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Rapid distortion analysis and direct
simulation of compressible homogeneous

turbulence at finite Mach number

By C. Cambon, I G. N. Coleman 2 AND N. N. Mansour a

The effect of rapid mean compression on compressible turbulence at a range of
turbulent Mach numbers is investigated. Rapid distortion theory (RDT) and direct

numerical simulation results for the case of axial (one-dimensional) compression are

used to illustrate the existence of two distinct rapid compression regimes. These

regimes are set by the relationships between the timescales of the mean distortion,
the turbulence, and the speed of sound. A general RDT formulation is developed

and is proposed as a means of improving turbulence models for compressible flows.

1. Introduction

This paper focuses upon the behavior of homogeneous compressible turbulence
under the influence of rapid axial (one-dimensional) mean compression. The mo-
tivation for this study is a need to cast light upon the physics of compressible

turbulent flows and to improve compressible turbulence models. Our approach is
to use both direct numerical simulations (DNS) and rapid distortion theory (RDT).

The RDT developed in this paper is for general (those that preserve homogeneity)
mean deformations; the resulting insight is then used to suggest improvements to

compressible turbulence models that are applied to rapidly compressed flows.
Earlier RDT studies of homogeneous compressible turbulence have been limited

to either isotropic compressions (Blaisdell 1992, private communication) or the van-

ishing turbulent Mach number limit (Durbin & Zeman 1992, hereafter referred to

as DZ); the present investigation, therefore, attempts a more general treatment in
that non-isotropic compressions and finite Mach numbers are considered. Some of
our main conclusions confirm and extend those found in the recent study of shock-

turbulence interactions by Jacquin & Cambon (1992).

An overview of our findings follows. The RDT analysis predicts that the crucial

parameter for turbulence subjected to rapid compression is the ratio of the mean
deformation rate, D, to the inverse sonic timescale L/a, where L is a turbulent

lengthscale and a is the sound speed. This parameter, DL/a, hereinafter denoted
as Am (after DZ), is equivalent to the product of the inverse of the turbulent
timescale, the deformation rate, and the turbulent Mach number, Mr; it defines for

the dilatational part of the velocity field two distinct limits: the "pseudo-acoustical"
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(nearly solenoidal) regime given by Am << 1 (that studied by DZ) and the so-called
"pressure-released" regime with Am >> 1. The term "pressure-released" is chosen

because when Am is large, the sonic and turbulent timescates are both much larger
than D -1 and, therefore, correlations involving the fluctuating pressure and velocity

fields are negligible during a rapid distortion. The behavior of the solenoidal velocity
field, according to the RDT analysis, is unaffected by the dilatational field when the

mean flow is irrotational, and is thus independent of Am for axial compressions. Its

history is, therefore, identical to that predicted for compression of purely solenoidal

turbulence. In the following, we confirm these RDT predictions by comparison with
DNS results.

The DNS results also show that for moderate values of Am, all the double-velocity
correlations involving the dilatational part of the turbulent velocity field remain
weak with respect to the pure-solenoidal correlations and are in this sense similar

to the pure solenoidal case, even for moderate compressibility. Only the Am >> 1
case is characterized by a strong amplification of the dilatational correlations.

The moderate Am results are at first glance in conflict with recent studies of

axially compressed turbulence (e.g., DZ, Zeman & Coleman 1992) which find un-

expectedly large pressure-dilatation correlations in the nearly solenoidal flow. This
led us to investigate the behavior of the pressure field, which has two roles for a

rapid compression. On one hand, it modifies the production term in the turbulent

kinetic energy equation by changing the Reynolds stress anisotropy through the
classic pressure-strain rate correlation (via II11 for an axial compression in the xl

direction). On the other hand, the pressure is directly involved in the kinetic energy
equation through the pressure-dilatation term, II = IIii/2. The magnitude of II11
is found to be larger than that of II in all cases considered in this paper for a wide

range of Mach numbers and large (but finite) compression speeds.

Both the pressure variance and pressure-dilatation correlation from the DNS are

found to increase with Mach number (and, therefore, with Am at a fixed mean

distortion-to-turbulent timescale ratio) with respect to their initial values. How-

ever, when II is compared to the production term in the turbulent kinetic energy

transport equation, it is much smaller and has, in fact, less relative importance
with increasing Mr. This reduced relative importance of the pressure field with

increasing compressibility is a key result of this paper and is the basis of much of

what follows. Between the Am ---*0 and Am ---* o¢ extremes (where the pressure-
dilatation correlation is identically zero), 1I must reach a maximum; from the DNS
results, it appears that this maximum occurs near the Am ---, 0 limit at a small but
finite value.

In the next section, the RDT analysis is developed for compressible homogeneous

turbulence; in §3, the theory is applied to the case of axial compression, and sep-
arate analytic expressions for the relevant dilatational and solenoidal correlations

for both the Am << 1 and Am >> 1 extremes are presented and compared to DNS

results. The findings suggest that it would be appropriate for turbulence models

to "interpolate" between the two extremes in order to accurately capture the Mt

dependence during a rapid axial compression. We propose two methods for doing so
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in §4, which deals with the role of, and closures for, the pressure-strain rate correla-
tion. Section 5 considers the implications of this study for isotropically compressed

and sheared flows, and §6 contains a recap of the main results and our conclusions.

2. A rapid distortion analysis for compressible homogeneous turbulence

ILl. General considerations

Blaisdell et al. (1991, hereafter referred to as BMR) observed that the "intrin-

sic compressibility" (the non-zero divergence) of the turbulent field often tends to
reduce the amplification of turbulent kinetic energy produced by a mean veloc-

ity gradient, such as a bulk compression or mean shear, with respect to the pure
solenoidal case. This effect depends on at least three different timescales and on

the initial turbulent field. These are the mean distortion timescale,

rD- = (U,,iU,,i )l /2 (1)

(where Uid is the mean velocity gradient), the "turbulent decay" or "turn-over"

time,
vt -1 = q/L (2)

(where q2/2 is the turbulent kinetic energy and L is a lengthscale of the energy

containing eddies), and the timescale linked to the sonic speed,

r_ -1 = a/L. (3)

The compression speed, r = rdrD, is the only relevant parameter for model-

ing homogeneous incompressible turbulence (at least for large Reynolds number).
However, when intrinsic compressibility is considered, the ratio of the two latter

timescales, which amounts to a turbulent Mach number Mt = v,/vt, must also be
accounted for. The magnitude of the reduction of the kinetic energy amplification

mentioned above is, therefore, not necessarily universal, given the multi-timescale

and initial-value nature of the problem. In fact, RDT studies of inhomogeneous

flows even go so far as to predict an increase with Mt of the kinetic energy amplifi-

cation for turbulence under rapid (but finite) compression; these studies by Debi_ve

et al. (1982, hereafter referred to as DGG) and Jacquin & Cambon (1992) are dis-
cussed in a following subsection, where the general RDT equations are presented
and the reasons for the apparent growth rate versus Mt discrepancy are given.

This analysis is based on an extended Craya-Herring decomposition (Cambon 1982,

1990; Cambon et al. 1985), which is shown to facilitate a separate investigation of
the solenoidal and dilatational histories and provides a useful comparison to other

approaches (e.g., BMR and DZ).
Some of the earlier RDT studies have apparently over-estimated the role of the

pressure-dilatation term, attempting to force an increased damping due to com-

pressibility of the kinetic energy growth rate. We hope to clarify the situation here
by separately considering various terms in one-point closure equations and thus use
RDT as a tool for improving a model's representation of those terms. While the
RDT is not a model in and of itself, by improving the accuracy of crucial terms, we

expect that it will in turn also improve the overall accuracy of the model.
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_.IL Definitiona and background

To investigate the influence of the mean flow upon the turbulence, it is conve-
nient to use a coordinate system xi that deforms with the mean deformation. We

accordingly define the Lagrangian displacement tensor Fij (Eringen 1967) via

Oxi _ Ozi

dx, = --_-dt + -_-_jdXj = Uidt + FijdXj, (4)

where xi(X, t) is the position at time t of a fluid particle moving with the mean flow,

which has the position Xi at the initial time t = 0. Representing the substantial
time derivative by a superimposed dot, one has

where

Pii = Oki Oki Ozt
O'--'_i = Ox----_tOX_ = Ui'tFo with F/j(X, t = 0, 0) = 6_j (5a)

• u o_()
( ) = ( )" + ' oz] (sb)

is the substantial derivative; we shall also have occasion to use the symbol D( )/Dt
to denote the substantial derivative. Unless stated otherwise, the dependent vari-

ables are assumed to be decomposed into Reynolds averaged and fluctuating com-

ponents, as Ui + ui, where capital letters, overbars, and angle-brackets are all used
interchangeably to denote Reynolds- (ensemble) averaged quantities, and either low-

ercase or primed variables are used to denote fluctuating quantities. Note that F

is a function of the stationary coordinate X, the time t, and is parameterized by
the time (in units of t) at which the tensor is orthonormal (hence the third argu-

ment in (5a)). For flows under mean compression, the determinant of F has special
significance since it is equal to the volumetric ratio J.

When the mean velocity field is irrotational, the analyses proposed (over a hun-

dred years ago!) by Cauchy, Weber, or Kelvin for the total (mean plus fluctuating)

vorticity can be used to give solutions for the fluctuating vorticity (wi = eijkuk,5)
and velocity fields:

t) = F,AX, t, 0) i(x, 0) (6)

u,(x,t) = F_,l(X,t,O)u)(X,O) + ¢,i. (7)

These solutions, which ultimately derive from the linearized Euler equations, remain

approximately valid for moderately inhomogeneous flows (recall the spatial depen-
dence of F). Eq. (6) is the classic solution of the linearized Helmholtz equation when
the mean vorticity-fluctuating velocity term is zero (that is, for an irrotational mean

flow). When this term is not zero, simple solutions in physical space are not possi-

ble. Eq. (7) (also valid only for irrotational mean flows), an expression which has

been extensively used by Goldstein (1978), contains the scalar potential ¢, which
is directly connected to the fluctuating pressure and can be calculated once certain

assumptions are made (e.g., that the fluctuating velocity field is solenoidal or that

h
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the dilatational field is nearly acoustic). The term _b is not the scalar potential

arising from the Helmholtz decomposition (which we will denote _o in the following)
"F- 1 ,,because the *ji term in (7) contains contributions from both the solenoidal and

dilatational velocity field.
DGG's RDT solution of the Lagrangian transport equation for the Reynolds stress

tensor for the case of shock wave-turbulence interaction reads

-, + )(,,,,,,,,,)(t-)F:i,(t+,t-), (S)+) = (t ,t-

where t- and t + refer to positions upstream and downstream of the shock, respec-

tively, following a mean streamline through the shock. The shock is considered as a

pure discontinuity of the mean streamwise velocity. In other words, it is an exter-
nai streamwise compression of infinite rate, and the associated tensor F does not

depend on the history of the velocity gradient, but is completely characterized by
the mean density jump or mean volumetric ratio J = Det(F), with Fij -- J6il_jl

through the shock. The ratio J is linked to the upstream Mach number M0 via

y=2+( 7 - 1)M02 (9)
('y + 1)M02

where 7 is the ratio of specific heats, and use has been made of the classic Rankine-

Hugoniot relations for the mean (frozen) field. A comparison of equations (7) and

(8) shows that this approach ignores the effect of pressure (which is mediated by ¢ in

(7)); the response of the pressure fluctuations with a finite characteristic time even
for the so-called "rapid" term is neglected compared to an infinite compression

rate). Another idealization in the analysis of DGG, also pointed out by Lee et
al. (1992), is that the distortion (curvature and unsteadiness) of the shock surface

by the impinging turbulent structure is ignored. The latter issue, initially addressed
by Ribner(1953), is not considered by the present paper. We investigate instead
the role of the pressure field in a simpler homogeneous framework by explicitly

tt "

defining and formalizing the range of validity of the pressure released regime that

is implicit in the Debi_ve analysis. This paper has much in common with the recent

analysis of the shock wave flow performed by Jacquin _: Cambon (1992), in which

the pressure-released limit was first explicitly advocated.

Equation (7) shows that an irrotational deformation of a purely solenoidal velocity

field is given by

ui(x, t) = u,'-(x, t) = (Ffi' (X, t, 0)uj(X, 0))', (10)

where to maintain ui,i = 0 we have,

¢,i = - (Ffi'(X,t,O)uj(X,O)) d (11)

(where the s and d superscripts (and later subscripts) are understood to respectively
refer to the solenoidal and dilatational contributions). The latter equation is an

integral form of the Poisson equation for the fluctuating pressure,

V2¢ = -(F;Xuj) ,. (12)
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For the solenoidal case, the pressure "kills off" the dilatational contribution, re-

sulting in the lower limit of the kinetic energy growth rate caused by the mean

compression. Conversely, in the pressure-released regime, the u d contribution in
Eq. (11) is no longer "removed" by the pressure, producing an extra contribution

to the solenoidal energy, which is unaffected by the dilatation field and again grows
in accordance with Eq. (10); in other words, the compressibility leads to an increase
in the kinetic energy growth rate.

From this point hence, the RDT analysis will be continued under the assumption

of flow homogeneity and make use of a spectral formalism; the Fourier wave-space

proves to be invaluable for obtaining tractable RDT solutions. Beginning with
Eq. (6), we shall use the Fourier space to extract the solenoidal velocity from the

vorticity, as was done by Batchelor & Proudman (1954). Instead of solving a Poisson

equation in physical space, we use a simple geometric wave-space projection to
invoke the Helmholtz decomposition.

_.3. The mean flow

Before turning to the turbulent fields, however, we restrict the types of mean

deformations that are admitted by this analysis to those that preserve the homo-

geneity of the flow. In incompressible turbulence, the constraint of maintaining
homogeneous statistical properties leads to two conditions: the mean velocity gra-
dient Ui,i must be uniform in space, and the mean flow must be a particular solution
of the Navier-Stokes equations. The last condition amounts to an irrotational mean
acceleration,

or that

is symmetric, where

(13)

= (fY ,i+ u,,,u,,i)xj = P i(t,o)x,. (14)

Compressibility introduces a new condition. The linearization of the momentum

equation displays two acceleration terms. The first one is the product of mean den-
sity and the fluctuating acceleration and leads to the same constraint mentioned

above. The second term is the product of density fluctuation p' by the mean acceler-

ation r and is typically nonhomogeneous (as can be seen by the spatial dependence

in (14)). This term can be removed, and homogeneity preserved, by neglecting the

density fluctuation with respect to the mean density. Such an approximation (which
is consistent with "compressed" turbulence at low Mach number) will be not used
in this paper. Instead, we admit only mean flows without convective acceleration.

From eqs. (5) and (14) we see that this requires

F,_(t, O) = _,_ + Aot , (15a)

(15b)

or

Ui,i(t)= AitFt_'= Air(,5,i + Atjt)-'.
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Eq. (15) is valid for an arbitrary constant (not necessarily symmetric) matrix A for
arbitrary times, provided that the determinant of F, J, remains positive. Special

cases of (15) have been given previously, for example, for pure strain and shear

(BMR). A good approximation for the mean pressure P as a function of J can be
derived from the isentropic relations. (While the isentropic relations are not strictly

valid when Mt is nonzero, DNS of finite Mt turbulence under mean compression
have shown that the deviation from the isentropic prediction is relatively small:

for example, in Case C1DV discussed below - a rapid axial compression for initial

.A/It = 0.3 - the mean pressure at J = _(0)/_ = 1/5 is within 6 percent of the

isentropic value.)

_.4. The fluctuating flow

The linearized Euler equations (with pTi = 0) in the deforming coordinate system

are P,i
_ __ (16)

i_i+Ui,juj = __

with _ = _(t) = -_(O)/J(t) (recall that the dot superscript denotes a substantial
derivative, see Eq. (5)). The linearized equations for the fluctuating pressure p and

entropy s read (see DZ)

_ = --Ui,i

h = O, (17)

where P = _RT. An investigation of the coupling between solenoidal and di-
latational contributions to the fluctuating velocity field is conveniently done by

transforming the variables in (the deformed coordinate) x into (three-dimensional)

Fourier space, which we indicate either by a caret symbol or the notation "_'( )."
The classic Helmholtz decomposition is given first in physical and then in spectral

space as follows:
vi(x, t) = _it¢,,i + _,_ (18)

kikj kik.i^ " (19)
Vi(k,t) = (,Sij - k----T-)_.i+ k---Tvj,

for any vector field v. The two terms on the right-hand sides correspond to v s
and v d, which are defined in physical space by the vector ¢i and the scalar po-

tential _. The corresponding spectral space decomposition into _" and _d is given

by the projection operators in (19), which separate the (single-component) dilata-
tional contribution parallel to the wavevector k from the (two-component) solenoidal

contribution in the plane normal to k. Equations (16) and (17) are easily Fourier-

transformed; only the advection term requires particular caution:

ui= Y(u,,, + u,,,x,ui,i),

SO
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The first and the last terms in the right-hand side of the latter equation are collec-

tively treated as a derivative along characteristic curves, which plays the same role
as the mean trajectories in physical space. This derivative will, therefore, also be
represented by a superimposed dot so that

]ci+ U£ikj = 0, with solution k_ = F_I(t,O)Kj. (20)

The analogy with physical space is complete, since

ki - Ui,jzj = 0, with solution zi = Fii(t, O)Xj. (21)

The initial k value, K, plays the same role in wave space as the Lagrangian coordi-

nate X does in physical space. Pure kinematic distortion by advection in physical
and spectral space are linked by a wave conservation law

exp(ikjxj) = exp(iKjXj),

where i2 = -1. Accordingly, one has

(22)

and equation (16) becomes

A

_i - Ut,_i + Ui,ifi'j= -iki-. (23)
P

In the latter equation, the projection operators in (19) can be used to separate

solenoidal and dilatational contributions. We prefer to use a slightly different

method by specifying a special frame for the solenoidal mode, according to an

extended Craya-Herring decomposition (Cambon 1990). An orthonormal frame of
reference (e(l),e(2),e O)) attached to the wavevector is used with the last vector

being parallel to k (el 3) = kjk, where k is the wavevector modulus). In this local
frame, the Fourier transform of the velocity fluctuation reads

_i(k,t) = _^(1)(k,t)e_')(k) + _(2)(k,t)e}2)(k) + _(3)(k, t)el3)(k). (24)

The two first terms give exactly ^s and the latter gives ui,ui, ^d with a minimal number

of components and conservation of all the tensorial properties (invariants) due to the

orthonormal properties of the local frame. Classic descriptions in terms of vorticity
and divergence are easily recovered as

= ikfC,)el')_ (25a)

and

d'- _i,, = ik_ 3). (25b)
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In order to remove the uncertainty regarding the azimuthal position of the solenoidal

coordinates with respect to e (3), the (e 0), e (2)) plane is defined by choosing a fixed

spherical coordinate polar axis n, after Herring (1974). (Craya(1958) implicitly
used ni = 6i3 and addressed only covariance matrices of the velocity field and thus

limited the generality of his approach.) We set

eO ) _ k x n and e (2) = e (3) X e (1). (26)

]k x n I

Striking simplifications can be made by choosing the polar axis according to the

symmetries of the mean flow (if any) or the statistical properties of the fluctuating
field, retaining the full generality of the method. The equations in the local frame
can be made nearly independent of the choice of n by using the "helical modes"

(e_2) -ie_ 1), el 2) + iel 2)) (which are also eigenmodes of the plane rotation matrix
around k and of the "curl" operator) as the basis set (see Greenspan 1968, Cambon

& Jacquin 1989, Waleffe 1992). Substituting (24) into (23) leads to the linear system

of equations for the three components of ui in the local Craya-Herring frame, with:

_(_) ut::")+ m_(_) + ,-o,3_3)= oqo - (27)

_.(3) v_,_:_)+ m_(_) + m3_¢ _)+ ik_ = 0. (28)
q0 -

Greek indices (indicating solenoidal space) take only the value 1 or 2, whereas the
Latin indices range from 1 to 3 (and as in physical space, the Einstein summation

convention is assumed). Calculation of the matrix mij is straightforward; remem-

bering to account for the rotation due to the time derivative of the local frame at

fixed K using eqs. (20) and (26), the elements are

(29a)

(_).,(3) ._)_3) -<_):u-.-ui,,),_3),
ma3 = ei Ui,jej -- e i e i = c i ( t,j

(3)., (0) .(3) (or) _ (3)r, e(or)
m3a = e i Ui,jej -- e i e i = _e i ui,j j ,

(3)., (3)
m33 = e i Ui,jej •

(29b)

(29c)

(29d)

_(2)., O)
The rotation term RE is c_ ui,jej if the polar axis is chosen as one of the eigen-
vectors of the mean gradient matrix; its general expression is available in Cambon

et al. (1985). The last equation relevant to our study is that which governs the

pressure:

() ()--- v,,, _ -g= -,k,:(). (30)

Without mean distortion, eqs. (28) and (30) correspond to a pure acoustic regime,

where energy is exchanged between dilatational velocity and pressure at a frequency
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ak. (The sonic speed a is easily reintroduced using the isentropic relation a2 =

7RT = 7P/-_.) On the other hand, the (exact) balance between the two last terms

in Eq. (28) is the equivalent in physical space of the Poisson equation for p in the

pure solenoidal flow. The solenoidal contribution to velocity is seen to be completely

uncoupled from the dilatational field if m_,3 is zero. This is valid for any irrotational

compressing mean flow, but not for pure shear, as has been stressed by BMR.
Finally, we note that the coupling of the solenoidal and dilatational fields is mediated

by m3_,. This term is zero for spherical compression but must be considered for

any anisotropic straining process (except for very specific wavevectors given by the

particular deformation). An investigation of the timescales in (28) introduces the
parameter Ra(k) =_ (ro)-l/ak, for which Am is an averaged approximation in

physical space. For very low values of this parameter, the incompressible limit is

recovered, the dilatational mode _(3) tends to zero, and the sonic speed a approaches

infinity; both k_/-fi (which tends to the solenoidal solution to the Poisson equation)

and its time derivative (which from (30) is observed to be proportional to a2_ TM)
tend to finite non-zero values without inconsistency. At moderate Ra(k), a pseudo-

acoustic regime is recovered, which deviates from the pure incompressible (ui,i = 0,

p = ps) case since the time variation of the m3_, term in (28) can be neglected

and a WKB approximation can be used to predict the oscillating behavior of d"

(Sabel'nikov 1975 and DZ). (This oscillating behavior will be revisited in §5.) For
large values of Ra(k), the pressure term in Eq. (28) can be neglected compared

to the other terms, and the "pressure released" regime is obtained. We note that

use of the solenoidal Poisson equation to approximate the total pressure variance
(i.e. setting p = p,) and then using (30) to estimate the pressure-dilatation term,

a method followed by DZ, can lead to some inconsistencies. If p = pS holds, the

dilatational mode is directly given by a simplification of (28) (equating the first
three terms to zero), and the solution is

= 0). (31)

The potential inconsistency is that this solution for q] is not necessarily the same

as that found from Eq. (30). In (31), the dilatational part of the kinetic energy

depends only upon its initial value; for a mean compression, q](t) = _(J(t))q_(O),
where _(J) depends on the type of compression. In contrast, the DZ method

amounts to connecting both ff and _(3) to the initial value of the solenoidal modes,
_"(a)(K, 0), so that the dilatational part of the kinetic energy depends only on the

solenoidal initial data: q](t) = _'DZ(J(t))(Am)4q2s(O) (where _'DZ(J) # _(J) and
again depends upon the compression type).

An approach which avoids this ambiguity and allows the classification of other

relevant limits is available by introducing integrating factors into (28) and (30) so
that

y=j-l_(3) and z=J-I i_
k _a 2 (32)
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[DI, deformation_

_ sealeJ _ .

a(o)g, sonic scale _2

)ressure-released flow

(,>
K K

FIGURE 1. Solenoidal and pressure-release regimes.

satisfy the simpler equations:

) + kay = iz. (33)
Z)t

Z)(z/ka) + aaz = aaz o, (34)
Dt

where z" = J-l_°/-_aa = i(J-1/kaa)m3_@ (a)" The left-hand sides of both (33) and

(34) are linked only to the dynamics of the solenoidal field and thus deeoupled from
the dilatational and pressure terms for irrotational mean deformations.

We are now in a position to distinguish the different regimes implied by equations

(33) and (34):

I. The incompressible limit, with a a _ oo, which corresponds to a vanishing value
of all the time-derivatives in both equations; hence, z"° and y --* 0, and z = z °

(i.e. p = po) and y = 0 are consistent limits in this case.
II. The acoustic regime, recovered when kay >> iz'.

III. The regime studied by Durbin 8z Zeman, where the pressure-dilatation correlation

is given by the solenoidal pressure variance, which corresponds to k2y = iz ° in

(33) and z = z ° in (34); these equalities hold only if the time-derivative of the
solenoidal term (right-hand side of (33)) is much larger than the time-derivative
of the dilatational term (first term on the left-hand side of (33)).

IV. The pressure-released limit, corresponding to /call << iz"° in (33), which leads to

the condition 2

Ui,i << (Am)

(with L a lengthscale of the energy containing turbulence) required for the pres-
sure-released regime to be valid. We mention in passing that if one assumes that
the ratio A of the dilatational to solenoidal kinetic energy is proportional to M_,

the above inequality suggests that an alternative to Am as the parameter that

defines the pressure-released regime is the quantity Am M[ 1/2 = rM:/a. In spite

of this, the DNS results presented below indicate that the pressure-released limit

seems to be adequately parameterized by Am alone.
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Complete solutions of the system of linear equations (28) and (30) are required for

intermediate values of Ra(k). The method described in Cambon (1982) of extending
the Townsend (1976) approach can also be used for the general (homogeneous) case;
an overview of the scheme follows, which we plan to follow in future work. A linear

transfer function g, which generates the general solution of the system of equations
as

i) (k, t) = gij (e (3) , K/Ko, Ra( Ko ), aoKot) _J)(K, 0),

is computed by solving (numerically in general) (20), (27), (28), and (30) for a

set of arbitrary simple initial data (_401) = _11,= _i2, etc .... ). (For convenience,

the subscript can be taken to vary from 1 to 4 in order to represent the pressure
fluctuation with _A(4) = i_/_a.) All the relevant one-point correlations can then be

obtained by integrating over spectral space products of linear transfer functions and
initial spectra. The initial spectra such as

E(iJ)(K) lflK _ P)@'(')*(P, O)_'O)(K, 0)) = _ ,

can be generated by invoking isotropy and assuming acoustic equilibrium (Sarkar
et al. 1989) and certain relationships between the dilatational spectra (Bataille, et

al. 1992). Note that the delta function _ amounts to a factor 6,,m(A(0)/2_-) 3 if

discrete Fourier modes (P = n, K = m) are chosen using periodic boxes of size A,

as is done in DNS. For both the continuous and discrete case, the mean compression
must be taken into account when computing correlations and integrating over wave
space, using either

6(k - p) = _(K - P)J(t)

or Aa(t)/Aa(0) = J and dak = dkldk2dk3 = J-ldaK. For the solenoidal field

certain results can be obtained analytically, as is demonstrated below for the case

of axial compression, since gSj depends only on the orientation of the wave vec-
tor, and not on the modulus; integrations over wave space needed to derive the

velocity correlations can thus be separated into the product of two one-dimensional

integrals, one of which defines (independently of initial spectra shape) the initial

kinetic energy. Evaluation of the non-solenoidal correlations is not as straightfor-
ward since the components of the linear transfer matrix that involve the dilatation

depend on both the direction el 3) = ki/k of the wavevector k (as for the solenoidal

case) and on its modulus. Accordingly, amplification coefficients like the functions

_" and ._DZ mentioned above in general require numerical integration. This _om-
plication is a symptom of the wave number dependence of the sonic timescale in

spectral space (a(O)K) -1 , symbolically shown in Figure la; since the deformation

scale D -1 is the same for all wave numbers, above a critical value K*, the sonic

is the shorter of the two timescales. For a given energy spectrum with peak at K0

so that Am is characterized by Ra(Ko), the rapid distortion behavior depends on
K/Ko. The largest structures (K </to) will, therefore, naturally tend toward the

pressure-released extreme and the smallest (K > /to) toward the solenoidal limit.



(a)

FIGURE 2. Contours of turbulent Mach number (a) before and (b) after axial

compression (Case C1DW).

When K0 falls well below K*, the entire flow is within the pressure-released regime,

and Am >> 1; when K0 >> K*, the Am _ 0 limit is valid (see Figure lb).
In the next section, the analysis is applied to the special case of axial compression,

and DNS results are used to verify the relevance of Am as a critical parameter.

3. RDT and DNS of axially compressed flow

Both the RDT and DNS impose upon isotropic compressible turbulence the axial

deformation that satisfies the homogeneity condition (15) so that the single nonzero

mean velocity gradient component is

Do = DoJ -1 and Fll = 3". (35)
U1,1= l + Dot

For Do = D(0) < 0, this straining can be maintained for a finite time for as long as
the flow volume is nonzero. Here we consider mean density ratios (equal to j-l)

that vary from 1 to 5; see Figure 2. Before describing the various DNS runs, which

is done in §§3.2, in the next subsection we specify the RDT correlations relevant to

one point modeling of the axial compression.

3.1. Rapid distortion analysis for azial compression

For the case of axial compression, the Craya-Herring-Cambon coordinates given

in §2 reduce to e_3) = cos 0, e_2) = - sin 0, where 0 = (k, n) if the polar axis is chosen

along the compression direction so that e__) = 0 (see Cambon & Jacquin (1989) for

other axisymmetric RDT applications). The RDT solutions for the solenoidal field
are then

_3(1)(k,t)=J_(')(K,0) and _)(k,t)=k_(2)(K,0), (36)
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with kl = K1J -1, k2 = //'2, ka = ha, cos0 = kl/k = _J-l/(1 + C2_2) 1/2, k 2 =

1 + C2_ 2, C 2 = j-I _ 1 and _ = K1/K. The double correlations are calculated
using

(_'_i)=(_i)*_ i)) and _,=-_2)sin0+_(a)eos0. (37)

Assuming isotropie initial data, both the solenoidal and pressure-released analytical

RDT predictions earl be obtained by integrating either over _ or directly in physical
space, with the results being unaffected by the initial spectral shape. The axial

compression correlations are tabulated below, using as super- or subscripts "s" and

"p", respectively, to denote the solenoidal and pressure-released limiting eases.
Turbulent kinetic energy:

q_(t)

q_(O) = ao(S), (38a)

q2(t) = An(J). (38b)
q2(O)

Compression-direction Reynold stress component:

q2(0) - B0(J), (39a)

q_(0) -- Bp(J). (39b)

Compression-direction solenoidal-dilatational cross-correlation:

(u_u_)(t) = O, (40a)

q2(O) - cp(s). (40b)

Structure dimensionality tensor (Reynolds 1990; see also (47) and (48)):

D[,(t) = D,(J) = Bo(J), (41a)
q_(O)

Dll(t) = Dn(J).
q2(0)

Compression-direction component of the pressure-strain rate correlation:

(41b)

nh(t)
q_(O) - DE,(J), (42a)

n11 = Ep(S) = O. (42b)
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The pressure-dilatation term II is identically zero for both limits. In terms of the

inverse compression ratio J with C 2 - j-2 _ 1, we have for the J < 1 case:

1 ( j__tan-lC)A,=_ 1+ C
(43a)

2 + j-2 (43b)
An- 3

J-2 ( 1 C2-1tan-'C) (43c)

j-2 (43d)
Bp- 3

j-2 ( _2tan-lC)-1 + B. (43e)
Cp- 2C 2 J

Dn- J-2(l_-_ tan-' C) (2+J-2_ _/
(43f)

1 ( an_l ). (439)E,--_-_ C 2+3+(C 2-3)J -zt C

The solenoidal amplification functions turn out to be nearly linear in j-l, whereas

the pressure-released expressions are nearly parabolic. The quantities As and B,,

previously derived by Ribner(1953), and the new expressions D0 and Eo are almost
the same as those found for incompressible axisymmetric strain (of arbitrary his-

tory), with, for example, the Reynolds stress tensor R_j = (u_u_) = J-2/SR_j(J),
where R* is the RDT solution for the trace-free part of the mean deformation.

Functions Ap and Bp are obtained by simply ignoring the pressure terms during
the integration of the equations for the one-point correlations in the rapid axial

compression limit, which are:

lq2 -DRll + r[, (44)

R11 = -2DR11 + 1"[11, (45)

where Rij = (uiuj), and II = IIii/2 = (pui,i)l-p.
For moderate compressibility, we find from the DNS results that the role of 1"Ill,

which reduces the anisotropy (b_ = Rll/q 2 - 1/3) in (44) and, therefore, indirectly

reduces the production term in the kinetic energy equation, is more important
than the direct role of II. For future reference, we now put forth some useful results

concerning the anisotropy tensor bij = (uiuj)/q 2 - 16ij, and a recommended general

decomposition for the Reynolds stress:

q2 + + + (u ui) + (u, uA + q] + , (46)



214 C. Cambon, G. N. Coleman g_ iV. N. Mansour

where the solenoidal deviator bi_ is split into a part reflecting the directional depen-
dence (superscript e) and the "polarization" (subscript z) (Cambon et al. 1992).

This decomposition can be recovered using the "structure tensors" introduced by
Reynolds(1990) (see also BMR) via

D_j = (¢t,ietj) = 2--_--e (k,t)dak =- qo - 2bij (47a)

fe'_(k,t) 2(_ /e(0)z(,))(47b)C_j = (¢i,lej,t) = k 2 dak = q, + -ij - bis

Dlj = @,i_o,j) = 2 ed(k,t)d3k = q] + bij .

To show the equivalence of the two approaches we first note that the tensors in

(47) and (48) are formally defined using the vector ¢i or scalar _ potential func-

tions according to the Helmholtz decomposition (18) in physical space. The three-

dimensional spectra are then defined (the second equality in (47) and (48)), with e°,

e d and e_ being associated with respectively _¢"i _i/ 2_," _ 1, _ui ui) ----

½(_3),$3)), and (_j). Finally, the directional-polarization anisotropy tensors

are specified (the third equality) so that the two approaches are reconciled.

In the notation of Reynolds (1990), D_sj reflects the "dimensionality" of the

solenoidal field, which is close to the directional anisotropy, whereas C_'j is asso-
ciated with the "componentality" of the turbulence. Only the dimensionality, or

directional anisotropy, is needed for the dilatational velocity field since D d = (ui ttj)d d
(BMR). This reflects the single-component character of a/d, in contrast to the two-

component structure of the solenoidal field. We finally note that the above tensors

are not all independent; for example, C_j can be derived from the other tensors
using (4(;)-(48), or equivalently the equation found by Reynolds (1992):

(u_u;) + D$j + C._j = 2qs_ij.

It is hoped that the above general expressions will be useful in future attempts

to model compressible flows. For the present, however, we narrow our approach as

we use DNS results to test a few aspects of the rapid distortion analysis.

3.IL Comparison to DNS of rapid axial compression

The DNS results were obtained using a pseudo-spectral method to solve the

compressible Navier-Stokes equations over a homogeneous domain in coordinates

that move with the mean deformation (Rogallo 1981, BMR, Coleman & Mansour

1991). As mentioned previously, the mean density ratio, J-_ = -_(t)/-_(O) varies

from 1 to 5 during the compression. The runs use for initial conditions compress-
ible isotropic turbulence at various turbulent Much numbers that have evolved from

velocity fields, with finite dilatational components, that are in near acoustic equilib-

rium; these initial fields are generated by running the code with no mean straining

until they develop realistic triple-velocity correlations and dilatational energy for
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FIGURE 3. Turbulent kinetic energy histories: _, lower, Eq. (38a); _,

upper, Eq. (38b); ........ , DNS with initial Am ranging from 0.3 (lower) to from

3.0-8.0 (upper); .... , DNS Cases: lower, C1DJ (Mr, Am)t=0 = (0.03, 0.3); upper,

CIDV (0.1, 7); middle, C1DW (0.3, 1).

the given Mr. (Note that BMR have found that compressible isotropic turbulence

strongly depends upon all the initial conditions for the dilatational field, not just

Mr, which implies that had we begun the precomputation with, for example, a

purely solenoidal field, the levels of dilatational energy in the developed flow might

be significantly different than those found here.) The initial turbulent Mach num-
ber for the runs varies from 0.03 to 0.44, the initial nondimensional compression

speed r = IDlq2/_ ranges from 50 to 800 (and iDI/@,,,,,) 1/2 from 2 to 88),and the
initial values of Am = M, IDI/(,,,_,,,_)_/2 fall between 0.26 and 7. A ratio of constant

specific heats 7 = 5/3 and temperature dependent viscosity # = T 0'72 is assumed.
All the runs used 963 grid points and were generated on the Intel Hypercube/i860

at the NASA Ames Numerical Aerodynamic Simulation program.

Results for the total (solenoidal and dilatational) turbulent kinetic energy will first

be presented. In Figure 3, the DNS histories for (puiui)/-_ are plotted against the
mean density ratio j-i = -_(t)/-p(O). (Because it is convenient in the code to solve

for momentum rather than velocity, all of the DNS results presented approximate

velocity correlations by using density weighted averages. We find for our purposes
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FIGURE 4. Solenoidal turbulent kinetic energy histories: _, C1DJ (Mr,

Am)t=0 = (0.03,0.3); .... , CIDV (0.1,7); ........ , C1DW (0.3,1);--.--, Eq. (38a).

that the uncertainty introduced by comparing the DNS Favre averages to the RDT

Reynolds averages is unimportant.) These curves strongly support the validity of
the RDT analysis presented above in that all the DNS results lie between the lower

solenoidal ("As") and upper pressure-releases ("Ap") RDT limits and that rate of

energy amplification scales almost monotonically with the initial value of Am, which

varies from 0.3 for the lower (dotted) curve to from 3 to 8 for the upper (dotted)

curves. Three runs will be examined further, those represented by the dashed curves

in Figure 3. Cases C1DJ, C1DV, and C1DW have initial Mt equal to 0.03, 0.1, and

0.3, respectively, but the compression rates are such that the corresponding order

for Am is 0.3, 7, and 1. At the end of the compression the (Mr,Am) values for

C1DJ, C1DV, and C1DW are respectively (0.03, 13), (0.2, 79), and (0.4, 6).

Figure 4 confirms that Eq. (38a) is an excellent approximation for q_ for the

three cases considered and that the solenoidal field is, in fact, unaffected by the

dilatational field, as predicted by the RDT. Both contributions to the kinetic energy

are shown in Figure 5. We see that the dilatational energy is most important at the

end of the compression, when the pressure-released regime dominates. The initial

values of the dilatational-to-solenoidal energy ratio A0 for the various runs is also
apparent.
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FIGURE 5. Solenoidal and dilatational turbulent kinetic energy histories:.,

solenoidal; O, dilatational; --, C1DJ (Mr,Am)t=0 = (0.03,0.3); .... , C1DV

(0.1,7); ........ , C1DW (0.3,1).

These results suggest the following model for the Mach number dependence of

the kinetic energy behavior during a rapid axial compression:

q2s (t) = As(J)q2s (0) (49a)

q_(t) = A?( J)q](O) + (A+( J) - A+( J)) q_(0), (49b)

where the "interpolation functions" A + and As+ are assumed to vary monotonically

with Am, increasing from zero to maxima of A t, and As, respectively• Similar agree-
ment with DNS data is found for the other correlations given in (43). The results

for (u_u[) and (u_u d) are presented on Figure 6, where the DNS and RDT histories

closely correspond. The slight overamplification of the DNS result compared to
(u i ul)/as = B,/A, ratio becomes more pronounced with increasingthe analytical s s 2

(ulul)/qd, we find the expected trendAm. For the dilatational curves in Figure 6, d d 2

with Am, since they are closest to the analytical pressure-released expression (the
"chain-dash" curve) when Am is largest. An analog to (49) is therefore proposed

as a model for the dilatational Reynolds stress:

(udud....._)= Bp(J))_o + B+(J)- B+(J) (50)

q2d Ap(J))_o + A + (J) - A+ (J)'
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FIGURE 6. Histories of the anisotropy of solenoidal and dilatational turbulent ki-

netic energy:., solenoidal; O, dilatational; _, C1DJ (Mr, Am)t=0 = (0.03, 0.3);
.... , C1DV (0.1,7); ........ , CIDW (0.3,1); m.__, Eqs. (38a), (39a); m---, Eqs.
(38a, b), (39a, b), using A0 = 0.22 from Run C1DV.

where A0 is the initial ratio of the dilatational to solenoidal kinetic energy (which

in practice might be neglected). The curves in Figure 6 suggest that the ratio
(B + - B+)/(Bp - Bo) is smaller than the same ratio of "A" functions.

Another anisotropy measure is investigated in Figure 7, where the structure ten-

sots are presented. Recall that D_l = (u_u_). The fact that D, = B, in (41a)
e(s) __ I s z(s) 3 s

confirms that bij - -_bij and bij = _bij is a good approximation for ax-

isymmetric strain, as suggested by studies of non-isotropic initial data under rapid
rotation (Reynolds 1990, Cambon et al. 1992, Mansour et al. 1991). Rapid rotation

•(_) _(_)
was shown to damp bij and, therefore, to reveal the initial anisotropy of bij as
the asymptotic limit reached after several revolution times. In axisymmetric tur-

bulence, Dll/q 2 can be interpreted as an angular coefficient cos 2 a, as implied by

the integrands in (47) and (48), which reveals the conical structure of the spec-

tral region that contains energy (around the symmetry axis). For example, a value

of 1/3 for this coefficient suggests no angular dependence (directional isotropy),
whereas a value between 0 and 1/3 suggests a relative concentration of spectral

energy in the plane normal to the symmetry axis. Unfortunately, the situation is
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FIGURE 7. Structure tensor histories: o, solenoidal; O, dilatational; _,

C1DJ (Mr, Am)t=0 = (0.03, 0.3); .... , CIDV (0.1,7); ........ , C1DW (0.3,1); ,

Eqs. (38a), (41a);-----, Eqs. (38a, b), (39a, b), using )_0 = 0.22 from Run C1DV.

more complex in the presence of a mean distortion, which causes a variation in di-
rection of the time-dependent wavevector; in the pressure-released case, the angular

distribution of spectral energy is unchanged with respect to (isotropic) initial data,

but the wavevector tends to be aligned with the symmetry (compression) direction

(see (36)) so that cos 2 a increases and tends to 1. On the other hand, in the pure
solenoidal limit, the relative concentration of spectral energy in the plane normal to

the compression direction opposes the tendency induced by the wavevector motion

so that a slower (as compared to the pressure-released case), but still positive, net
D11/qsincrease of the anisotropy is obtained. Note that the solenoidal ratio of ' 2

given by the DNS is found to be slightly lower than the RDT analytical prediction.

(ulul}/(ulul) is plotted in Figure 8 and compared to theThe cross-correlation s d • s

RDT expression Cp(J)/B,(J) from (39a) and (40b). The results suggest that for

modeling purposes it might be advantageous to use an effective "saturated" vol-
umetric ratio J+ in place of J and define C +, an interpolating function for the

cross-correlation, according to

C_+(J) C_(J +) (51, 0
B+(J) B,(J+) '
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FIGURE 8. Histories of the compression-direction component of the dilatational-

solenoidal Reynolds stress correlation: --, C1DJ (Mt,Am)t=o = (0.03,0.3);

.... , C1DV (0.1,7); ........ , C1DW (0.3,1);-----, Eqs. (39a), (40b).

and use the model

(u u, = c,(s )qh0). (51b)

The parameter J+ would tend toward the actual J in the pressure-released limit

and approach unity in the solenoidal limit. The role of pressure will be discussed

further in §4; for now, We observe in Figures 9 and 10 the dramatic increase of

both pressure variance and pressure-dilatation terms caused by the compression.
The amplification increases with the initlM turbulent Mach number, which at first

seems to conflict with the idea of a pressure released limit. The paradox disappears,
however, if the pressure-dilatation term is no longer nondimensionalised by initial

values (as is done in Figures 9 and 10), but rather scaled by a term proportional

to the kinetic energy production. DNS results for HIDq 2 are presented on Fig.

11. The magnitude of this term is found to decrease with increasing Am for the
three cases considered. This implies a non-monotonic variation with Am for this

term (since it is identically zero in the solenoidal limit) with a maximum reached
at low compressibility. It can be noticed that increasing values of HIDq 2 are found

at large j-1 for the intermediate Am case (C1DW), which we expect cannot be

explained by RDT. This illustrates that the requirements for a compression to be
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FIGURE 9. Pressure variance histories: --, C1DJ (Mr,Am)t=0 = (0.03,0.3);

.... , C1DV (0.1,7); ........ , C1DW (0.3,1).

rapid enough for RDT to be valid are more difficult to meet when the flow is intrin-

sically compressible, a fact also stressed by Zeman & Coleman (1992). The term

Iill/Dq 2 linked to the compression-direction component of the pressure-strain rate

correlations is shown in Figure 12. The solenoidal RDT expression, E,( J)/A,( J),

from (38a) and (42a) is plotted and is found to give an upper limit to the DNS
curves. These results suggest a monotonic decrease of II11/Dq 2 with increasing

Am. Moreover, comparisons of the order of magnitude for both terms on Figures

11 and 12 (noting the different scales of the two plots) show that the compression-

direction component of the pressure-strain rate is dominant compared to its trace

(pressure-dilatation term) in all cases. This confirms that the reduction of amplifi-
cation of turbulent kinetic energy with respect to the pressure-released case (where

only the "production" effects are present) is mainly due to Iill, through reduction

of anisotropy, as in the pure solenoidal case.

4. Towards a pressure-strain rate model

Equations for rill and H, valid for the rapid mean compression case, can be

derived from eqs. (44) and (45), using eqs. (49) and (50) to model q2 and (ulul).
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(0.03, 0.3); .... , C1DV (0.1,7); ........ , C1DW (0.3,1).

The result is

and

1-Ill = J-2d (jzR1])

= s-_- (J_(B,+ +
dt B, - B+)q_(O) + S2Bpq](O))

= DE, q2,(O) + J -2d (j2(B+ - B+)) q2,(O),
dt

n = (½(Ao+ A+- At) + D(B.+ ,+, - ,+.)) q_.lo)

=' (_(a,'+- .i+)+ Z_(B,+- ,.+)) q._(0).

To obtain the above, the relations

(52)

(53)

J-2_(J2Bs)= E,; d (j2Bi, )=0; I •_A° + DB, = O; ½An + DBp = O, (54)

have also been used.
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_. I Proposals for Second- Order Modeling

Two simple ideas for constructing the Eq. (52) and (53) "interpolation" functions

(denoted by a superscript "+') are proposed:

1. Using two functions of Am, passing monotonically from from 0 to 1 so that

A + - A + = fl(Ap - As) and B + - B + = f2(Bp - B,); if the time-variation of
the interpolation functions is neglected, this leads to the model

= nh(1 - h) (55a)

II = (f2 - fl)D(Bp - Bo)q,2(0). (55b)

Note that f2 > fl is consistent with the sign of II found in the DNS results and

with the interpretation of dilatational energy histories in Figure 5.

2. Using a "saturated" volumetric ratio J+ instead of the actual J in the evaluation

of the interpolation functions with + superscripts, so that A+(J) = A(J+). The

equation for J+ would be

j+ = U_,_J + -CJ+L(J+ - 1), (55c)
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FIGURE 12. Histories of correlation of pressure and compression-direction velocity

gradient: _, C1DJ (Mr, Am)t=0 = (0.03, 0.3); .... , C1DV (0.1,7); ........ , C1DW
(0.3,1);-----, Eqs. (38a) and (42a).

where C j+ is a modeling constant. The sonic timescale-damping term would

allow J+ to saturate close to unity as the regime of the flow approaches the
solenoidal limit.

_._ Testin 9 a Second-Order Model

From our analysis of the three DNS cases, we find that they are in the regime

where the production and the rapid redistribution terms are dominant. The contri-
bution of the pressure-dilatation is about 10% of the production in the worst case.

This leads us in our attempt to model the DNS results to adopt the first proposal

of the previous subsection, and consider a linear (in bii) model for the solenoidal

rapid part (see Shih et aI. , 1990) of the redistribution term, taking 1 - f2 (see

Eq. (55a)) to be an exponential function of Am. The mean and Reynolds-stress
equations reduce to:

= Do T,t -(7 1)TU, i,
-P,t = -Ui,i-_, Ui,j = 1 + Dot '5i1_5j]' = - '

Rij,t = -RikUj,t -- RikUi,t + _ii exp(-Am/Cam),



RDT _ DNS of compressible turbulence 225

8

6

4

2

0

• I " I " I " I " I " ! " I " s° .

os
s_ S

ssa_.wS

,,,s ...
s_B ..,°"

s,s B °..-" •

s_ S ..0."° °.°'
_s o, .0." °o'

,_¢e ....." .°.°°"

_ SB ..° .ml

_ °°°°" .°.°.'
44 .°'° .°°.'

t_o °0-" °.°-
oo .0.° . .-°

oo °°°°" 0.°.
oo °.0" °..0°

° oB ,.-'" .0'"

Boo..° .. ...,o°

. ..¢.""'"",o........
o_ _f''B''°'.'....,._'''.''.."

n ,,,1 ,," I , I n I i I I I , i ,

1.5 2 2.5 3 3.5 4 4.5

FIGURE 13. Reynolds stress history, compression-direction component: --,
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Eq. (55d); no symbols, DN$.

with

_ij 4 48a - 60 (Sikbk j + Sjkb_i _ ._Smnbran$i$ )

60- 16a
-_ T5 (f_bki + f_kjbk,), (55d)

where Am = _Mtq2/e and we have set c_ = 2.523 (to be consistent with the
model of Launder et al. (1975)), and Ca,,, = 40. The quantity _ij = (Uij - Uj,i)/2

is the mean rotation tensor.

The development of the axial component of the Reynolds stress, R] t, as predicted

by the above model for the three cases considered is shown in figure 13. We find
that this simple model, where the effects of the redistributive term diminish when

Mt increases, compares well with the DNS data. The development of the turbulent

kinetic energy (see Fig. 14) is also well reproduced, indicating that the effects of

the pressure-dilatation are, in fact, weak compared to the production term. No

attempt was made to optimize the constant Ca,,, since the pressure-dilatation term

was neglected. This term does play a role in the development of the flow, and Cam

should be optimized in conjunction with a model for the pressure dilatation term.
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5. Spherical compression and pure shear revisited

5.1. Isotropic spherical compression

In the presence of a mean spherical compression, with

Do - DoJ -1/3 Fij = Jl136ij and ki = KiY -1/_, (56)
Ui,j = D6ii, D= l + Dot

the coupling term m3_ in (27) and (28) has zero value. The evolution of the

solenoidal kinetic energy is then easily found to be given by the amplification coef-
ficient j-2/3. For the dilatational field, eqs. (33) and (34) remain of interest now

with their right-hand sides equal to zero (since _ _, mac,). Even in the absence

of the right-hand sides, a WKB analysis of the equations would not in general be
appropriate because the timescale variation of a 2 and k _ is not necessarily small

with respect to the expected frequency ak of the oscillating system (depending on

the value of Am). Blaisdell (1992, private communication) has recently found a

solution free of WKB assumptions; its validity is restricted to values of 7 close to

5/3, but a general analytical solution is possible (work in progress). If 3' = 5/3,
k 2 and a 2 have the same j-2/3 time dependence, so simple solutions in terms of

exp(-t-ia(O)k(t)t), where k(t) varies as in (56), can be obtained for y and z. The
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history of q] can then be derived from the initial (uncompressed) dilatational field.
Assuming that acoustic equilibrium holds for the initial conditions, one can write

q_(t) = j-2/3 q_(O), (57)

which is the same variation found for the solenoidal energy. The acoustic equilibrium

assumption is realistic but perhaps not necessary; the initial balance between kinetic
dilatational energy and potential (pressure) energy allows oscillating terms to be

dropped, but the same final result could also be reached after a certain elapsed time
because of the damping behavior of integrals such as

/ F(K) exp(2ia(O)KJ-'/3t)dK,

where F is defined by the initial energy spectra and is nonzero only for flows out of

acoustic equilibrium. (This behavior is similar to that found for the case of rapid

rotation.)
The above considerations show that an oscillating regime, more general than

the pure acoustic one, is not inconsistent with the pressure-released limit and that
the latter can be used to derive the same relationship (57) found via the acoustic

equilibrium assumption. We thus find that the spherically compressed flow lends

support to the general approach advocated in this paper.

5._. Pure plane shear

The case of shear flow is particularly interesting because all the coupling terms,

most notably m,,3 and m3_, are present. The crucial parameter in the absence of

compression (J = 1) is the shear S = dUl/dx2. Under this deformation, eqs. (27),

(33) and (34) become

+ s = s u (58a)

kl (5Sb)

(59)

with

Ui,j = S_i,8j2, kl = K,, k2 = K2 - K1St and ka = K3.

Here the polar axis is chosen to be in the gradient direction (hi = _i2). The two
solenoidal _1) and _(2) components are very close to the set (w2,V2u2) used in

linear stability analyses for decoupling, for example, the Orr-Sommerfeld equations

for parallel flows (cf. Waleffe 1990). Even in the pure solenoidal case (where y =

_a)/k = 0), the present approach appears to be more tractable than are classic RDT

approaches (Townsend 1976). Unlike for a purely irrotational mean deformation,
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the presence of the new coupling terms (mediated by m13 = -Sk2k3/kkl3, m23 =

Sk3/k13 in the above equations) makes the solenoidal field no longer independent
of the dilatational component. In addition, this coupling introduces the new term

S 2(k_ / k 2)y in Eq. (59). The pressure-released approximation amounts to neglecting

a_k2y compared both to this new term and to the solenoidal right-hand side in (59).

The Am >> 1 regime then implies that (in physical space),

=ul(0)-stu2(0), u2= 2(0) and u3= 3(0),

and leads to quadratic amplification, with respect to St, of the kinetic energy (which

is more rapid than the nearly linear amplification obtained by numerically integrat-

ing the solenoidal RDT solution for ½(_---(1),_--(1)+ _--(2),_(2)) over k-space). Note
that the inviscid solenoidal RDT solution for the vertical velocity component is

given by D(Xy2u2)/Dt = 0 in physical space (corresponding to Eq. (58) with V = 0)
so that a rapid decay of u2 is found. On the other hand, u2 is conserved in the
pressure-released inviscid RDT limit.

6. Recap and conclusions

The objective of this analysis has been to develop a rapid distortion theory for
homogeneous compressible turbulence at finite Mach number and then use that

theory to explore some issues related to one-point compressible turbulence models.

We have applied the analysis to the case of axial compression and found that DNS

results confirm the RDT prediction of two distinct flow regimes, one for vanish-

ingly small turbulent Mach number and the other for flows with negligible sonic
and turbulent timescale variations compared to the mean distortion. The latter is

referred to as the pressure-released regime (since the fluctuating pressure field can

be neglected in the RDT for this limit) and is defined by large values of the product

of Mt and the ratio of the turbulent to mean deformation timescales. For large
values of this parameter, we find that the intrinsic compressibility of the turbulence

is responsible for an increase in the growth rate of kinetic energy with increasing

Mr, an effect exactly opposite to that usually attributed to the compressibility. It

would seem that the reduction in kinetic energy growth rate due to compressibility
observed in previous compressible homogeneous DNS studies can be attributed to

"slow" terms with nonlinear and dissipative origin, such as the "extra" dilatational

dissipation associated by Zeman (1990) with eddy "shocklets." In the future, we

plan to perform systematic comparisons between compressible RDT (from numeri-

cal solutions obtained by the method presented in §§2.4) and existing DNS to allow
an accurate differentiation between the "rapid" and "slow" terms, which are found

to have opposite trends with respect to the effect of compressibility on the kinetic

energy growth rate.

For the axial compression, analytic expressions for the correlations associated

with one-point closures for both the solenoidal and pressure-released limits have

been given. These expressions have been used to propose methods of interpolating

between the two limiting RDT cases in models for the pressure-strain rate correla-
tion, l'Iij and thus account for finite Mach number effects.
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All the DNS results were obtained using the facilities of the Numerical Aerody-
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