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A transport equation for eddy viscosity

By P. A. Durbin I AND Z. Yang 2

A transport equation for eddy viscosity is proposed for wall bounded turbulent

flows. The proposed model reduces to a quasi-homogeneous form far from surfaces.
Near to a surface, the nonhomogeneous effect of the wall is modeled by an elliptic

relaxation model. All the model terms are expressed in local variables and are coor-

dinate independent; the model is intended to be used in complex flows. Turbulent
channel flow and turbulent boundary layer flows with/without pressure gradient are

calculated using the present model. Comparisons between model calculations and
direct numerical simulation or experimental data show good agreement.

1. Introduction

Algebraic turbulence models (Baldwin-Lomax 1978, Cebeci-Smith 1974) have
been used extensively in calculations of aerodynamic flows. These algebraic models

are easy to implement numerically and give accurate predictions for simple flows,
such as that over an airfoil with an attached boundary layer; however, they are

inadequate when used for more complex flows, such as that over an airfoil with

separation. In addition, these models contain nonlocal parameters in their formu-
lations. The interpretation of these parameters becomes ambiguous in complex

geometries. Higher order turbulence models have been proposed to overcome defi-
ciencies of these algebraic models, the most popular among these being the k - e

model. The empirical constants in the k - e model have been optimized in a variety

of simple shear flows, giving what is commonly referred to as the Standard k - e

model (Launder and Spalding 1974, Rodi 1980).
The Standard k - e model was devised for turbulence far away from boundaries.

For near wall turbulence, the model either has been used in conjunction with wall

functions or has been modified by damping functions and other near wall terms to

give the so called near wall version of the k - e model. This fixed up model can be

integrated down to the wall.
In the wall function approach, one assumes the existence of a universal wall layer,

which is not valid in many complex flows. In the damping function approach, the

results depend on the damping functions used--a wide variety of which have been

proposed. These damping functions themselves must be assumed to be of a universal

form.
It is also found that for near wall flows the k - e model is numerically stiff: it

requires many grid points near the wall to get a grid independent solution. This
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numerical stiffness makes the model rather unappealing for aerodynamic computa-
tions. The numerical stiffness of the k - e model is partly due to the rapid variation
of e (and to a less extend k) near the wall.

The eddy viscosity, vt, varies much more gradually near the wall. This observation

suggests that an equation for the eddy viscosity might be less stiff; this was one

motivation for the work of Baldwin and Barth (1990) and Spalart and Allmaras

(1992). In these papers, a transport equation for eddy viscosity of the type originally

proposed by Nee and Kovasznay (1968) was formulated and solved in conjunction

with the mean field equations. Wall effects were introduced in these models by
damping functions, in which the distance to the wall y enters as an parameter.

This wall distance y is not a local property; its definition may be ambiguous for

flows in complex geometry--corner flow for example. Also, the damping functions

are assumed to be universal, which does not seem valid in flows with strong adverse
pressure gradients and separation.

Modeling of near wall turbulence is very important for engineering calculation

because the near wall portion of the boundary layer contributes substantially to
the total momentum and heat transfer. In the near wall region, the turbulence is

strongly inhomogeneous and strongly anisotropic. Recently, Durbin (1991) intro-
duced the method of elliptic relaxation to model the blocking effect of the wall on the

turbulence. In this method, the behavior of the near wall turbulence is given by the

solution of an (elliptic) differential equation rather than by prescribed algebraic ex-
pressions. Geometric information enters through the boundary conditions enforced

at the wall. Thus, it is hoped that this formulation can handle flows in complex

geometry. This approach also has the appeal that it is coordinate independent.

In the present work, we propose a new transport model for the eddy viscosity. Far

away from the wall, the model is based on the quasi-homogeneous approximation;

near the surface, the wall effect is introduced via an elliptic relaxation equation. The

structure of the paper is as follows: the proposed model is presented in section 2; in

section 3, we show calculations of turbulent channel flow and turbulent boundary
layer flows with and without pressure gradient; section 4 concludes the paper.

2. The proposed model

2.1 The eddy viscosity

In the framework of the eddy viscosity model, the unknown Reynolds stress -uiuj
in the mean momentum equation is assumed to be related to the mean velocity field
by

2

-uiuj _- 2t'tSij - _ k$ij (1)

where Sij is the strain rate of the mean field and t,t is the eddy viscosity. The last
term in (1), containing the turbulent kinetic energy k, can be absorbed into the
mean pressure. Thus, only the eddy viscosity needs to be modeled.

We propose that the general form of a transport equation for the eddy viscosity
be

o [(_-_t_t=V. v+ Vvt +q' (2)



A transport equation for eddy viscosity 295

where the turbulent self transport is assumed to be analogous to the laminar dif-

fusion artd• is a source term representing the combined effect of production and

dissipation of ut. Our objective is to propose a model for • which is valid for both
near wall and free shear layers. The justification for using a scalar eddy viscos-

ity, as in (1), is that our attention is on thin shear layers, in which transport is

predominantly transverse to the shear.

_._ Model for flow away from the wall

Far from the solid surface, the inhomogeneity of a turbulence field is relatively

weak. The model for q' could then be found by expanding about the homogeneous

state. This quasi-homogeneous ease is considered first.

For homogeneous shear flow, if vt is much larger than v, the only variables that can
enter the problem are the eddy viscosity vt and the shear rate S. (The shear rate S
will be defined here via the rate of strain tensor of the mean field: S = 2(SijSji) 1/2 .)

From dimensional reasoning, we have

-- _(S, vt) = clSvt (3)

where cx is a model constant. Experimental results for homogeneous shear flow give

cl _ 0.12.
In general, the flow is not homogeneous. Flow inhomogeneity can be represented

by lWd and by IVS[, which are measures of the inhomogeneity of the turbulence
field and of the mean field, respectively. If the inhomogeneity is weak, expansion

about the homogeneous state suggests the form

v 2

• = - c21Vv,I=- (4)
_V

where the length scale Lv is given by

L_-2 = . (5)

Other terms, such as I_t'tlut/Lv might be considered; (4) is analogous to the forms

selected by Baldwin and Barth (1990) and Spalart and Almaras (1992). The model

(4) allows inhomogeneities in both the turbulent field and the mean field to con-

tribute to 'dissipation' of the eddy viscosity.

_.3 Model for near wall turbulence

Eq (4) is based on an expansion near the homogeneous state. The expansion
is valid only for weak inhomogeneity. In the near wall region the flow changes

very rapidly to adjust to the boundary condition at the wall; thus, the flow field

is strongly inhomogeneous, and the expansion about the homogeneous state is not

expected to be valid. (Direct application of equation (2) with q' given by equation

(4) to turbulent channel flow at Re, = 395 leads to a value of the skin friction
coefficient too high by about 30%.) In the present work, this strong inhomogeneity
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is modeled by the elliptic relaxation model first proposed by Durbin (1991) for
Reynolds stress closures.

In the Reynolds stress transport equation, the velocity-pressure gradient correla-

tion term is a good candidate for this type of relaxation because pressure is elliptic in

nature. In the transport equation for the eddy viscosity, the pressure term does not

appear explicitly; which term should be operated on by elliptic relaxation is ques-

tionable. An examination of the transport equation for -_-fi/S in simple shear flows

reveals that there are two origins for the elliptic relaxation: the velocity-pressure
gradient correlation and the representation of v-2 in terms of _-fi. The combination

of these two effects suggests, in the case of the eddy viscosity transport model, that

we write cl = cll -c12 and introduce the elliptic relaxation such that the transport
equation appears as

° I/ ]=v. + w, + - - (6)

where P_ is the quantity subject to relaxation. It is governed by the elliptic equation

2 2
LpV P_, P. = -(c, lS., - c21W,12). (7)

In (7), Lp is the blocking length scale and is given by

L2 2 [ vt 2 v "_= cpmax _-_,ct-_) . (8)

The first term in the 'max' function represents the turbulent length scale, which

is appropriate away from the wall; the second term is chosen very close to the wall,
where the appropriate length is the Kolmogorov scale. The switching from one

length scale to the other is controlled by the value of ct and the total length scale
is controlled by %.

2.4 Modification near S = 0

Equations (5) and (8) give expressions for the length scales. These estimates

break down when S = 0. S = 0 can occur at the edge of a boundary layer or inside
a turbulent field, for example at the centerline of channel flow. A revision to the

length scale formulation is needed to accommodate these cases. The singularity will
be removed by the following modification:

(9)

(lO)

Over most of the flow field, the first term on the right hand sides of (9) and (10)
is much larger than the second term. The modification only affects the region near
S=0.

=

r

r
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In the course of developing and testing the model during the summer program,

another modification to Lv was inadvertently introduced: in the outermost portion

of boundary layers, Lv became constant. The algorithm was to make Lv be in-

dependent of V when Ovt/OV < O. vt decreases when g/_99 is greater than ,,_ 0.9.
In future work, this restriction will be removed; it is an effective way to avoid the

difficulty of specifying Lv in the free-stream, but its applicability is restricted to

attached boundary layers.

_.5 Boundary condition_

Equations (6) and (7), together with the length scales given by (9) and (10),

are the eddy viscosity model we are proposing for wall bounded turbulent flows.

They form a fourth order system of equations, and, consequently, four boundary
conditions are needed. These conditions are as follows: On a solid surface

vt = fi' Vvt = 0, (11)

where h is the surface normal; at a symmetry plane, the center line of a channel for

example, , s (12)
V t ---P; ---0,

where the prime denotes the derivative normal to the symmetry plane; at the

freestream edge of a boundary layer or shear layer

v[ = P_ = 0. (13)

The prime in (13) represents differentiation normal to the edge of the boundary

layer. In some situations, (13) might be replaced by a condition prescribing prop-
erties of free-stream turbulence if it is present.

_.6 Model constants

There are seven empirical constants in the present model. They are _r, c11, c12,

c2, c3, cp, ct. cll and c12 are related by

CII --C12 -'- C I.

C 1 _ 0.12 was determined by experiments on homogeneous shear flow.
Another relation among the constants is found by requiring that the model give

the right behavior in the logarithmic region of a boundary layer. This imposes the

constraint
1 cl c3

--+F--c2 =-_
a F 1 + _4

where _ is the Von KKrmgn constant; we take _ = 0.41.
The constant a in the turbulent diffusion term should be about 1 and the value

of cp, which marks the switching from the Kolmogorov length scale to the turbulent

length scale, should be about 3.5. All the other constants are chosen by comparing
with direct numerical simulation data for turbulent channel flow at Re_. = 395 and
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with experimental data for a zero pressure gradient, flat plate boundary. The values
of the constants selected in this study are

a = 1.3, czz = 0.4, c12 = 0.28, c2 = 1.3, c3 = 0.2, cp -- 3.5, ct = 1.6. (14)

The constants listed above represent a preliminary choice: they are subject to
adjustment in the course of further model development.

3. Results and discussions

Turbulent channel flows at different Reynolds numbers and turbulent boundary
layers with and without pressure gradient were calculated using the present model.

An implicit finite difference scheme was used to solve the momentum equation and
the turbulence equations. For the present cases, the equations are parabolic and

a marching scheme was used. The finite difference equations for vt and P_, were

solved as a coupled, block tridiagonal system. Variable grid spacing was used, with
densest spacing near the wall. The total number of grid points was set to 105, which
is large enough for the results to be grid independent.

Two dimensional, fully developed channel flow is attractive for model testing be-
cause it is statistically steady and nonhomogeneous in only one direction. Solutions
can be found very efficiently, yet the effects of the wall on turbulent shear flow

are still present. Computations were carried out for 2D fully developed turbulent
channel flows at Re_ = 180 and Rer = 395, for which DNS data are available

(J. Kim, private communication). Figure 1 shows profiles of the mean velocity at
these two Reynolds numbers along with DNS data. Both the dependent variable

and the independent variables are represented in wall units. The predictions are in
reasonable agreement with the data.

The second example calculated is the turbulent boundary layer with zero pressure
gradient. The zero pressure gradient boundary layer on a flat plate has a self-similar

profile (in the outer portion of the boundary layer, when scaled on outer variables).
Thus, arbitrary profiles could be used as the initial conditions, and the solution

should develop into its similarity form. Figure 2 shows velocity profiles scaled
by the free stream velocity and the boundary layer thickness at Reo = 3195 and

Re0 = 5473, respectively. The experimental data is from Coles and Hirst (1968).
It is found that indeed the velocity develops into a similarity profile, which serves

as a good check for the present model. Figure 3 contains a conventional log-linear

plot of the mean velocity profile. The agreement with the data is excellent except
in the viscous sublayer, where the model profile is a bit low.

From an engineering point of view, the skin friction is of great interest. The skin

friction coefficient as a function of Ree is shown in figure 4, along with experimental

data (Coles and Hirst 1968). It is seen that the model gives a good prediction
of Cf. The growth of the boundary layer in this range of Reynolds number is

illustrated by figure 5, which shows displacement thickness as a function of Re0. ¢5.

is normalized by the boundary layer thickness at Ree = 1000. The model gives a
slight overprediction of the boundary layer growth rate.

F
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FIGURE 1. Mean velocity profiles in channel flow. *, Re, = 395; x, Re_. = 180.

The lower Reynolds number profile is offset 5 units for clarity.

Next we calculate the development of a turbulent boundary layer in a pressure

gradient. The test case chosen is the Samuel and Joubert (1974) experiment on
a boundary layer developing into an increasingly adverse pressure gradient. This

boundary layer is not self-similar. During the 1981-82 Stanford Conference on

Complex Turbulent Flows, it was found that this flow is very difficult to predict;
since then, it has become a standard test case for turbulence models.

The initial condition for the computation was set in the following manner: We

assume that the turbulent boundary layer develops under zero pressure gradient

up to a point, x, say, at which the pressure gradient (which is known from the
experiment) is applied. The position x, is determined so that at the first point

of the working section of wind tunnel, where the experimental data begin, the

predicted values of Reo and C I agree with those of the experiment.

The predicted development of the boundary layer is shown in figure 6 along with

the experimental data. The variation of the skin friction coefficient with x and
the growth of the boundary layer thickness are predicted very well. The velocity

profiles at x = 1.87 m and x = 2.55 m are shown in figure 7. The agreement with

the experimental data is again found to be reasonable.
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FIGURE 2. Similarity form of mean velocity profiles in zero pressure gradient
boundary layer, e(_), Ree = 3195 ; x(- - -), Ree = 5473.
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FIGURE 3. Log-linear plot of mean velocity profile in zero pressure gradient
boundary layer.
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FIGURE 4. Skin friction coefficient versus momentum thickness Reynolds number

for zero pressure gradient boundary layer.
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FIGURE 5. Boundary layer thickness versus Reynolds number for zero pressure

gradient boundary layer.

4. Conclusions

We have presented a transport equation for eddy viscosity for wall bounded flows.

Away from the wall, the proposed model reduces to a quasi-homogeneous model.
The near wall effect is represented by an elliptic relaxation equation. Since geomet-
rical information comes through the location where the boundary conditions are

enforced while the model itself is free from the boundary information, the proposed
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model has the potential to handle flows in complex geometry. All the quantities
used in the model are local properties and are coordinate independent; the model

is also Galilean invariant.
Channel flow at two Reynolds numbers and flat plate turbulent boundary layers

with zero and adverse pressure gradients were calculated using the present model.

The comparison with the DNS and experimental data were found to be quite promis-

ing.
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IV. The combustion group

The combustion group conducted six projects. Three projects were related to

premixed and three to non-premixed combustion. The invited participants were:
Mr. M. Baum (Ecole Centrale Paris), Dr. J. H. Chen (Sandia National Labora-

tories); Prof. R. O. Fox (Kansas State University), Dr. D. C. Haworth (General
Motors Research Laboratories), Prof. J. C. Hill (Iowa State University), Prof. S.

Mahalingam (University of Colorado), Dr. T. Poinsot (Institut de M_canique des

Fluides de Toulouse), Prof. I. K. Puri (University of Illinois). The local partici-

pants were: Dr. R. D. Moser and Dr. M. M. Rogers from NASA Ames Research
Center, and Dr. F. Gao, Dr. A. Trouv_, and Dr. L. Vervisch from the Center for

Turbulence Research.

The broad scientific objectives of this group were similar to those of the CTR

1990 Summer Program: understanding of fundamental phenomena controlling tur-
bulent combustion and application to modeling. However, the tools used in 1992

have covered a wider range: 2D or 3D, variable or constant density, simple or com-

plex chemistry formulations for Direct Numerical Simulation (DNS) of turbulent
combustion have been used. Recent progress in numerical analysis and code de-

velopment have allowed us to use tools which were well adapted to the physical

problems considered by each group.
The first three projects were aimed at increasing our understanding of turbulent

premixed flames.
Poinsot & Haworth studied the interaction between a turbulent flame and a cold

wall. Flame quenching distances as well as wall heat fluxes were measured from
2D simulations. The characteristics of flamelets reaching the wall (curvature, flame

speed, quenching times) were used to build a 'law-of-the-wall' model for turbulent
combustion. A simplified version of this model was derived and may be implemented

in any flamelet model for turbulent premixed combustion.
A new 3D variable-density code was used by Trouv_ & Poinsot to investigate

the modeling of the evolution equation for the flame surface density. This analysis

shows the limits of present flamelet models and suggests how the exact evolution

equation for reactive surfaces may be closed to provide a suitable model. The effect
of the Lewis number was evidenced and its influence on source or consumption

terms for the flame surface density was demonstrated.

The first objective of the work by Baum, et al. was to prove the feasibility

of DNS with complex chemistry and the potential of this approach for pollution
studies. A second goal was to check whether the DNS results previously obtained

with single-step chemistry are modified by accounting for more realistic chemical
schemes. The project was based on a new 2D code where a DNS technique was

coupled to CHEMKIN and TRANSPORT, the SANDIA packages for reacting flows
with complex chemistry. Using this tool, it was possible to investigate the structure

PII_EDING PAGE BLANK NOT FN.MED
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of H2-O2 turbulent flames with the Warnatz scheme (9 species - 19 reactions). This
project also provides the first analysis of the effects of stretch and curvature on
flames with realistic chemistry.

The first project of Chen et al. was related to the effects of finite rate chemistry
and differential diffusion on the structure of turbulent non-premixed flames. 3D

variable-density simulations were performed over a range of conditions correspond-

ing to fast and slow chemistry. This project provided new insights on the validity

of the flamelet assumption as well as on the effects of transient regimes and small
scales on the inner structure of the flame zone.

Chen et al. investigated one of the classical assumptions used to model turbulent

non-premixed flames, i.e. single-step chemistry. Single-step and two-step chemical

schemes were compared using 2D variable-density simulations of a non-premixed
flame in isotropic turbulent flow. An important result was that extinction lim-

its appear to be quite different: while single-step chemistry lead to multiple local

extinctions, two-step chemistry feature more robust flames which do not quench.
DNS of a single-step chemical reaction with non-premixed reactants in forced

isotropic turbulence were used by Fox et al. to obtain joint pdf's and other statistical

information to parameterize and test a Fokker-Planck turbulent mixing model. The
simulations were performed using a constant density, 3D spectral code devcloped

by Moser and Rogers. Physical features as well as various statistics of the reacting
scalars and their gradients were examined and compared to the model.

This Summer Program has brought many new and original results. The activity

on non-premixed combustion was more intense than during previous programs and
opened new perspectives for modeling forthose flames. The demonstration that

DNS of reacting flows was possible while taking into account complex chemistry or
the presence of walls also opens new fields of investigations.

Modeling was one of our first objectives in this work. A fundamental aspect of the

1992 work is the impact and the power of DNS to answer certain critical questions

for turbulent combustion models. We believe that DNS of reacting flows is now
reaching a point where individual terms in combustion models may be estimated

from DNS (as done by Trouvd & Poinsot) and that this possibility will change the

way we construct models in the next few years.

Thierry J. Poinsot
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