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Evolution of the shock front and tl;i'bulénce
structures in the shock/turbulence interaction

By N. Kevlahan'!, K. Mahesh? AND S. Lee?

The interaction of a weak shock front with isotropic turbulence has been inves-
tigated using Direct Numerical Simulation (DNS). Two problems were considered:
the ability of the field equation (the equation for a propagating surface) to model
the shock and a quantitative study of the evolution of turbulence structure using
the database generated by Lee et al. (1992). _

Field equation model predictions for front shape have been compared with DNS
results; good agreement is found for shock wave interaction with 2D turbulence and
for a single steady vorticity wave. In the interaction of 3D isotropic turbulence with
a normal shock, strong alignment of vorticity with the intermediate eigenvector of
the rate of strain tensor (Sf; = Sij — 1 /36:;Skx) is seen to develop upstream of
the shock and to be further amplified on passage through the shock. Vorticity
tends to align at 90° to the largest eigenvector, but there is no preferred alignment
with the smallest eigenvector. Upstream of the shock, the alignments continue to
develop even after the velocity derivative skewness saturates. There is a significant
tendency, which increases with time throughout the computational domain, for
velocity to align with vorticity. The alignment between velocity and vorticity is
strongest in eddy regions and weakest in convergence regions.

1. Introduction

The subject of this investigation is the interaction of a weak shock (mean up-
stream Mach number, M; = 1.05 — 1.20) with relatively strong turbulence ( M, =
0.07 — 0.40 where M, is the fluctuation Mach number defined as ¢/¢; g is a velocity
scale of the turbulence and € is the mean sound speed). The interaction of shock
waves with turbulence has been studied analytically (using the Linear Interaction
Analysis) by many authors (eg. Ribner 1954, McKenzie & Westphal 1968, Anyiwo
& Bushnell 1982). Experimental investigations have recently been carried out by
Jacquin et al. (1991), Honkan & Andreopoulos (1990) and Hesselink & Sturte-
vant (1988). Numerical simulations of the shock turbulence interaction have been
performed by Rotman (1991) and Lee et al.(1992).

We study shock/turbulence interaction as simulated by Lee et al. (1992). In the
simulation the reference frame is fixed with respect to the mean shock position;
the mean flow approaches the shock supersonically (M, > 1) and exits subson-
ically. Shock wave structure is resolved by the Navier-Stokes equations without
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using shock-fitting or shock-capturing techniques. Inflow turbulence is generated
with a prescribed energy spectrum (E(k) « k*exp(—k?)) and is then allowed to
evolve naturally as the flow approaches the shock front. The turbulence should
be fully developed by the time it reaches the shock wave, and this is verified by
making sure that the velocity derivative skewness stabilizes well upstream of the
shock. Pressure and density are kept constant in the inflow plane. The simulation
uses a 193 x 64 x 64 grid and the Reynolds number based on the Taylor microscale,
Re,, is 16.7.0. The study is divided into two parts: the effect of the turbulence
on the shock (shock front evolution), and the effect of the shock on the turbulence
(turbulence structure evolution).

In the first part of this study we test a new model for shock front/turbulence
interaction based on a field equation approach where the front is treated as a sur-
face which propagates normal to itself and is distorted by the turbulent velocity
field. This model not only gives the instantaneous position and shape of the front,
but can also be used to close the Rankine-Hugoniot equations for a curved front.
Once the Rankine-Hugoniot equations have been closed, the turbulence quantities
downstream of the shock can be calculated. In the weak shock/relatively strong
turbulence regime considered here, the shock may become significantly distorted
(however, it will still remain identifiable). Because of this strong deformation, the
evolution of the shock front will not be well predicted by linear theories such as
the Linear Interaction Analysis (LIA) which assume that the shock merely copies
the shape of the distorting velocity field but at a different amplitude. The field
equation, being nonlinear, can be used in such cases of large shock front distortion.
The field equation approach has the advantages of simplicity and ease of numerical
implementation. One important practical application of the field equation approach
would be its inclusion in DNS to avoid having to numerically resolve the shock wave
structure. Removing this restriction would greatly increase the maximum Mach
number that can be reached using DNS. The field equation model is validated by
comparing the shape and position of the shock front predicted by the field equation
with two-dimensional DNS results under the same conditions. The field equation
model is described in more detail in §2 below.

The second part of this investigation is a quantitative study of turbulence struc-
ture evolution. In this part, we analyze turbulence structure in planes (parallel to
the mean shock) upstream and downstream of the shock. We are interested both in
general aspects of turbulence structure and its development and in the effect of the
rapid compression on the turbulence structure as it passes through the shock. To
characterize turbulence structure we consider three dynamically important prop-
erties of the flow: (i) the angle between the vorticity and the shock normal, (i1)
the angle between the vorticity and the eigenvectors of the strain rate tensor, (iii)
the angle between the velocity and vorticity vectors. The flow is also divided into
four classes of structure (eddies, shear, convergence, and streaming) based on local
values of the rate of strain and rate of rotation tensors. Since we are interested in
turbulence evolution, in all cases the instantaneous mean (computed by averaging
over homogeneous directions) is subtracted before any analysis is performed.
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2. Modeling shock front evolution

2.1. The field equation model

In this section we describe the validation of the field equation model applied to
shock/turbulence interaction by comparison with DNS.

The field or G-equation model has been introduced by Kerstein et al. (1988)
as a model for the propagation of a zero-thickness, constant-density premixed
flame through a homogeneous turbulent flow. In this model a continuous scalar
G(z,y,t) = = — g(z,y,t) is convected by the flow with the surface G(z,y,t) = 0
corresponding to the position of the physical flame front. The flame propagates at
a speed uF normal to itself and is at the same time advected by the turbulent flow
(u) as described by equation (1) below.

9G | . VG = ur|VG] (1)
ot
In general, up will be a function of the shape of the front, the local straining, and
the history of the distortion (in the case of the flame front up is modeled as a
function of local strain and curvature—the flame stretch).

The aim of this study is to determine whether the field equation model can
be usefully applied to the propagation of a shock front through a turbulent flow.
Initially, we take the simplest two-dimensional form of the model where up is taken
as a constant: the laminar propagation speed of the front. If it is assumed that
the front does not curl over on itself (as is assumed in the usual derivation of
the Rankine-Hugoniot conditions for a curved front), then equation (1) for the
propagation of the front may be re-written in terms of g(y,t) as

0
-a—‘(:- =up(1+g§)1/2+u—vgy (2)

where u and v are, respectively, the z- and y-components of the turbulent velocity
field (in a frame fixed in the mean shock, the mean shock speed must be subtracted
from u), and the initial condition is that g(y,0) = 0. Once equation (2) has been
solved, ¢:(y,t) and g,(y,t) may be substituted into the Rankine-Hugoniot equations
for a curved shock,

gelp] + 9y[pV] = [pU] (3a)

gt[pU] + g4[pUV] = [pU? + P] (3b)
9oV + gy[pV? + P] = [pUV] (3¢)
9:[pE] + g,[V(pE + P)| = [U(pE + P)] (3d)

to obtain the changes of turbulence quantities downstream of the shock front. In
equations (3a-d), [ ] indicates the difference of the quantity in the brackets across
the front and E is the internal energy (= P/(y — 1) + (U? 4+ V?)/2 for an ideal
gas). Equations 3(a-d) represent, respectively, conservation of mass, z—momentum,
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y—momentum, and total energy across the shock front. The above conditions can
be combined to give a further condition: the tangential component of velocity is
continuous across the front. Equations (3a-d) can be solved for the turbulence
(fluctuating) quantities us, vy, P, and p; downstream of the shock in terms of
g1(y,t) and g,(y,t) and the upstream quantities:

uz ={g5(y + Durvr + g2[207 — (v + 1)u? + (7 + Lusge — 2vPi/pa]+
ayl(y = Dwavy +4vigd + (1 — v)ul + (v — 3)urge — 2vPy /p1 + 297}/

{(v + Dlggvs + (1 + g2)(ge — u1) + gy1]} (4a)
vz =vy + gy(uy — uz) (4d)
P, =P+ p [uf — Gyu1v1 — geuy + u2(gyv1 + g — uy)) (4c)
p Pl(gyvl +gt—ul) (4d)

? T lo2ur + gyv1 + g¢ — w21 +92)]

Note that equations (4a-d) are ezact solutions for the downstream quantities; no
approximations or additional assumptions have been made in their derivation.

So we see that the field equation model for shock front evolution (2) provides
a nonlinear closure to the Rankine-Hugoniot equations for a curved shock (3a-d)
which allows us to obtain the changes in turbulence quantities across the shock
(equations 4a-d). Because the closure is nonlinear and because we have made
no linearizing assumptions in solving the Rankine-Hugoniot equations, this field
equation/Rankine-Hugoniot model will be able to treat large deformations of the
shock front and to predict nonlinear amplifications effects of turbulence quantities
across the front. LIA theory cannot be applied in the case of large deformation
and will not be able to predict any nonlinear amplification. Shock dynamics theory
is mathematically complicated and awkward to use in the case of fully developed
turbulence.

The assumption of constant ur is in a sense equivalent to the geometrical acous-
tics limit of shock dynamics. In both cases, the rays of an initially curved front
in a uniform flow (eg. in the shock focusing experiments of Sturtevant & Kulka-
rny (1976)) will eventually cross, leading to a cusp-shaped front. The field equa-
tion (2) for the propagation of the front is not, however, the same as the eikonal
equation for geometrical acoustics: g7 = c?¢2. That the field equation model is a
better physical model than the eikonal equation for geometrical acoustics can be
seen by working out the second order perturbation solution to the exact Rankine-
Hugoniot equations (3a-d) for the evolution of the shock front.

The Rankine-Hugoniot equations for a curved front may be closed to second order
by assuming that the flow downstream of the front is isentropic. The assumption
of isentropy is very good for weak shocks: changes in entropy are of third order in
the pressure jump across the shock. This leads to the following relation between
pressure and density fluctuations:

p=7£p (1+%(7—1)%), (5)
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where upper case indicates mean quantities and lower case indicates fluctuating
quantities. Combining equations (3a-d) with equation (5) closes the Rankine-
Hugoniot equations to second order. Performing a perturbation expansion to second
order in the O(€) quantities u, v, P, p, g1, and g, on finds the following second-order
solution for the evolution of the shock front:

92 + g(F — 2uy) = Frus — ul + Fagyv1 + Fagz (6)
where the F,’s are coefficients that depend on mean flow quantities. From equa-

tion (5), letting g¢ = €g1¢ + €’ g2¢ + O(€%), gy = €g1y + €292y + O(e?), ur = euy,
vy = €v; the first-order solution is

g1t = U, (7)
and the second-order solution is
F3 2 F2
gt = ﬁgly + 'ﬁglyvl- (8)

Now, a similar second-order perturbation expansion for the field equation (2) yields
the following solutions:
g1t = Ui (9)

and,
— 1 2 0
g2e = SUFGry ~ GiyV1- (10)

Thus, we see that the field equation gives essentially the same behavior as the
solution of the full Rankine-Hugoniot equations, at least to second order. Note that
the Rankine-Hugoniot equations do not have a closed-form analytical solution.

Nonlinear shock dynamics theory allows the shock propagation velocity to vary
in proportion to the inverse square root of ray tube areas. This leads to higher
propagation speeds in concave regions and lower speeds in convex regions of the
front, thus reducing the tendency to form cusp. The assumption of constant up
should be good until the constant ur equation predicts cusp formation. In practice,
when the front is distorted by a turbulent flow it will never distort to the extent
of forming cusps, so the assumption of constant uF is well justified. In the case of
very weak shocks/strong turbulence, some variation of ur (perhaps a dependence
on shock curvature) should be included in the model.

2.2. Validating the field equation model

The field equation model is validated by comparing its predictions of front evolu-
tion with DNS. Since our interest is in nearly incompressible turbulence interacting
with the shock, we consider the interaction of vorticity waves with the shock. Three
cases are considered in order of increasing complexity (see Figure 1). First, the in-
teraction of a shock with a single steady vorticity wave (one sine wave u = Asinky
at normal incidence to the shock), next, the interaction of a shock with a single
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FIGURE 1. The three cases considered. (a) Steady, single mode, u = A sin ky, (b)
unsteady, single mode, u = Asinkycoswt. Tyub /Tehock ~ 1, (c) unsteady, many
modes, ‘full turbulence’. Ty yp /Tehock > 1.

unsteady mode, and finally, the interaction of a shock with 2D turbulence (many
unsteady modes at various angles of incidence).

In the second case, the time for the shock to pass through the ‘turbulence’ is of
the same order as the time-scale of the ‘turbulence’, while in the third case, the
time for the shock to pass through an eddy is much less than the turnover time of
the eddy.

In the first case, the prediction of the field equation is calculated from its third-
order perturbation expansion solution:

1
¢(n,7) =7 + ersinn + =e*7? cos? n
6
. (11)
- E631'5 sinn cos® n + O(e*).
Where non-dimensional quantities ¢ = ufup, n=ky, T = uptk, ¢ = kg. Note that
a secularity in time appears in (11): the perturbation expansion will break down

when
Te = 5_1/2 (12)

or,
te = (Kupu)~V/2, (13)

This is the time one expects the front to form cusps (places where the curvature
becomes infinite). The simple version of the field equation with constant u p is valid
until ¢..

(R
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FIGURE 2. Comparison of front shape in DNS with field equation prediction.
Comparison is made just before cusp formation (the worst time of agreement).
DNS, ---- Field equation

For the second case, the field equation is solved numerically using a Fourier
spectral method; for the third case, the field equation with a viscous term eV2G for
numerical stability is incorporated into the code of Lee et al. (1992). In all three
cases, the position of the shock in the DNS is found from the pressure half-rise
point.

In the first case, the agreement between the field equation and DNS was very
good until the time predicted by the field equation for cusp formation. Both the
curvature and front shape agreed well (see Figure 2). After the ‘cusp’ formed the
DNS showed the formation of two secondary shocks which increased in strength
and extent over time, while the original shock decreased in strength (see Figure 3).
The post-cusp multi-shock DNS results are similar to what was seen in the shock-
focusing experiments of Sturtevant & Kulkarny (1976).

The agreement in the second case is very poor: both the shape and magnitude
of the distortion predicted by the field equation do not match the DNS results.
We believe this discrepancy is due to the larger deviation of up from its assumed
constant value in this case.

In the case of 2D turbulence (M; = 1.2, M, = 0.07), the agreement of the field
equation prediction with DNS is very good, even over periods as long as three eddy
turnover times (Teurs. = A/u'). The correlation between the displacement and slope
of the field equation predictions and DNS is always over 80%, and mostly above 90%
(see Figure 4). The RMS error of the field equation predictions for displacement and
slope are also relatively low: generally less than 50% (see Figure 4). The fact that
the field equation model works well in the case of turbulence and the steady vorticity
wave, but not for the unsteady wave, indicates that the shock sees the turbulence as
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t=0.00 t=3.02

e

FIGURE 3. Evolution of front shape in DNS. Quantity plotted is dilatation. Note =
the cusp-like shape at t=5.59 and the formation of strong secondary shocks by
t=9.62

tI=0.0 tig=10 tIg=20 t1y=3.0

FIGURE 4. Comparison between instantaneous shock position in DNS and field
equation prediction over time. The dark line is the DNS prediction.
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FIGURE 5A. Correlation between DNS and field equation of instantaneous shock
position in 2D shock/ turbulence interaction Displacement, ---- Slope
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FIGURE 5B. RMS error in the field equation prediction of instantaneous shock
position in 2D shock/turbulence interaction Displacement, ---~ Slope

frozen. Hence, the case of turbulence corresponds to the steady case (the turbulence
time scale is about 1/100 the shock passage time ) and the agreement of the field
equation model with DNS is good. Note that presence of multiple modes at various
angles of incidence does not seem to affect the validity of the field equation model.
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FIGURE 6. Schematic of the way the 5155~ —$;Qyi plane is divided into four
characteristic structures.

3. Evolution of turbulence structure

In this section, we use the database of Lee et al. (1992) to study the evolution
of turbulence structure in 3D isotropic turbulence/normal shock interaction. The
results presented correspond to case C' for which M, = 1.2, M; = 0.095, and
Rey = 11.9 upstream of the shock. The following three quantities were investigated:
(¢) the angle between the vorticity vector (w) and the shock-normal, (i7) the angle
between w and the eigenvectors of the trace-free strain rate tensor defined as,

« 1 [0u; Ouj 1. Ou;
S,-j =3 (?93:_, + a—@) - gtsank, (14)

and (717) the angle between the velocity and vorticity vectors.

The angle between w and the eigenvectors of the rate of strain is indicative of the
type of turbulence structure. Recent DNS of homogeneous, isotropic turbulence (eg.
Ashurst et al. 1987, Vincent & Meneguzzi 1991) show that the vorticity vector aligns
with the intermediate eigenvector of the strain rate tensor. The angle between the
velocity and vorticity gives the balance between helicity density (their dot product,
believed to be related to coherent large scale structures) and the nonlinear transfer
of energy between scales (a function of their cross product). Some DNS (eg. Pelz
et al. 1985 and She et al. 1991) show a tendency for the velocity and vorticity to
align (a reduction in nonlinearity), while others (eg. Rogers & Moin 1987) see little
preferential alignment.

We also compute the ratio of eigenvalues of S¥; (a : 8 : 7v) and the relative numbers
of ‘cigar’ (afy > 0) and ‘pancake’ (afly < OS regions (see Kevlahan (1992). In
addition, we classify the flow (see Figure 6) into four structures (convergence, shear,

eddy, and streaming) based on (5755;:) and the (—£2;92;;) (where ©;; is the rotation
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FIGURE 7. PDF of the angle between vorticity and the shock normal upstream
of the shock (plane 72), just downstream of the shock (plane 111), far downstream
(plane 174). The PDFs have been normalized by dividing by the sine of the angle
and scaled so that 1.0 corresponds to a flat distribution. Note the persistence of
the alignment far downstream where the flow is essentially incompressible.

rate tensor). Structures are further classified as incompressible, compressed, or
expanded based on the value of S2./ (S"2 + Q) (if greater than 5% the region is
classified as compressible) and Six (less than zero, compressed; greater than zero,
expanded).

According to this structural classification, convergence regions are places of high
irrotational straining, shear regions are places of approximately equal rotational and
irrotational straining, eddies are regions of high rotational straining, and stream
regions are places where both the rotational and irrotational strains are small but
the kinetic energy is large.

The quantities described above are calculated in planes parallel to the mean shock
and averaged over ten realizations and homogeneous directions. The instantaneous
means over the plane are subtracted from each quantity before they are analyzed.
This eliminates the mean flow distortion and allows us to concentrate on the be-
havior of the turbulence itself. The PDFs of angles are normalized by the sine of
the angle so that vectors isotropically distributed will lead to a flat distribution (if
vectors are distributed isotropically over a sphere then the number of vectors at any
angle to the ‘north pole’ is proportional to the sine of the angle).
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FIGURE 8. PDFs of the angle between the vorticity vector and the three eigen-
vectors of the rate of strain tensor upstream and downstream of the shock. Note
the amplification of the alignments by the shock. The PDFs have been normalized
by dividing by the sine of the angle and scaled so that 1.0 corresponds to a flat
distribution. (a) Angle with largest eigenvector, (b) angle with middle eigenvector,
(c) angle with smallest eigenvector.

| IO T N T A |



il

W&

[ T

"N

wh

Shock/turbulence interaction 289

I T 1 1 1 l T 1 1 1 l LI LI

Up'str'ea'm

1.4 -_ Just down, — — -
1 Far down, —-—-~-

L\ /]

TH
o
a
0-6 i L 1 1 l 1 1 1 l 1 I 1 '} l 1 L 1 1
0 45 20 135 180
Angle (degrees)
Eddy regions Convergence regions
T sl SARLLELE EURLRLIL I AR AR B I
u’-f' -
0 . -
dl ; :
2
Al
L\ 4
10 v\(\\ -]
o.a: \\_./‘l'l(‘(/ ]
os lllllllllllllllll ] 0.6 lllllllllllllllllL
1] 45 90 135 180 0 45 90 135 180

FIGURE 9. Angle between the vorticity and velocity vectors. Note the significant
tendency for the vorticity and velocity vectors to align. (a) Overall, (b) in eddy
regions, (c) in convergence regions.
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3.1. Turbulence structure results

The eigenvalues of S!; are in the ratio 4 : 1 : —5 and are unchanged up and
downstream of the shock except in the vicinity of the shock itself where the middle
eigenvalue increases leading to the ratio 2 : 1: —3. These results are similar to the
ratio 3: 1: —4 found by Chen et al. (1990) for isotropic incompressible flows. The
flow is divided into pancake and cigar regions in the ratio 3 : 1 both upstream and
downstream of the shock. The flow is composed of 27% convergence, 39% shear,
23% eddies, and 4% streams (7% undefined). This distribution is constant up and
downstream of the shock. In the vicinity of the shock, the distribution changes
to 33% convergence, 26% shear, 11% eddies, and 8% streams (22% undefined). In
the vicinity of the shock, 82% of structures are compressible, and of these half are
expanded and half are compressed. Eddies and shear regions are primarily ezpanded
structures, while convergence regions are primarily compressed.

The vorticity vector preferentially aligns parallel to shock surface downstream of
the shock with a probability 1.7 times as much as in a flat distribution (see Figure 7).
This is a well known effect of the compression in the shock normal direction which
amplifies the vorticity parallel to the shock and leaves vorticity normal to the shock
unchanged.

Upstream of the shock where the turbulence is isotropic, we observe a very strong
tendency for w to align with ¢, (the middle eigenvector of S};) and to align at 90°
to £ (the largest eigenvector of S.;) (see Figure 8). Alignment of the vorticity with
€2 and at 90° to £; is 2.5 times more likely than in a flat distribution. The PDF of
the angle between w and &; is approximately flat. These alignments saturate before
the turbulence interacts with the shock. The alignments are further amplified on
passage through the shock, which is consistent with the Rapid Distortion Analysis
of Kevlahan (1992). An interesting point regarding the flow upstream of the shock
is that this alignment continues to develop after the velocity derivative skewness has
saturated. This may suggest that skewness saturation may not be the best indicator
that the turbulence is fully developed (evidently some structural evolution continues
even after the skewness has stabilized).

We observe a significant tendency for the velocity and vorticity vectors to align
(see Figure 9). This tendency increases as the flow moves through the computational
domain. Alignment (or anti-alignment) far downstream is about 1.35 times as likely
as in flat distribution. This alignment is strongest in eddy regions (1.48 times
as likely) and weakest in convergence regions (about 1.05 times as likely). This
indicates that the primary cause of the increase in helicity density (or decrease in
nonlinearity) is vortical rather than irrotational straining. There also seems to be
a tendency towards asymmetry upstream of the shock (eddies tend to antialign),
although this may not be significant. These results are somewhat stronger than
those of Rogers & Moin (1987) who find at most only a 20% deviation from a flat
distribution. This discrepancy may be due to the differences in the flows (ours is
slightly compressible and theirs is incompressible) or because our Reynolds number
is relatively low (about 25) and they find that the reduction in nonlinearity decreases
as Reynolds number increases.
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4. Conclusions

Field equation model predictions for front shape have been compared with DNS
results, and agreement is very good for 2D turbulence (MY =1.20, M, = 0.07) and
for a single steady vorticity wave. The field equation approach shows promise as a
way of modeling the shock/turbulence interaction.

The eigenvalues of Sf; in the developed turbulence are in the ratio 4 : 1 : =5,
except in the vicinity of the shock where they are in the ratio 2 : 1: —3. The ratio
of pancake to cigar type straining regions is in the ratio 3: 1.

In the vicinity of the shock, 82% of structures are compressible and of these half
are expanded and half are compressed. Eddies and shear regions are primarily ez-
panded structures, while convergence regions are primarily compressed downstream
of the shock.

Strong alignment of vorticity with the intermediate eigenvector of the trace-free
strain rate tensor is seen upstream of the shock and further amplifies on passage
through the shock. Vorticity tends to align at 90° to the largest eigenvector, but
there is no preferred alignment with the smallest eigenvector. The alignments con-
tinue to develop upstream even after the skewness saturates. This suggests that
skewness may not be the best indicator of fully developed isotropic turbulence.

It is interesting to note that our results on the alignment of vorticity with £
and the ratio of the eigenvalues are sometimes thought to be the result of turbulent
structures such as long vortex tubes (eg. Jiménez 1992), and yet our Reynolds
number is too low for these tubes to have formed.

There is a significant tendency for velocity to align with vorticity. This tendency
continues to increase with time throughout the computational domain. The align-
ment between velocity and vorticity is strongest in eddy regions and weakest in
convergence regions.

REFERENCES

ANYIWO, J. C. & BUSHNELL, D. M. 1982 Turbulence amplification in shock-wave
boundary-layer interaction. ATAA J. 20(7), 893-899.

AsHURST, W. T., KERSTEIN, A. R., KERR, R. M. & GiBsoN, C. H. 1987.
Alignment of vorticity and scalar gradients with strain rate in simulated Navier-
Stokes turbulence. Phys. Fluids 30(8), 2343-2333.

CHEN, J. H., CHONG, M. S., SORIA, J., SONDERGAARD, R., PERRY, A. E,,
ROGERS, M., MOSER, R., & CANTWELL, B. J. 1990 A study of the topol-
ogy of dissipating motions in direct numerical simulations of time-developing
compressible and incompressible mixing layers. In Studying turbulence using
numerical simulation databases - III, Proceedings of the 1990 summer program.
Stanford: CTR.

HESSELINK, L. & STURTEVANT, B. 1988 Propagation of weak shocks through a
random medium. J. Fluid Mech. 196, 513-553.

HONKAN, A. & ANDREOPOULOS, J. 1990 Experiments in a shock wave/homogen-
eous turbulence interaction. ATAA Paper, No. 90-1647.



292 N. Kevlahan, K. Mahesh & §. Lee

JAcQuUIN, L., BLIN, E. & GEFFROY, P. 1991 Experiments on free turbulence/
shock wave interaction. Eighth Symposium on turbulent shear flows, Munich,
September 9-11, 1991.

JIMENEZ, J. 1992 Kinematic alignment effects in turbulent flows. Phys. Fluids A.
4(4), 652-654.

KERSTEIN, A. R., ASHURST, W. T. & WiLLIAMS, F. A. 1988 Field equation for
interface propagation in a unsteady homogeneous flow field. Phys. Rev. A. 37,
2728.

KEVLAHAN, N. 1992 Rapid distortion of turbulent structures. In Proceedings of
the fourth European turbulence conference. To appear.

LEE, S., MoIN, P., & LELE, S. K. 1992 The interaction of isotropic turbulence
with a shock wave. Report No. TF-52. Thermosciences Division, Department
of Mechanical Engineering, Stanford University.

McKENZIE, J. F. & WESTPHAL, K. O. 1968 Interaction of linear waves with
oblique shock waves. Phys. Fluids. 11(11), 2350-2362.

RIBNER, H. S. 1954 Convection of a pattern of vorticity through a shock wave..
NACA TN-2864.

RoGERs, M. M. & MoIN, P. 1987 Helicity fluctuations in incompressible turbu-
lent flows. Phys. Fluids A. 30(9), 2662-2671.

SHE, Z., JACKSON, E. & ORszAG, S. A. 1991 Structure and dynamics of ho-
mogeneous turbulence: models and simulations. Proc. R. Soc. Lond. A. 434,
101-124.

STURTEVANT, B. & KULKARNY, V. A. 1976 The focusing of weak shock waves.
J. Fluid Mech. T3(4), 651-671.

VINCENT, A. & MENEGUzzI, M. 1991 The spatial structure and statistical prop-
erties of homogeneous turbulence. J. Fluid Mech. 225, 1-20.

WHITHAM, G. B. 1957 A new approach to problems of shock dynamics. Part I.
Two-dimensional problems. J. Fluid Mech. 2, 145-171.

ZANG, T. A. & BUSHNELL, D. M. 1984 Numerical computation of turbulence
amplification in shock-wave interactions. AJAA J. 22(1), 13-21.

[ A T

L T



