close to the axis is positive with little axial variation. The inflow

profile is time independent. Slow radial diffusion, due to the finite Reynolds number

of this flow, results in a slight broadening of the vortex core and a slight slowing of
the axial flow. Off the axis, the initially axially directed vorticity vector has been
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FIGURE 12. Azimuthal vorticity contours for an isolated axisymmetric vortex (re-

produced from Brown and Lopez 1990).

turned into the negative azimuthal direction. This is enhanced locally by the non-
linear feed-back mechanism detailed in Brown and Lopez (1990). By time t = 80, a

local concentration of negative azimuthal vorticity has developed. This is advected

downstream by the mean axial flow at the same time as it is growing in intensity

through the non-linear process. By time t = 240, the negative azimuthal vorticity

is large enough to induce a reversed axial flow and begins to propagate upstream
under its own induced velocity. The major difference between the evolution of the

rib vortex and the isolated axisymmetric vortex is the lack of a significant positive

azimuthal component of vorticity in the rib vortex. Nevertheless, in both cases, the

ratio of helix angles is greater than one, the region of negative azimuthal vorticity

initially travels downstream, and there is an associated deceleration of the axial

flow, underlining the similarities between the two cases.

5. Vortex-vortex interactions in region III

It is clear from the discussion in the previous section that the rib vortex, at the

times considered, is in the early stages of axisymmetric vortex breakdown. However,

the most striking aspect of the structural development of the rib vortex is not



160 J. M. Lopez and C. J. Bulbeck

(_)

(b)

(c)

FIGURE 13. Counter rotating streamwise rib vortices visualized by an enstrophy

isosurface of level 3.2: (a) perspective view looking downstream, (b) view from top,

and (c) view looking Ul)strcam.
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directly associated with the vortex breakdown process occurring in regions I and II.

At the latest time considered, t = 28.5, the vortex has developed a very distinctive

spiral in region III. Figure 13 gives three views of the structure as visualized by an
isosurface of the enstrophy. Shown are a pair of counter rotating rib vortices and

some concentrated vortical flow between them.

Due to the spanwise periodicity in the flow, the rib vortices are present as an

array of vortices with alternating senses of rotation across the mixing layer. This

arrangement results in their drawing vortical fluid from within the spanwise roller

region to between the rib vortices, whose induced velocity in the plane between them
is directed vertically outward from the spanwise roller region. Bernal and Roshko

(1986) have demonstrated this effect visually using spanwise laser-light sheets illu-

minating fluorescent dye which has been introduced into the flow. The observed
mushroom-like structures indicate the locations of the rib vortices.

At time t = 22.3, the rib vortex pairs have not yet drawn much vortical fluid out

between them. By t = 25.3, the vortical flow between the rib vortex pair has begun

to collapse into a vortex loop, following the scenario depicted by Corcos (1988). The
enstrophy associated with this vortex loop is diffuse and of elliptic cross section.

By t = 28.5, the vortex loop has been stretched by the induced velocity from the
streamwise rib vortex pair. In the neighborhood of the rib pair, the vortex loop
has been stretched and intensified into a vortex pair, which is connected by a loop.

Three different views of these vortices are given in Figure 14, where vortex lines

passing through the center of the vortices have been used as well as an isosurface of

enstrophy. These figures clearly show the spiralling of the rib vortex pair. Note that
the sense of the spiral is opposite to that of the sense of rotation of the vortex. The

spiralling of the rib vortex pair occurs at the axial location closest to the intensified

vortex loop, suggesting that the spiralling is due to a vortex-vortex interaction
between the rib vortex and a leg of the vortex loop.

The ratio of enstrophy in the rib vortices to that in the spanwise rollers needed

for the rib vortices to draw up vortical flow and intensify it by vortex stretching

into a counter-rotating pair between a pair of streamwise rib vortices remains to be

determined.

6. Conclusions

From this study of the streamwise rib vortices in a three- dimensional plane mix-

ing layer, it is evident that these vortices evolve from an essentially axisymmetric

state, well-described as a Burger's vortex. The vorticity vector, initially aligned
with the axial direction, is susceptible to being turned into the negative azimuthal

direction by the swirling flow. Brown and Lopez (1990) have shown that this in-

viscid process is possible when the tangent of the helix angle of the velocity vector

is larger than that of the vorticity vector, as is the case for the rib vortices investi-

gated. This structure is typical of the rib vortex downstream of the mid-braid plane

and upstream of the topology change. Evidence has been found that it begins to

undergo vortex breakdown. This is indicated by the change in the local topology,
the development of a negative azimuthal component of vorticity, a deceleration of
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(a)

(b)

(c)

FIGURE 14. Counter rotating streamwise rib vortex pair and intensified vortex

loop visualized by an enstrophy isosurface of level 3.2 and vortex lines: (a) view

looking upstream, (b) spanwise view, and (c) top view.
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the axial flow along the vortex axis, and a departure from axial symmetry down-

stream of the topology change. This provides a natural division of the structure
of the rib vortex into two distinct regions on the vortex axis: where the topology

is stable focus/stretching and where it is unstable focus/contracting. At the later
times considered, there is a third structurally distinct region downstream of the

two described above. In this region, the spiralling of the vortex core is due to a
vortex-vortex interaction between the streamwise rib vortex and the vortical flow

in the main spanwise roller region which has been drawn up and stretched by two

counter- rotating adjacent rib vortices.

Although vortex breakdown is beginning to take place at the times considered,

it does not appear to be having much effect on the rest of the flow. There is no
sudden core expansion, recirculation zone, or intense mixing, phenomena normally

associated with large-scale vortex breakdown flows. Certainly the vortex-vortex
interaction dominates the ftowfield in region III. However, vortex breakdown in

small-scale flows may play a role in defining a length scale for vortical structures.

In the rib vortex, the region in which the enstrophy is largest compared with the

mean flow is bounded by the topology change, a change which can be attributed
to vortex breakdown in the rib vortex. In small scale flows, viscous dissipation and

interactions with other similar structures have previously been regarded as the two

mechanisms whereby a finite length is imposed on a vortex. Vortex breakdown,

essentially an inviscid phenomenon, should be considered the third.

It would be interesting to follow the evolution of this flow further in time to
determine whether the vortex breakdown develops further into a well defined recir-

culation zone or if a further pairing of the main rollers occurs before this eventuates.
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