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Response of a supersonic boundary

layer to a compression corner

By D. Vandromme 1 AND O. Zeman 2

On the basis of direct numerical simulations of rapidly compressed turbulence,

Zeman and Coleman (1991) have developed a model to represent rapid directional

compression contribution to the pressure dilatation term in the turbulent kinetic

energy equation. The model has been implemented in the CFD code for simulation

of supersonic compression corner flow with an extended separated region. The

computational results have shown a significant improvement with respect to the
baseline solution given by the standard k - e turbulence model which does not

contain any compressibility corrections.

1. Introduction

One of the critical problems in the field of compressible fluid dynamics is the

response of turbulence to compressibility effects. Pioneering works in this area of
research appeared in early 70's; the contribution of Wilcox & Alber (1972), Oh

(1974), and Rubesin (1976) attempted to elucidate the modeling problem of the
supersonic mixing layer by solving a transport equation for the turbulent kinetic

energy. Later, Vandromme (1983) made an extension in the framework of a two-

equation turbulence model by including compressibility effects in the dissipation

equation. A detailed review of other extensions of incompressible models to high

speed flows is in Vandromme (1991).
In recent years, progress has been made in understanding the compressibility

effect on turbulence thanks principally to advances in direct numerical simulations

(DNS) of 3D compressible turbulence (Feireiesen et al. 1981, Blaisdell et al. 1991,
Coleman & Mansour 1991, Lee 1991, Erlebacher et al. 1990). New theory models

have been developed for the terms in the Reynolds stres_tions, containing

explicit compressibility effects: dilatation dissipation ed ¢x u(uj,j) 2 and the pressure-
dilatation correlation puj,j (Zeman, 1990, 1991a,b; Sarkar et al. 1991; Taulbee and

VanOsdol 1991; Zeman and Coleman 1991; Durbin and Zeman 1992). In spite of

the theoretical progress, the treatment of turbulence in supersonic flow codes is still

inadequate. The principal reason for this is the lack of experiments to validate the

variety of new modeling assumptions; furthermore, the new model are often fairly
complex and difficult to implement in the compressible flow codes.

The present work is primarily concerned with the testing of novel modeling ideas
which concern the effect of the so-called rapid compression (or volume deformation)
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on turbulence dynamics in a flow configuration of practical interest: a supersonic
turbulent boundary layer (TBL) subjected to distortion through a compression

corner. The qualifier rapid signifies that the rate of compression given by the mean
flow divergence V. U is rapid with respect to the large eddy turnover time scale

r _ k/e (see the following section for notation); i.e., V.Ur >> 1. The condition of

rapid compression is satisfied when turbulence passes through a shock or sequence of

shocks near the corner. An engineering example of turbulence compression is a flow

within the combustion chamber of a piston engine. However, here the condition

of rapid compression is not satisfied since in the piston engine V. Ur _ 1. The

combustion chamber flow problem has been addressed from a modeling point of

view by various investigators, and their work has led mainly to modification of
the (solenoidal) dissipation equation to account for the compression effect on the

turbulence scales (see e.g. Reynolds, 1980, Morel & Mansour, 1982).

The process of the rapid compression of (homogeneous) turbulence has been sim-

ulated by a DNS method developed by Coleman and Mansour (1991). Here, the

turbulence could be subjected to both spherical (isotropic) or one-dimensional (1D)
compression with the initial value of V.Ur as high as 50 and initial Mt = 0.05-0.44.

Thanks to these DNS results, Zeman (1991) and Zeman and Coleman (1991) were
able to identify the directional rapid compression effect on the pressure dilatation

term puj,j: when turbulence was subjected to spherical compression puj,j remained

virtually zero (w.r.t. e); however, during 1D rapid compression, puj, _ grew very
large and negative, causing a significant drain on the turbulent kinetic energy k.

Surprisingly, this process was more effective for initially low Mt (= 0.05). By
now, physical and theoretical understanding of this phenomena has been achieved

through the rapid distortion theory (Durbin and Zeman, 1992), and a realistic model

for the rapid compression contribution to _ has been developed by Zeman and
Coleman (1991).

The report is organized as follows: the turbulence modeling equations and the
corresponding model expressions are described in the next section; Section 3 de-
scribes the main features of the numerical method which has been used for the

solution of the Reynolds averaged Navier-Stokes (RANS) equations, including the
new modeling ideas, when applied to the supersonic boundary layer submitted to a

sudden compression along a 24-degree wedge (Section 4). In section 5, the results
obtained for that specific test case are discussed.

2. Turbulence model

Considering a generic form of the classical two equation turbulence (k - e) model,
the transport equation can be written as:

,0__¢'- Diffusion ..... _ {0v_ 2"_ __-_ o_L + P oz.
Dt = -p%VZoza -_ _+ 2v \ox. } ] o_

Production Destruction Compressibility

D__ _ Diffusion = -C,1 ±av" v"
DI k_ a fl Ox_

Production
\ oxL /
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with all source terms in the RHS. The source terms include the low turbulent

Reynolds number treatment proposed by Jones & Launder (1972). Subscripts ta
and no stand here for tangential and normal components with respect to the solid

wall.
The various options in order to account for compressibility effects concern either

the e or the k equation. The first correction, which is supported by DNS results

of 1D or spherical strain, has been suggested by Reynolds (1980) based on the
behavior of decaying isotropic turbulence submitted to a mean strain. Thus the
various contributions to the production of dissipation can be subjected to different

constants. That yields that, in e-equation:

e , e2 0b'_ 0v'_ ,, e2 09"_a
Production = C,l-k 2VtSo_ - C¢l _ _Vt_aB-_x _ OX.7 C,l-k 3 k6oB Ox B

in which the Cel constants take the following values (Reynolds, 1980):

Ce_ = 1.45; C_1 = 1.45; C,1 = 3.50

The compressibility contributions in the turbulent kinetic energy equation are

detailed in the following. They are the dilatational contribution to the dissipation,

a proper model for the density-velocity correlations, and the pressure-dilatation
term.

2.1. Dilatation dissipation parameterizatlon

The first idea is based on the assumption that, for sufficiently high turbulent

Mach number values, shocklets exist, at least statistically, and can be responsible

for an extra amount of dissipation induced by the bulk deformation in the flow.

Zeman (1990) proposed a model for this extra dissipation based on the splitting
between the solenoidal and dilatational parts of the strain tensor, which can be

written as:
ed = eo F(Mt, K) (1)

in which Mt = x/'_-/a2 is the rms (turbulent) Mach number, f(Mt,g) is an

integral functional of the pdf p(mt, K) of fluctuating Mach number mt= Uv/-d'_'_/a,

and K -= m4/(m2) 2 is the kurtosis of the m,-distribution, which characterizes the

departure from Gaussianity (intermittency) of mr.
For the purpose of numerical computation, the function F is approximated as

F( Mt, K) = Cd (1 -exp{-( M, - Mto )2}) (2)
ffM

F( Mt ) = 0, if M, <_ Mto

where the quantities Cd, Mto, and aM are functions of K. For values of Mt lower
than the threshold of 0.2, the function F(Mt, K) is set to zero, which is consistent

with the results of DNS (Lee et al. 1991).
In adiabatic turbulent boundary layers, M, appears to be below this threshold

level for M, _< 5. However, this is not so in hypersonic TBL's with wall cooling or

in the vicinity of a separation bubble in compression corner flow.
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2.2. Pressure-dilatation correlation pu£i -

In TBL flows, two important contributions to _ have been identified and mod-

eled: the density-gradient and rapid-compression contributions.

Relying on the balance of the transport equation for the pressure fluctuations

and assuming that the gradient flux law is valid for the transport of density fluctu-

ations in the framework of a thin layer approximation, Zeman (1993) suggested the
following model for the mean density gradient contribution:

(3)

Here, v = k/es is a (vortical) turbulent time scale, and the function fa -* Mt 2 as

Mt _ 0. The above contribution is positive and reflects the process of conversion

of the potential (pressure) to kinetic energies. Although this contribution is indis-

pensable in the mode equations for preservation of the proper (Van-Driest) scaling

in the constant stress layer, it has not been used in the present validation tests.

A model for the rapid compression contribution to _ has been first proposed

by Zeman (1991b) and Zeman and Coleman (1991) in the form:

(PO)R = --Cd1-fi kT"{(S*j) 2 + Cd2bikSkjSij }
t

(4)

The model reflects the sensitivity to the directionality of compression strain and is

bilinear in the (trace-free) strain rate tensor S*j = 1 2_5iiV.U); is the

anisotropy tensor associated with the Reynolds stresses, and p--2-is the fluctuation

pressure variance. The above expression yields results agreeing with the DNS data

for both 1D and 3D rapid compression; however, it requires an addi

tional equation for p2 (for details__ see Zeman and Coleman (1991)). In the present

k-e model, because bij and p2 are not accessible at this level of closure, we set

_ 1 and used a simpler version

R = S;,) (5)

As discussed in the previous section, the rapid compression contribution to _ is

expected to be very important in shock/turbulence interactions.

3. Numerical method

The numerical method is a predictor-corrector scheme developed initially by Mac-

Cormack. To the basic explicit version, various improvement have been added in

order to make the code more accurate and robust as well as more efficient. These

improvements, which have been described in MacCormack (1985) and Vandromme
(1991), are mainly:

• Finite volume discretization

• Flux vector splitting
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• Implicit approximation
• Line Gauss-Seidel relaxation

• Energy coupling with the turbulence

• Implicit treatment of the source terms
Performance of this code is remarkable. Although it allows the treatment of com-

plex geometries, large values for the integration time step can be used (which would
correspond to a CFL number above 106 for the Euler equations). Furthermore,

special treatment of the source terms of the turbulence equations in the implicit

part eliminates the stiffness of the equations during the transient preceding the

convergence to steady state.
The set of RANS equations, completed with a two equation turbulence model, takes

the following form:
OU OF cOG

=H

in which the vectors U, F, G and H are defined as:

V (;1
ie

f

pu

p5_ + r=y

pik - (tJ + ,,, J a=

__)o__,pile - (t_ + ,,, o=

G

pv

pfi_ + ru=

p_2 + p + _pk + ay_

Define the jacobian matrices as:

OF cOG OH

A = CO----_; B = CO---j; C = cO-'-_

This implicit approximation can be solved either by a factorate approximation

method or by a relaxation scheme:

AtOA° AtcoB°
(z + + -tiff-u-At.C)6U ("+1) = AU(")

cOU(" )
AU ("+_) = At

OU(-+I)
_U ("+x) = At

0t 0t

in which the source terms can be imbedded on the diagonal terms or a separate

factorization can be performed for the sources. Inversion of the implicit source
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FIGURE 1. Flow Sketch.

operator is based on the knowledge of the analytical or the numerical form of the

jacobian matrices. The standard solution procedure is to run line Gauss-Seidel in

the streamwise direction (usually a backward-forward sweep), whereas the cross-
wise lines are solved in a direct mode with a classical block-tridiagonal algorithm.

When using the relaxation scheme, after application of the flux vector splitting, the

resulting implicit approximation has one of the following form:

n A..grT n+l _U n+l r]..,qrT n+I n
ai,j_Ui_l, j + _,,2_i,j "_- ci,j i+l,j "_ _',)'' i,j-1 "_- ei,j_U_,?_l : fi,j_uin, j Jr- Hi,j

in a backward sweep, or

a,,jgU_+l,j + bi,j6U_ +' + ci,j6U_+l,j + di,.i6U_,+2, + ei,j,_Ui_+__l = fi,j3Ui_,j + Hi_,j

in a forward sweep. H -n. is the explicit source terms, and the bi,j coefficient con-1,2

tribute also to the implicit source treatment.
Independently, the sign of the sources is used to discriminate between stable and

unstable implicit approximations (Vandromme, 1991). For stable cases, unlimited

time step values can be used; nevertheless, experience shows that the turbulence

equations (especially the dissipation equation) never do reach a "machine-zero" type
of convergence.

4. Flow description

The main flow features are described with the sketch in Figure 1. A supersonic

equilibrium boundary layer experiences a sudden deviation of 24 degrees. That

deviation causes an oblique shock wave which induces a strong flow separation in

L
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ISOMACH LINES

;'IGURE 2. Isomach lines (basic solution).
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ISOMACH LINES

FIGURE 4. Isomach lines (with compressibility correction).
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the wedge region. The separation point is at the foot of the shock, upstream of the

wedge. The slight curvature of the streamlines above the separation bubble induces

a weak expansion fan. Then, at the reattachment, the Mach lines focus again on
the main shock and change its slope in the inviscid region. The flow conditions are
as follows:

M_¢ = 2.84 C I = 11.510 -4 P, = 6.9105Pa T, = 270K
6 = 2.6 10-2m 6* = 6.4 10-3m 0 = 1.3 10-3m Re = 1.78108

Experiments have been conducted at Princeton Gas Dynamics Laboratory (Settles
et al. 1976, 1979). Similar flows have been studied with different ramp angles, i.e.
8*, 16", and 20*. In this work, only the 24* has been considered because of the

importance of the separated region related to the turbulence field.

A striking feature of this type of separated flow is the strong dependence of the
separated region on the incoming turbulence within the boundary layer and on the

changes occurring across the shock wave. In order to validate the changes due to
the proposed compressibility corrections, all calculations have been made first with

a basic model (which is the classical Jones-Launder k - e model), and then the code
was rerun with the compressibility corrections in (1) and (5) added to the basic
model.

5. Results

The following results have been obtained during the course of the summer pro-
gram. The basic solution is shown in Figures 2, 3, and 6. Figure 2 shows the

distribution of isomach lines in the interaction region, and Figure 3 shows the wall

pressure distribution compared to the experimental values (symbols). Figure 6 de-
picts profiles of turbulent kinetic energy (TKE) at successive streamwise locations

beginning with an unperturbed boundary layer just upstream of the separation zone.
Figures 4, 5, and 7 show the effect of inclusion of the compressibility contributions
in (1), (2), and (5) in the code.

Comparing Figures 4 and 5 with the corresponding basic solution in Figures 2 and

3, it is evident that the compressibility corrections visibly improve the prediction
of the extent of the separation zone. Comparing Figures 6 and 7, we observe that
the compressibility corrections cause a marked reduction of overall TKE levels.

6. Conclusions

• The principal purpose of this project was to test the effect of compressibility cor-
rections on computations of compression corner flow. These corrections consisted

of i) a dilatation dissipation model representing additional dissipation of TKE
due to eddy shocklets, and ii) a model for rapid compression contribution to the
pressure dilation term.

• The suggested models have been implemented in a compressible R.A.N.S. solver,

and computations with and without the compressibility corrections have been
performed.

r
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• A significant improvement has been gained in the prediction of a supersonic
boundary layer interaction with an extended separation zone. The principal con-

tributor of the improvement was the rapid compression term which becomes a

large TKE sink in the vicinity of the shock regions. As expected, the dilatation

dissipation effect was insignificant for this test case with the free stream Mach
number Moo < 3. Dilation dissipation (due to shocklets) does become significant

in hypersonic boundary layers with wall cooling (Zeman 1993).

• Overall, the new compressibility corrections are expected to play a much more
dominant role in higher Mach number flows, for which further validation work is

desired.
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