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I. Summary

Analysis of interplanetary trajectories is a crucial area for both manned and

unmanned missions of the Space Exploration Initiative. A deep space maneuver

(DSM) can improve a trajectory in much the same way as a planetary swingby.

However, instead of using a gravitational field to alter the trajectory, the on-board

propulsion system of the spacecraft is used when the vehicle is not near a planet.

There are occasions (broken plane maneuvers are one example) where the

advantages gained at the endpoints of the trajectory outweigh the cost of the DSM.

The purpose of this study is to develop an algorithm to determine where and when

to use deep space maneuvers to reduce the cost of a trajectory. The approach taken

to solve this problem uses primer vector theory in combination with a non-linear

optimizing program. Primer vector theory applies the calculus of variations to the

trajectory problem in order to minimize AV. A set of necessary conditions on a

Lagrange multiplier called the primer vector arises from the analysis, and this

primer vector indicates whether a deep space maneuver will be beneficial. Deep

space maneuvers are applied to a round trip mission to Mars to determine their

effect on the launch opportunities. Other studies which were performed include

cycler trajectories and Mars mission abort scenarios. It was found that the software

developed was able to quickly locate DSM's which lower the total AV on these

trajectories.
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1. Introduction

Background

With the continuing efforts to develop Space Station Freedom, efforts are also

being directed toward the next steps in our space program; a return to the moon, and

then a manned expedition to Mars. In relation to these efforts, studies are being

performed to determine optimal trajectories for these missions. Trajectories can be

simulated and numerically optimized on a computer. These simulations can

determine the encounter dates which minimize some cost function, say initial mass

of the vehicle or total AV. However, other missions with different architectures and

lower costs may exist. The addition of a planetary swingby or a deep space

maneuver (DSM) changes the architecture of a mission and may reduce the overall

cost of the mission.

Since the location of a swingby is determined by the position of the swingby

planet, time is the only independent variable for the addition of a swingby.

Therefore, to determine if a swingby will reduce the cost of a trajectory, a second

simulation can be performed with the swingby architecture. By varying the time of

the swingby, the minimum cost of the new architecture can be determined and

compared to the cost of the original trajectory. The criteria for determining if a DSM

will reduce the cost of a mission is not so simple. One example of when a DSM will

be beneficial is in the transfer of a satellite between two non-coplanar orbits. Say

there is a satellite at point A in orbit 1 in Figure 1.1, and we want to rendezvous

with a second satellite at point B in orbit 2. This rendezvous can always be

accomplished with a two burn transfer trajectory. The plane of this trajectory is

determined by the points A and B, and the center of attraction of the orbits. As in

the figure, this plane may be highly inclined. The out of plane component of the



velocity on the transfer orbit will require large AV's at points A and B. A DSM can

be used to reduce theseout of plane components, and thus the total AV. If the

satellite remains in the plane of orbit 1 after the initial burn, an additional burn can

be applied when the satellite reaches the line of nodes. This burn would be used

only to change the plane of the transfer orbit from that of orbit 1 to that of orbit 2. A

final burn can then be applied at Point B to match the velocity of the second satellite.

Previous studies 1 have shown that allowing some of the out of plane AV's to take

place at Points A and B can reduce the total AV required even further. The DSM

would not take place right on the line of nodes, but rather some distance from it.

The location and time of a DSM are independent, and therefore the one-

dimensional search used for the swingby is no longer applicable. Since a DSM can

be located anywhere in space, a four-dimensional search of time and the three

coordinates of the DSM requires a great amount of computation. However, if a

reliable initial estimate can be generated for the time and location of a DSM, this

search can be reduced to a reasonable effort.

Primer vector theory, introduced by Lawden 2, can be used to make these

initial estimates. Previous work on this subject stemming from the work of Lawden

has been done by Jezewski and Rozendaal 3, Glandorf 4, and Lion and Handelsman 5,

among others. MULIMP 6 (Multi-Impulse Trajectory and Mass Optimization

Program) is a piece of software which was developed at ITT Research Institute, and

later at Science Applications, Inc. for the Jet Propulsion Laboratory in Pasadena,

California. MULIMP applies primer vector theory to place DSM's on interplanetary

trajectories, and may be the tool most commonly used to do so.

The purpose of this study is to develop new software which uses primer

vector theory to locate DSM's quickly on interplanetary trajectories. The software

has been integrated into a trajectory analysis code called IPREP (Interplanetary Pre-
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Processor)7. IPREP previously had the capability to place DSM's on trajectories,

however the routine which it used to find DSM's was very slow and not reliable.

This paper provides an introduction to primer vector theory, a method to

determine the initial estimates for the time and location of a DSM if one will be

beneficial, and an algorithm to incorporate DSM's on trajectories with swingby's.

Incorporating a DSM on a trajectory with a swingby presents a difficulty becauseif

the DSM precedes the swingby, then the inbound Voovector to the swingby is not

known a priori, and the swingby parameters cannot be calculated. The situation is

similar if the DSM follows the swingby or if more than one DSM is used on the

same leg of a trajectory.

Thesis Organization

The first major section of this thesis is devoted to reviewing all of the

assumptions and approximations used in the analyses which follow. A description

of the methods used in IPREP to calculate and optimize trajectories is presented.

The derivation and assumptions of primer vector theory will then be summarized.

Finally, the process of incorporating primer vector theory into IPREP will be

discussed.

Results are discussed in the next section. In order to verify that the new

software was functioning properly, a previous study which used DSM's was

analyzed with the new software. This study was of a Cycler trajectory between Earth

and Mars. A second study was done on round trip Mars missions to show the affect

DSM's can have on expanding launch windows. Abort scenarios for Mars missions

were also examined to determine how DSM's might be used to open more abort

options for manned missions. Finally, conclusions are drawn and

recommendations for future work are prescribed.

3



2. Analysis

Description of IPREP

IPREP was originally intended for use as an aid in using IPOST 7

(Interplanetary Program to Optimize Simulated Trajectories). IPOST will optimize a

trajectory when initial estimates for some of the parameters of that trajectory are

input. However, the input parameters must describe a reasonable trajectory to

guarantee convergence in IPOST. IPREP determines reliable initial estimates of the

V_ vectors and encounter dates to be used for inputs into IPOST. However, IPREP

can also be used as a stand alone tool for preliminary analysis of interplanetary

trajectories.

Inputs to IPREP include the order of the planets to be encountered,

maneuvers to be performed at each encounter, and a time of flight window from

each encounter to the next. For each of these windows, there is also an input step

size which determines how many dates will be checked in that window. For a given

set of encounter dates, IPREP calculates the trajectory using a patched-conic

technique. In this technique, the planets are assumed to be point masses, and the

position and velocity of each planet is found from one of the ephemerides available

in IPREP 8. A transfer orbit for each leg of the trajectory is found by solving

Lambert's problem. With these transfer orbits the Vo_ vectors are determined. For

launch or orbit insertion maneuvers, a parking orbit must be defined by the user.

With the parking orbit defined, the periapsis velocity in the parking orbit is known.

The energy equation:

E = IV°°I2 - ]Vperi 2 , (2.1)

2 2 rp



is used to determine IVperi I, the magnitude of the velocity at periapsis along the

inbound or outbound hyperbola for orbit insertion or launch, respectively. The

difference between this value and the magnitude of the velocity in the parking orbit

at periapsis is then the required AV, with the assumption being that all AV's are

made to be tangential to the orbit at periapsis. Notice that this method produces a

magnitude for the AV, but the direction of the AV vector is not determined.

If the inclination of the parking orbit is defined by the user and is such that a

plane change must be performed in order to get from the Voovector to the parking

orbit, this plane change burn is calculated separately and its magnitude (not a vector

addition) is added to the AV required for the maneuver.

Two methods are available in IPREP to determine the AV required for a

swingby maneuver. The first and more sirnple method compares the magnitude of

the inbound and outbound Voovectors and determines the angle between them by

taking their scalar product. The angle between the Voovectors determines the

required turn angle, 0, for the swingby, which is also given9by:

sin0 = 1 (2.2)
2 1-_rpVoo,in

If the required value of rp, the swingby radius, falls between the user input values

for the minimum and maximum values, then the required swingby AV is the

difference in magnitude between the inbound and outbound Voo vectors. However,

if the required rp falls outside of the allowed range, the additional turn angle must

be made up by the AV. In this case, the AV becomes:

_/Ivoo. 12 Voo 2AV=_/I ,In I + ,out +[Voo,in Voo,out cos(0-0max) (2.3)
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This method applies the AV after the swingby has been completed, instead of at

periapsis.

The second method to calculate swingby AV's uses a non-linear optimizer to

find the smallest AV which can complete the swingby 9. TM AV is applied at

periapsis along the inbound hyperbolic trajectory (which in general is not the same

as periapsis along the outbound hyperbolic trajectory). The non-linear optimizer is

invoked with the radius of periapsis and the direction of the swingby AV vector as

controls, and the magn!tude of the swingby AV as a cost function. A lower limit of

1.1 planetary radii is imposed on the periapsis radius to avoid atmospheric

interaction.

After all of the AV's have been found, a cost function for that trajectory is

evaluated4:

 F[v ,in]n IVy,out n AV n

tol(1,n) + _-I tol-_-,n) 4

-1

AVDSM'n 4 t°fn |4 initial mass v final mass

tol(6, n) tol(7, n) J tol(3,1) tol(4, N)

(2.4)

where N is the number of events in the trajectory, tOfn is the time of flight for the

n th leg, and tol(1-7,N) is a user defined array of weighting parameters. By weighting

different parameters in this equation, the user can define the cost function to be the

initial mass, total AV, or some other function.

IPREP begins by running the trajectory with all of the dates set to the

beginning of each encounter window. The last date is incremented and new

trajectories are run until the end of the last encounter window is reached. At that

point, the second to last date is incremented, the last date is reset to the beginning of

its window, and the process continues. The cost function is evaluated for each

trajectory, and the set of dates which produces the lowest cost function is saved.



After all of the combinations of dates has been run, the minimum cost trajectory is

written to an output file.

This 'grid search' method of optimization has advantages and disadvantages.

The disadvantage is that for trajectories with large encounter windows .or many

events, the number of trajectories to be calculated grows very quickly. For a

trajectory with N events and m dates to be checked for each event, the total number

of trajectories to be run is mN. The advantage to the grid search method is that it

will not become trapped in a local minimum as gradient methods do. IPREP does

also allow the user to define a maximum total trip time, which may eliminate some

of the combinations of dates before those trajectories are run.

Primer Vector Theory

The derivation of four necessary conditions for optimality on impulsive

trajectories where the total AV is minimized was presented by Lawden 2. That

derivation is summarized in the Appendix of this report. The conditions derived

are:

1) The primer vector and its first time derivative are continuous.

2) During any impulse, the thrust vector must be aligned with the primer.

3) The magnitude of the primer is a maximum and has a value of one during

any impulse.

4) The derivative of the magnitude of the primer is zero at a deep space

maneuver.

In arriving at these conditions, the spacecraft was treated as a point mass in an

inverse square law gravitational field. The thrusts were modeled as impulses, and

assumed to occur over infinitesimal time duration. Also, the cost function was

taken to be the total AV, which is given by the rocket equation as:

7



AV = g0Isp In (2.5)

It should be noted that the cost function here is different than the cost function used

in the grid search optimization in IPREP. However, minimizing total AV is

equivalent to minimizing the initial mass of the vehicle if no discontinuities in the

mass of the vehicle are incurred. Mass discontinuities occur if part of the vehicle

(say a Mars excursion vehicle) is jettisoned. In general, this only occurs at the end of

a leg of the trajectory, and since primer vector theory will be applied to each leg of

the trajectory separately, total AV is a good choice for the cost function here.

It is noted from equations A.20 and A.21 in the appendix of this report, that

the primer vector, _., satisfies the same differential equation as the 'deviation

vector' in equation 9.31 of Reference 10.

equation 9.45 in Reference 10 as:

The solution to this equation is given by

(2.6)

Therefore, the primer vector can be found at any point along a trajectory from the

equation:

_" = _(t't0) _-0
(2.7)

where _(t,t 0) is the overall state transition matrix. If _ and the initial conditions

on the primer vector and its derivative are known, then the primer and its

derivative can be found along the entire trajectory. Assuming we have a mission

which begins with a launch and ends with an orbit insertion, then the primer vector

at the initial and final times is known to be a unit vector in the direction of the

thrust at those points. The parameters of the parking orbits at each end of the

trajectory provide the information to determine the position and velocity of the

8



spacecraft at periapsis. From this information, and from a Lambert solution

between the initial and final position of the spacecraft, the direction and magnitude

of the initial and final AV's can be determined. Equation 2.7 becomes:

t=tf LKoJ L_21 _22JL_o j

where the 6X6 matrix _g(tf,t 0) has been replaced with the equivalent four 3X3

matrices. These leads toS:

(2.8)

_f = _11_.0 + _12_.0 (2.9)

_'0 = _12-1[_'f- _g11_'0] (2.10)

If 14/12 is not singular, we can find the initial conditions on the derivative of the

primer vector. With these conditions known, the primer vector can be propagated

along the entire trajectory.

A problem occurs when we cross into or out of a sphere of influence (SOI).

The sphere of influence is an imaginary boundary, where inside the sphere all

motion is assumed to be governed solely by the gravitational attraction of the

planet, and outside of the sphere, motion is assumed to be governed by the

gravitational attraction of the sun. To further develop the idea of the SOI, consider

a spacecraft in space near a planet. Its motion can be modeled as a two body

problem, where the spacecraft and the planet are orbiting around their common

center of gravity. The attraction of the sun, which is considerably farther away, can

be approximated as a disturbing force in that two body problem. As the spacecraft

moves away from the planet, the ratio of the disturbing force from the sun to the

force from the planet increases. As we move farther from the planet, the motion

9



can be modeled as the spacecraft orbiting the sun, and the attraction of the planet

could then be considered the disturbing force. At some distance from the planet, the

ratio of the disturbing force to the central force will be the same for each of these two

models. The mean distance at which this is true is defined as the radius of the

sphere of influence for the planet. The magnitude of this radius will be dependent

on the direction the spacecraft has moved from the planet. However, if the distance

between the sun and the planet is much greater than this radius, then the radius is

approximately constant for all directions10,and the SOI is approximated to be a true

sphere. The value for the radius of the SOl for each planet is provided by the

ephemeris information in IPREP8.

Since the initial and final conditions on the primer are determined by the AV

vectors inside the SOl, the primer vector must first be propagated from its initial

condition out to the boundary of the SOI. When the primer exits the SOI, Glandorf

has shown 4 that the primer is continuous, but its derivative is not. Fortunately, the

discontinuity in the derivative is not arbitrary, and can be calculated. To generate

the primer across a sphere of influence:

The + indicates a value immediately after crossing the boundary, and the - indicates

the value immediately before crossing the boundary. S is a 3X3 matrix 4, dependent

on the position and velocity of the sphere of influence with respect to the sun, and

the velocity of the spacecraft with respect to the sphere. The S matrix is also

dependent on whether the spacecraft is entering or leaving the sphere. With this in

mind, the overall state transition matrix can be formed:

_(tf, to) = ¢_(t_, t 2)W(t2)q_(t2, tl )W(tl )_(tl, to) (2.12)

10



where tl is the time when the spacecraft leaves the first SOI and t2 is the time when

the spacecraft enters the second SOI. q_(tf,t2) and _(t1,t0) are the state transition

matrices for the travel in the second and the first SOI's, respectively, and _(t2,tl) is

the state transition matrix for travel between these two SOI's. If the trajectory

consists of a launch, followed by an unpowered swingby and then an orbit insertion,

the overall state transition matrix must be adjusted. This means a total of four

extra matrices need to be multiplied into _(tf,t0); one state transition matrix to get

from the previous SOI to the swingby SOI, one W matrix to get in the SOI, another

state transition matrix to get through the SOI, and one more W matrix to get out of

the SOI.

With the overall state transition matrix and the initial conditions on the

primer and its derivative known, the primer can be generated by equation 2.7.

When this is complete, the primer history can be analyzed to find if there are

indications that a DSM would be beneficial. By propagating the primer with the

state transition matrices, the primer is guaranteed to be continuous. Its derivative

will also be continuous everywhere except at the boundaries of the SOI's. This

discontinuity is only a result of the mathematics involved in changing coordinate

systems and the center of attraction governing the motion, and is not an indication

of a non-optimum trajectory. The primer has been defined as a unit vector along

the AV vectors, so the first and second necessaryconditions stated earlier are

satisfied. Since a DSM has not yet been added, the fourth condition is also not

satisfied. Only the third condition is left to be satisfied. If the maximum magnitude

of the primer along its history is greater than one, the trajectory is not optimal, and a

DSM will be beneficial. To first order, the best time for the DSM is at the time when

the primer magnitude is greatest3. Some representative optimal and non-optimal

primer magnitude histories are show in Figures 1.2- 1.5.

11



Approxirnating the Location of a DSM 3

The state transition matrix q_(t1, t 0) defines how the state of a spacecraft at

time tl will be affected by changes in the state at time to:

0r(t 1) I 0r(tl) 1

¢(tl'to)= _Zt%)-_{(t_)/: L_2_',-_-22J
a ---71J

To find the location of a DSM, consider perturbations about the trajectory to

which a DSM is being added. The nominal and perturbed trajectories are shown in

figure 2.1. Take the point on this nominal trajectory where the primer has its

maximum magnitude (call this time tm), and perturb the location by some amount,

3_(tm). From the definition of the state transition matrix:

(2.13)

"Or(tin)7 For()7
aV(tm)j_ = @(tin't°)La%J

(2.14)

tin)1 .For(t_)l
(2.15)

La;'c(tm)J+

The endpoints on the trajectory are fixed, and so 3f(tf) = Or(t 0) = 0. Also note

that 0_(tm)_ = 3_(tm) + for continuity.

From equations 2.14 and 2.15:

O#(t m )+ - 0#(t m )_ = qb22(tm, tf)0#(t f) - q_22(tm, t0)Ovc(t0 ) (2.16)

0vc(t f) = ¢12 -1 (tm, t f)Or(tm)+

Ov(t0) = @12-1(tin, t0)Or(tm )-

(2.17)

(2.18)

12



2-1 2-1
1

OvC(tm )+ - c)v(t rn )- = [q_22(tin, tf)_l (tin, t f) - (_22(tm, to)_l (tin, to)Jar(tin)

(2.19)

or

where

0F(t m) = A-l[0vC(tm)+ - 3vC(tm)_] (2.20)

A = [q_22(tin, tf )(_12-1(tm, tf) - (])22(tin, t0)q_12-1 (t m , t0)] (2.21)

The thrust vector of the DSM must be aligned with the primer vector on the new

trajectory. For small perturbations, the direction of the primer on the new trajectory

can be taken to be the same as for the non'final trajectory. This yields the equation:

3_(tm) = dA-1 ]_}l (2.22)

where d is the magnitude of the DSM AV. Jezewski and Rozendaal 3 expressed the

total AV on the trajectory as a second order function of d. Taking the derivative of

this expression with respect to d, and setting the resulting expression equal to 0, they

arrived at an expression for d to be used in finding 07(tin). The expression can be

added to the radius on the nominal trajectory to arrive at the position of the DSM:

rDSM = rNOM (tm) + 0_(tm) (2.23)

A non-linear optimizer is then invoked with the initial estimates for the

three coordinates of the DSM and tm as four independent variables, and total AV as

a cost function. The original trajectory now consists of two legs: one from t0 to tm,

and the second from tm to tf. The primer vector can then be found along each of

these new legs, and the optimality conditions can be checked again.

13



Finding DSM's on Trajectories with Swingby's

The problem previously mentioned in incorporating a DSM either before or

after a swingby has been solved by using the method of the previous section. With

an initial estimate for the location and time of the DSM, the swingby parameters can

be calculated, and the total AV for the trajectory can then be found. Two options are

available to calculate the primer along a trajectory which uses a powered swingby.

The first is to treat both the powered and unpowered swingby scenarios similarly.

This would involve propagating the primer vector all the way through the SOI of

the swingby planet. For a powered swingby where the impulse takes place at

periapsis of the inbound hyperbolic trajectory, one state transition matrix for the

inbound hyperbolic orbit, and a second state transition matrix for the outbound

hyperbolic orbit are needed. As rnentioned previously, an unpowered swingby

involves four additional matrix multiplications in the calculation of _(tf,t0). A

powered swingby would therefore require five multiplications° This method

guarantees continuity of the primer and its derivative at the swingby, but it does not

guarantee that the primer will be a unit vector aligned with the thrust at the point

when the impulse for the swingby is applied.

The second option is to analyze the trajectory in two separate parts. The first

part is from the beginning of the leg to the swingby, and the second is from the

swingby to the end of the leg. This method can only be used on powered swingby's,

since an unpowered swingby does not provide a thrust vector which determines the

boundary conditions on the primer vector. This method guarantees that the primer

will be a unit vector aligned with the thrust at the swingby (since it will be defined

as such), but it does not guarantee continuity of the derivative of the primer at the

swingby. After a comparison of these two methods, which will be discussed later,

the second option was selected.
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3. Software Developed

Integration into IPREP

The methods described earlier to find the time and location of a DSM along

an interplanetary trajectory were implemented in a computer program. The

program is written in FORTRAN, and was originally written to run independently

of any other software. It has recently been integrated into IPREP. Presently, it takes a

trajectory from IPREP, finds the overall state transition matrix for each leg of the

trajectory, and computes the primer vector along the entire trajectory. Then, the

primer vector history is examined to find if and when the magnitude exceeded

unity. If it has, a routine is called to generate the initial estimate for the location of a

DSM, and this estimate along with the time of the DSM are sent to an optimizer,

where total AV is the objective function. When the optimization is complete, the

new trajectory is compared to the original to verify that the cost function has been

reduced by the DSM.

A considerable amount of work had to be performed in order to calculate the

overall state transition matrix with the information in IPREP. As noted previously,

with the technique used in IPREP, the magnitudes of the required AV's are found,

but the direction of the burns is never calculated. This information is necessary to

provide the boundary conditions on the primer vector, and therefore must be

extracted.

For a launch, the direction of the AV is the same as the direction of the

velocity vector at periapsis, while for an orbit insertion, the direction of the AV is

the opposite as the direction of the velocity vector at periapsis. In order to

determine the direction of the AV, the part of the trajectory which takes place within

the SOI must be taken into account. The turn angle which is incurred by the

15



velocity vector while within the SOI is one half of the turn angle of a swingby with

the same V_ vector and periapsis radius, and can therefore be found with equation

2.2. So the direction of the periapsis velocity can be found by rotating the V,_ vector

in the plane Of the hyperbolic orbit by this turn angle. The plane of the hyperbolic

orbit must be defined. The inclination of the orbit is taken to be equal to the

declination of the V,_ vector. As before, any plane change necessary to comply with

input restrictions on the parking orbit will be treated as a separate burn. Then, the

line of nodes is taken to be perpendicular to the V,_ vector. The line of nodes and

the inclination completely define the plane of the orbit, and there is now enough

information to determine the direction of the burn. The direction of a swingby AV

can be found in a similar manner for both the optimized and the simple swingby

methods.

z

Optimizer

Two optimizers were implemented in the software to determine which

optimizer was the better in terms of speed and finding a lower total AV. The first

was a simple, first order optimizer which was written explicitly for this application.

There are four independent variables; the three coordinates for the location of the

DSM, and the time of the DSM. The initial estimates for these variables, which can

be obtained as described earlier, are input to the optimizer. The original two burn

trajectory is now broken into two separate trajectories. The Lambert problem is

solved from the location of the first burn to the location of the DSM, and a second

Lambert problem is solved from the location of the DSM to the location of the

second burn. With the required transfer trajectories now known, the three AV's can

be found, and the sum of them is saved. The optimizer then increments each of the

three coordinates of the location of the DSM by a pre-defined step size. For the first
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increments, this step size is taken to be one tenth of the magnitude of the position

vector on the original two burn trajectory at the time of the DSM. The X, Y, and Z

components of the location are incremented in both the positive and negative

directions, and for each case, the sum of the AV's is found. The new location of the

DSM is then assigned to be whichever of these six steps produced the greatest

decrease in the sum of the AV's. If none of the six steps produced a reduction in AV,

then the step size is halved for the next iteration.

After the six steps for the location of the DSM have been tried, and the one

with the best result is taken, the time of the DSM is incremented. The initial step

size for the time increment is one tenth of the time of flight of the original

trajectory. As with the other variables, the time step is applied both in the positive

and negative directions, and the one which results in the greater decrease in AV is

assigned as the new time for the DSM. If neither results in a decrease in AV, then

the time step is halved, and the optimization continues with the location variables.

Upper and lower bounds are applied on the time variable, so that the time

step will not place the DSM outside of the time of flight for the original trajectory.

No boundaries are put on the location variables. If one of the steps puts the location

of the DSM in an unfavorable location, the AV will increase, and the optimizer will

not take that step. The optimization is considered complete when the location step

size is 0.01 of its original size, and the time step is less than 0.1 days.

The second optimizer which was considered was a commercially available

code known as ADS (Automated Design Synthesis) 11. ADS offers a variety of

optimization techniques including a conjugate gradient method and a variable

metric technique. ADS allows the user to either supply gradient information, or

ADS can calculate gradients internally. For this application, all the gradients were

calculated internally by ADS, which uses a finite difference method. It was hoped
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that ADS would converge on a minimum faster than the other, less sophisticated

optimizer, but this was not found t0 be the case. The amount of time ADS required

to complete the optimization was dependent on the method of optimization used in

ADS. Most of the methods took significantly longer than the first optimizer. The

method in ADS which converged as fast as the other optimizer found a solution

which did not have as low a AV as the first optimizer. For this reason, the first

optimizer is the one that was selected for the software.
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4. Results

Cycler Trajectory Analysis

Once the software had been written, a verification that it was working

properly was desired. This verification was done by use of a study which had been

done previously 12. This Study incorporated DSM's on an interplanetary cycler

trajectory with the use of the DSM routine currently in IPREP. The cycler in this

study is a spacecraft which is put into an orbit which continually cycles past both

Earth and Mars. At each encounter, a swingby is performed to send the cycler back

to the other planet. The cycler which was analyzed had eight Earth swingby's and

seven Mars swingby's between the years 1996 and 2011.

The results from this previous study were reproduced using the DSM routine

(BPLANE) which is currently in IPREP. The same mission was then analyzed with

the new DSM routine (PRIMER). When this trajectory was analyzed using the first

option described earlier for trajectories with swingby's, a problem occurred. The

additional matrix multiplications involved in each of the swingby's led to round off

error in the overall state transition matrix. The propagation of the primer vector is

very sensitive to the initial conditions, and the error in the overall state transition

matrix caused the primer to fail to meet the final boundary conditions. For this

reason, the second option (splitting the trajectory at each swingby) was seen to be the

better.

Table 4.1 shows the AV requirements for the nominal mission (where no

DSM's are used). The AV's on legs 6 through 10 are significantly greater than those

on the other legs, and so the analysis performed in Reference 11 involved looking

for DSM's only on legs 6, 8, and 10. The last two columns in Table 4.1 show the AV

requirements for the trajectories which were found with the BPLANE routine and
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the PRIMER routine. Each was able to locate DSM's which significantly reduce the

dlV requi:rements of the mission. The fact that the new PRIMER routine found a

trajectory with a slightly lower total AV is not as significant as that it did so in

approximately one third the tirne.

A closer look at leg 6 proves revealing. The DSM which was found by the

BPLANE routine reduces the sum of the kV's for the two swingby's surrounding

that leg to 0.562 km/sec. The total AV for the same leg on the PRIMER trajectory is

0.624 km/sec. On this particular leg, the BPLANE routine found a more efficient

DSM. Figure 4.1 reveals that the initial estimate for the time of the DSM made by

the PRIMER routine was July 29, 2002. Figure 4.2 then shows that the optimizer

moved this date back to July 23, 2002. However, the optimizer was unable to find

the more efficient DSM on May 25, 2002 which was found by the BPLANE routine.

The conclusion can be drawn that each routine is susceptible to local minima in the

optimization process. Figures 4.3 to 4.6 show the primer magnitude histories for

legs 8 and 10.

A second analysis was performed on the same mission. Using the same

encounter dates for each of the swingby's as the previous analysis, DSM's were

sought on each leg. The results for this study are in Table 4.2. Surprisingly, the

BPLANE routine finds a mission with a higher total AV than the BPLANE routine

with three DSM's. Most of this increase in AV occurs at the Mars swingby before leg

2. The reason that the BPLANE routine places a DSM on this leg is that the

optimization in the BPLANE routine cannot account for the AV of a swingby which

follows a DSM. The BPLANE routine is invoked in IPREP as soon as there is a leg

which calls for a DSM. If this leg ends with a swingby, the AV cannot be found since

the next leg has not yet been found to determine the outbound V_,, vector for the

swingby. This problem does not occur if the leg ends with an orbit insertion. The
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PRIMER routine lets IPREP calculate the entire trajectory before it is invoked. Then,

with all of the AV's known, the primer analysis can be done, and the DSM's are

inserted last. The PRIMER routine is able to find a total of 7 DSM's on the cycler

trajectory and reduces the total AV to 2.212km/sec.

Launch Window Analysis

Another analysis involved the determination of the initial mass of a

spacecraft which was to perform a direct (no swingby's), round trip mission to Mars.

The initial mass which was needed to perform the mission was plotted against the

launch date of the mission in Figure 4.7.1. Launches were taken every 5 days over a

period of 500 days, starting from January 1, 2010. Outbound and inbound flight

times were varied for each launch date in order to find the combination of

encounter dates which produce a minimum initial mass. The Mars stay time was

fixed at 60 days for all trajectories. The parameters of the mission are summarized

in Table 4.3 and were the same for cases with or without DSM's. Parking orbit

inclinations were not specified, and so IPREP always selects the inclination to equal

the declination of the inbound or outbound V_ vector for orbit insertion or launch,

respectively.

Figure 4.7.1 shows noticeable improvements by using DSM's over the second

half of the time period examined. Srnaller improvements were also made for

launch dates in January and February of 2010. Of the 101 launch dates examined, 98

were improved by the use of DSM's. Figure 4.7.2 shows the percentage of mass on

the nominal mission which is saved by the use of DSM's. The discontinuity on this

plot is caused by the three dates where no DSM could be found, since the zero

percent savings cannot be plotted on the logarithmic scale. The purpose of this

study was not to do a detailed exarnination of when launch opportunities occur, but

rather to show that DSM's can expand the launch windows. Figure 4.7.1 shows that
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by using DSM's, the minimum initial mass pertaining to a specific launch date may

be reduced below a specified maximum allowable initial mass, thus including that

date in a launch window.

|

Abort Mission Analysis

Two round trip Mars missions were selected to serve as nominal cases for an

abort mission analysis. These missions were selected because they have a relatively
=

low total AV and initial mass, and could be considered practical candidates for a

manned Mars mission. Again, this study was done to show the usefulness of the

DSM capability in IPREP, "and not as an in-depth mission analysis.

The launch date of the first mission is in the year 2020, and the mission

parameters are outlined in Table 4.4. The nominal mission (where there is no

abort) has a two year trip time, including 60 days stay time at Mars. The abort

mission assumes that some problem occurred after launch, and the spacecraft is to

return to Earth at least 50 days earlier than the nominal mission. To accomplish

this, the orbii insert at Mars is replaced with a swingby. The Mars encounter date for

the abort mission is the same as for the non-final mission, while the Earth return

date is allowed to vary up to the maximum trip time to find the minimum initial

mass needed to complete the mission. The abort mission was run with and without
22 2 _:

searching for a DSM on the return leg. A DSM was not used on the first leg, since i{

is assumed that ihe problem _ _:occurred after launch, and the vehicle has achieved the

desired trajectory which will rendezvous With Mars. The second mission has a

launch date in the year 2022. Its parameters are also outlined in Table 4.4, and the

abort scenario is the same as for the first case.

The desired result is for the abort trajectory to require less initial mass than

the nominal case. When this is true, the abort trajectory is available at no additional
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cost. If the abort trajectory requires a slightly greater initial mass, then it may still be

practical to include this extra propellant mass on the nominal mission in order to

have the abort trajectory available should a problem occur. The results of this study

are shown in Tables 4.5.1 and 4.5.2. Unfortunately, a practical abort trajectory was

not available on either of these two missions. However, DSM's were able to

improve the abort trajectories in each case. Although the improvement was not

great enough to make these abort trajectories feasible, the indication is that for

future abort mission analyses, it is worthwhile to search for DSM's. Other abort

studies have tried using Venus swingby's to open up abort trajectories. Having the

DSM capability in IPREP creates rnore possibilities for abort analysis such as using

Venus swingby's in combination with DSM's.

Figures 4.8 and 4.9 show the primer magnitude history for the 2020 abort

mission with and without the DSM, respectively. Figures 4.10 and 4.11 are similar

figures for the 2022 abort missions. The trajectories for the nominal and abort

missions for both the 2020 and the 2022 missions are shown in figures 4.12 to 4.17.
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5. Conclusions

i

Primer vector theory is useful in determining if a trajectory will be improved

by the use of a DSM. Once the primer magnitude history has determined that a

DSM should be incorporated, primer vector theory also provides a method to

determine initial estimates for when and where to place the DSM. The problem of

being unable to calculate swingby parameters when a swingby is either preceded or

followed by a DSM is avoided by the use of primer vector theory. This allows any

trajectory to be subject to a primer analysis.

The software developed was shown to work effectively and efficiently in

improving interplanetary trajectories with deep space maneuvers.

The cycler trajectory analysis verified that the software developed will find

DSM's which reduce the AV required on a trajectory. The results compared

favorably to the BPLANE routine in IPREP which also finds DSM's. The greatest

advantage of the new software is the reduction in time required to find DSM's.

Although each routine found trajectories with comparable _V's, the dates of the

DSM's vary considerably, indicating that each code is susceptible to local minima in

the optimization of the DSM's. However, the new software is more robust, in that it

will never increase the total AV on a trajectory, while the BPLANE code may do so.

The launch window analysis showed another use for DSM's. DSM's were

shown reduce a vehicle's initial mass required to complete a mission. If a

maximum initial mass is defined, it is apparent that DSM's may be able to reduce

the initial mass associated with some launch dates from above this maximum to

below it, thus expanding the launch windows for that mission.

The final study showed that DSM's are also useful in looking for possible

abort trajectories. Although no practical abort trajectories were found for the two
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mission examined, the data indicated that some abort trajectories will become

available with the use of DSM's.
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6. Recommendations for Future Work

The software developed can be used to perform more detailed analyses of the

type which were done for this paper. Launch window analyses for direct Mars

missions as well as missions which use Venus swingby's on the inbound or

outbound leg can be performed. More in-depth abort analyses can be performed.

'Grand Tour' missions which pass by many planets on the way out of the solar

system can be done with DSM's on some or all of the legs.

As for more development in the software, the most important suggestion

would be to have the cap'ability to look for more than one DSM on one leg of a

trajectory. The software to propagate the primer vector along a trajectory after a

DSM has been inserted has already been written. With the primer magnitude

history known, all that remains to be done is to generate an initial estimate for the

location of the second DSM, and then to invoke an optimizer. The optimizer would

have to be altered for the second DSM. The time and three position coordinates of

both the first and second DSM's could be used as independent variables in the

optimization, and the optimizer currently in use was written specifically for the

optimization of one DSM with four independent variables. Figures 4.2, 4.4, and 4.6

indicate that a second DSM could be used on those legs to further reduce the AV.

Non-linear methods could be applied to the problem when primer vector

theory fails due to the limits imposed by the linear approximations. Non-linear

methods could improve the initial estimate for the location of the DSM when that

location is distant from the nominal trajectory, and make the software more robust.
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8. Tables

Table 4.1: Comparison of BPLANE Code and PRIMER Code for Cycler Trajectory
from Reference 12

NOMINAL BPLANE PRIMER

LEG

NUMBER

2

3

4

5

6

7

8

9

10

11

12

13

14

SWINGBY

PLANET

EARTH

DATE AV AV AV

(KM/SEC) (KM/SEC) (KM/SEC)

19 NOV 1996

1 MAY 1997

0.073

0.081

0.073 0.073

MARS 0.081 0.081

EARTH 1 JAN 1999 0.067 0.067 0.067

MARS 28 MAY 1999 0.064 0.0'6",_ 0.064

EARTH 8 FEB 2001 0.098 0.098 0.098

MARS 0.000

DSM

EARTH

MARS

DSM

EARTH

6 JUL 2001

25 MAY 2002

23 JUL 2002

16 APR 2003

12 SEP 2003

9 AUG 2004

15 JUL 2004

7 JUL 2005

13 DEC 2005

17 OCT 2006

27 JUL 2006

6 SEP 2007

MARS

1.536

!!!i!iii!iiiiiii!!i!ii!!!!!ii!ii!iiiiiiii_ii!iiiiiiilE!iii!_[_i![i!

DSM

0.462

i!iii!i!iiii!ii!iiiii!iiiiiii!iii!i!iiiii!i!iiiii!iiiiiiiiiiiii!ii!iiiiiiiiiiii!iiiiiiiiiiii!iiiiiiiiiiUiiiiiiiiii!iiii!iiiii!i!iiiiiiiii!iiiiii
:i_E!:I::i:!:!:!:i:i:!:i:i:i:i:i:i:i:i:i:!:i!i:i:iiiii:iii:i':i:!:: [ ;i:i:i:i:i:!;i;i:E:i:i:;:_:i:i:!:E:_ii:!:!:!ii;i:!:i:!:i:i:!:i:i:i:i:ii

2.467 0.100

2.247 0.000

i::illiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiii!iiiiiiiiiiiiiiiiliiiliiii 0.582

::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::

iiiii Jiiiiiiii!iiiiiiiii!ii!il i! i! f i i i i i i i i i iE i i!i ! i!i!_i!!i!ii!i_!_ili!!_i!i_!!i!iiii

_i!i_i!i_iiii!ilililiiii!ii!iiii!i!iii!!!i!!iii:!i_.i! i!iiii!i}iii_ili!!i::::i!i!::::i::::i:::::::i_i
3.699

1.062

0.261

0.116

0.000

0.381

iii!iiiiiiiiiiiiiiiiiiiili!iiiili!!i!!iiiiiii!i!!i!!iii!i!iiiiii!ii!iiii
i_iiii!iiii_iii!ii!iiiiiiiiiiii!i!i!i!iii!i!iii!!i_iiiii_i_iii_!ii_i_!_!i

0.126EARTH

0.004

i!iiii!i!ili!iiiii !
0.488

0.132

0.001

0.619

0.042

0.002

0.419

0.023

MARS 16 FEB 2008 0.105 0.105 0.105

EARTH 10 OCT 2009 010J4 0.074 0.074

MARS 28 MAR 2010 0.125 _- 0.125 ..... 0.125

EARTH 13 NOV 2011' 0.110 0.110 0.110

TOTAL AV 12.069 2.565 2.528

(KM/SEC)

RUN TIME 3.7 53.2 19.1

(SEC)

!

E
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Table 4.2: Comparison Between BPLANE Code and PRIMER Code for Cycler
Trajectory When a DSM is Allowed on Each Leg

LEG SWING BY
NUMBER PLANET

3

4

5

EARTH
DSM

MARS
DSM

EARTH
DSM

MARS
DSM

EARTH
DSM

BPLANE PRIMER

DATE

19 f'qOV 1996
20DEC 1996

i!iii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii]iiiii
1 MAY 1997

AV AV

(KM/SEC) (KM/SEC)

0.000 0.073

0.072

i!iiiiiiiiilii!iiiiiiiiiiliiliiiiiiiiiiiiii!
1.501

!!i!i!!!_!_!_!_!i_i_ii!_i!_i_i_!_i!_i_i!_!_i!_!_i!_!_i!_i!i!i!i!i_i_!_i!_i_i!_!_!_!_i!_!_!_i!_!_i!_!_i!_!_i!_!_i!{!_i!_i_i_i_
27 MAY 1998 iiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!i

:.:.:.:.:.:,:,:,:,:.:,:,:,:.:,:,:.:,:.:,:,:.:,:,:.:.:.i.:,:,T.:,: :.: <

1 JAN 1999 0.645

;< ,;.;._.;._._.;...,...,.,.....,..,........,.......,,.....,..,.,..,:.:

_!_!!ii!iiiii!ii!i!iiiiiiiiiii!iiiiiiiiiiii_
ii!i!iii!iiii!iiiiiiiiiiiiiiiiiiiiiiiiiii

0.003

i_i_!ii!i!i!!!iiiii!iiiiiiiiiiiiiiiiiiiiiii
0.041

0.027
_!_!!_!!i#_i!i!!_i_!i_iiiii!i!!i!ii!i!iiiii!iiii_!i!iiii_!iii!i!_iiii!i_i!_!i_i!_!_:_ii!i!i!iiii_iiii!i!ii!iiiiii!ii_!i!_!ii_i_ii_!i:ili!ii_iii_iiii:!_!i!_!_i_!i!i!i_:ii!iiiiii:ii_!iiii_i_:iiiili!ilili_!iiiiiiii!i!!iiiili_!_i_!
_iiii!_ii_iii_ii!i!_i!i_!_!_!!!_!_iii_i!ii_ii!i!i_iiiiiiiiiiiii!iiii_i_i_!_!!_ii!i!i!i_ii!ili!iiiii!iii!i!iiiiii!iii!i!iii!ii!iiii!iiii!ii!ii!!iii!itiii_!ii!!!!ii_iii!!i!!i!illi!ii!i!!iliii!iiii!!i!!iiiii!ii!ii

H t ........ _

_ii!!i!!iiiiiiii!iiiiiiiiiiiii_iiTi_i__iii_iiiiiiii!ii_iiiiiiii!_ili_!_!_!_I_iiiiiiiiiii!!!iiiiiiiiiiiiiiiii!i!iii_i
28 MAY 1999

26 JUL 2000

23 MAY 2000

8 FEB 2001

8 MAR 2001

0.000

0.030

!i!!!i!!!i!!!ii!ii!iiiii!!!!ii!!iii!!iiiii!ii!!
0.000

0.103

0.002
=======================================================================

!:_iiiiiiiiii!iii!i!;iiiiiiiiiiiiiiiiiiiiiiii!_
0.060

0.070

_iiiii!iiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

iii_iii_iiii!iiii!!!iiiiiiiiiiiii!!i!_i__i_iiiiiiii!iii!iii!!iiiiii!iiii!iiiiiiiiiiii!i
6

7

8

MARS

DSM

EARTH

DSM

MARS

DSM

6 JUL 2001

25 MAY 2002

23 JUL 2002

16 APR 2003

18 MAY 2003

0.000

0.457

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiii!iiiiiiiiiiiii!iiiiil
i!!!!!i!_!_!i!i!i!i!i!i!i!i!!!i!ili_i_ii{_ili:!_i:i:i:i:!:i:!:i:i:i:i:i:

0.000

i_i_i_i____i!____i___ii_ii_ii_!__i__________!_!_!___i_ii_!ii_i!ii!iii._ill_!i_i_i__i______i!_ii_ii_ii_____ill____!_iiiiiiii
12SEP2003 0.000
9 AUG2004 0.577
15JUL2004 !iiiiiiii!iiiiiiii!i!iiiiiiii{ii!iiiii!iiiiiiiii!iliiiiii!iiiiiiiiii:_i

0.004

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilii!!!iiiiii
0.488

0.132
I.....................................

i!iiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiill

_i_i_iiliiiiiiiiiii!iiiiiiliiiiiiiliiliiiiiiiiii
0.001

i!i!!i!!!!i!!!iiiii!i!!i!!!iiii!i!ii!iii!ii!ii
0.619

continued
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Table 4.2 Concluded

LEG
NUMBER

10

11

12

13

14

SWINGBY
PLANET

EARTH
DSM

MARS
DSM

EARTH
DSM

MARS
DSM

EARTH
DSM

MARS
DSM

EARTH

DATE

7JUL 2005
5 AUG 2005

iiiiiii!ii!!ii!ii!ii!iiiii!i!!ii!iii_iiii!ii_i_iii!iiiiiiiiiiiiiiiii!iiii_i_!iiii!i!i_
13 DEC 2005

17 OCT 2006

27 JUL 2006

6 SEP 2007

30 SEP 2007

_ii!_i_i_ii_!iiiii!i!!!ii_i_i_i_i!i}i_i!i_iiii!ii_i_!!i_ii!!i!i_iii!i!iii!i!iii_i!_
16 FEB 2008

25 MAR 2009

15 FEB 2009

10 OCT 2009

7 NOV 2009
:::::_i:i:!:!:i:i:i:i_iii::_:i:i:i:!:_:!:i:!:!:_:i:)!:i:_:i:!_:_:i:i:i:i:{:_Gi:

ii!iiiii_ii_ii_i_i_i_!1_iiii_i_i_i_i_i_i_i_!!i!_i_i_i_;_ii!iii!ii_iiii_iiiiiiii_

28 MAR 2010

14 MAY 2011

11 MAR 20il

13 NOV 2011

BPLANE

AV

(KM/SEC)

0.000

0.225

iiiiiiiiiiliiii!!iiiiiiii{iiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiii_!i
0.000

0.370

i!iiiiiii!i!i!i!i!!ii!iiiii!iiiiiiii!iiiiiiiiiii!iiiiii!!ii!!!ii!iii
0.000

0.188

!!!i!iii!iiiiiiii!iiiiiiiiiiiiiiii!iliiiiiiiii!i!i!!ii!iiiiiiii!'ii:
0.000

0.071

ii!ii!!iiii!iiiili!ii!iiiii!!!i!!ii!i!ii!i!ii!!i!iii!iiiiiiiiiiii!!iiiii
0.000

0.012

iiii!iiiii_i!!ii_i!!iii!!iiiiiiiiiiiiiiii!iii!iiiiiiiiiiiiii_iiiiiiii!!ii;!
0.000

0.079

iiiiiii!iii!iiii!ii!iiiiiiii!iiiiiii!i!iiiiiiii!il;i;ili!iiiii!i
0.039

PRIMER

AV

(KM/SEC)

0.042

ii!iii_!iiii_iiii!i_ii_ii_!ii!i!ii_iiiiiii!_iii_i:
ili!iiiiiii!iiiiii!iiiiiiiiiiiiiiiii!iiiiiii!iii!iiiiiiiiiiiiii!iiiiiii

0.002

i!iii!!!iiiiiiiiiiiiiii!ii!iiiiiiiiiiiil;iiiii;!iiiiiiiiiiiiiiii!iiiii!
0.419

0.023

0.001

,..<.I._,:.?:_;.I.;.:.I,?V,:+:.:.:.:.:+:.:.:.....:,..

0.075

0.009

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

0.003

;!!!iiiiiiiiiii!iiiii!iiiiiiiiii!ii!!iii!iii!i!iii!ii!!i!ii!iiiii!i
0.069

0.048

TOTAL AV

(KM/SEC)

4.533 2.212

RUN TIME 332.2 54.6

(SEC)

r

|
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Table 4.3: Vehicle and Mission Parameters for Round Trip Mars Mission Launch
Window Analysis

Vehicle

Mars drop off mass, kg ....................................... 76000

Earth return mass, kg ......................................... 61000

Engine Specific Impulse (Isp), sec .................... 480

Mission

Earth departure parking orbit ............................ 500 km altitude, circular

Mars parking orbit ................................................ 500 km periapsis altitude, 1 sol

Earth return parking orbit .................................. 500 km periapsis altitude, 1 sol

Outbound time of flight ...................................... 108 to 418 days

Mars stay time ....................................................... 60 days

Inbound time of flight ......................................... 73 to 383 days

Maximum total time of flight ........................... 730 days
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Table 4.4: Vehicle and Mission Parameters for Nominal Mars Mission Abort

Analysis

Vehicle

Mars drop off mass, kg ....................................... 76000

Earth return mass, kg ......................................... 61000

Engine Specific Impulse (Isp), sec .................... 475

Mission

Earth departure parking orbit ........................... 500 km altitude, circular

Mars parking orbit ............................................... 500 km periapsis altitude, 1 sol

Earth return parking orbit ................................. 500 krn periapsis altitude, 1 sol

Date__.__s

Launch Date

Outbound time of

flight

Mars stay time

Inbound time of

flisht

Total time of flight

2020 Mission [) 2022 Mission

11 Sep. 2020

278 days

60 days

383 days

721 days

11Oct. 2022

288 days

60 days

383 days

731 days
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Table 4.5.1 Comparison Between Nominal and Abort Trajectories
for 2020Mars Mission

Initial Mass

(million kg)
Total AV
(km/sec)

Nominal

1.6

14.5

Abort
Without

DSM
9.9

23.6

Abort
With DSM

4.1

19.4

Time of flight 721 651 50!
(days)

Table 4.5.2 Comparison Between Nominal and Abort Trajectories
for 2022 Mars Mission

Initial Mass

(million k8)
Total AV
(km/sec)

Nominal

2.7

15.0

Abort
Without

DSM
4.5

19.8

Abort
With DSM

3.8

18.9

Time of flight 731 681 511
(days)

35



9. Figures
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Figure l,l: Rendezvous Between Points A and B
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3x(t 0) = jectory x(tf) = 0
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Figfure 2.1: Perturbations from the Nominal Trajectory
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10. Appendix

i

F

J
J

Derivation of the Necessary Conditions on the Primer Vector

The derivation presented here is a summary of the original derivation done

by D.F. Lawden 2. The necessary conditions on the primer vector provide the basis

for this paper, and an understanding of the derivation will give the reader a

stronger grasp of the subject. Indicial notation is used in this appendix. A subscript

which appears only once in any term is known as a 'free index', and can take on any

value in its range. A subscript which appears twice in a term is known as a 'dummy

index'. A dummy index implies a summation of all terms over the range of the

index.

Define a cost function, J(xl,x2,...,xn,tf), where _ is an n-dimensional state

vector. The problem is to minimize J, subject to:

_i = fi(_,_, t) for i = 1 to n,

hk(_,_,t) = 0 for k = 1 to p < m.

x i=xi0 fori=ltonattime=t0

x w = Xwf for w = 1 to q < n at time = tf

(A.1)

(A.2)

(A.3)

(A.4)

Here, fi are the equations of motion, hk are constraint functions, t is time, and _ is

an m-dimensional control vector. Let _*(t) and _*(t) be the state and control

histories which satisfy the equations A.1 to A.4 and also minimize J. Introduce a

small parameter _, and use it to perturb these state and control vectors. That is, let

'_(t,¢) = ,_*(t) + ¢(t) and _(t,_:) = _*(t) + ¢(t).

Differentiate equation A.1 with respect to ¢ to obtain
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_)2xi 0f i 0x r 0f i _)aj

3¢3t c)X r 3¢ Oaj 3¢

(A.5)

Now, let

and

so at ¢ = 0, equation A.5 becomes

0fi 0f.___L -.

Yi--- _rxr Yr + 3aj _)

Similarly, by taking the derivative of equation A.2 with respect to e:

(A.6)

0h k 0h k ^

=0 (a.7 "-_-xi Yi
J

Now the Lagrange expression is introducedi _

F = -_.ifi + _tkh k (A.8)

This is where the primer vector is introduced. The primer vector is a Lagrange

multiplier. In problemsof the type being considered here, the state vector is a 7-

dimensional vector, with the first three components being the velocity of a

spacecraft, the next three components being the position of the spacecraft, and the

last component being the mass of the spacecraft. The components of the primer

vector are, by definition, the first three components of _.. It will be shown that the

derivative of the primer vector is a vector whose components are the next three

components of X.

From the definition of F:

5O

}.

r_

=

i
E



J

to
f Xi Yi-'3--_-xrYr-_ajDJ +Pk_-_Xr Yr oaj
to k \

(A.9)

By equations A.6 and A.7, this expression equals 0 on an optimal trajectory.

Integration by parts yields:

i

I"

.#
f

i OF j _,iGid t_xi yidt = YiGillf0 -tf

to to

l

j-

J

where

The parameters _.i and Pk are at our disposal, and so _.i can be chosen such that

_.i = Gi + _.i0 (A.10)

where _-i0 are constants yet to be determined, and Bk can be chosen such that

3F Equation A.9 can now be
3ak3---F--F= 0. Equation A.10 can also be expressed as _.i = 3x_."

reduced to

i OF0 = yifXif - Yi0ki0 + ,3----_--13rdt
_"_r

t0

where r = p+l,p+2,...,m and Kif = Xi(tf). This result will be used later.

Define a family of variations go, where o runs from 1 to N, and N = q + n + 1.

Each member of this family satisfies equations A.1 to A.4. Now J can be expressed as

a function of these variations:

(A.11)

j = j(¢I,¢2,..._N) = Jo +U

where Jo is the minimum J. U = 0 if and only if _o= 0 for all o. In all other cases, U

must be positive, since Jo is by definition the minin-lum J. Theory of implicit
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functions tells us that ¢c can be determined as a continuous function of U in the
-

neighborhood of U=0 if and only if the determinant

A .._

3j 3j 3j

3E:-"T 3e2 3¢ N

0Xi(._.____)3Xi0 c_Xi0

3E1 3¢2 3¢N
3Xwf 3Xwf 3Xwf

081 3e 2 "'"

\
\

is not zero.

which produce a negative value of U. This cannot be the case, since U must be

greater than or equal to zero. The conclusion is that the deterrninant must vanish,

and therefore that the rows of the above matrix must be linearly dependent. This

If the determinant is not zero, it implies that there are some variations'
k

means that N constants 70, Yi (i = 1 to n), and Vw (w = 1 to q) can be found such that

3xi0 3Xwf_+v I -- - 0
Yo + Yi 3¢ z 3¢z

(A.12)

for arbitrary z in the range of 1 to N. Looking at each of the three terms in this

equation when cz= 0 (optimal trajectory):

where s - q+l, q+2, ... n

x s = free states at t = tf

dtfUf z =
z

The second and third terms become:
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: _)xi(---2)= Yi0
3ez

_r

/

i

/

f

J

!

_)Xwf ---XwfUf z + Ywf (no sum over f)
O¢z

t j

t

/
/ Inserting these three expressions into A.12, and also adding in equation A.11:

0=(_'i-Xi°)Yi°+(Vw+_'wf)Ywf+( "/00xsf0-'--L'J+Xsf) ysf+

_rar 13rat
\ °Xsf _f t0

The ranges of the indecis in equation A.13 are as follows:

i = 1 to n (n = number of states)

w = 1 to q (q = number of fixed final states)

s = (q+l) to n

r = (p+l) to m (p = number of constraints, m = number of controls)

The subscripts 0 and f indicate initial and final conditions, and are not indecis to be

summed over.

In order for equation (A.13) to vanish for arbitrary variations, each of the

terms must vanish:

_-i0 = _'i (A.14)

(A.13)

j .

Vw = -_'wf (A.15)

Y0-- = -Xsf (A.16)
3Xsf

3J _3-_J _sf + VwXwf = 0 (A.17)
Y0 _f + Y0 UXsf
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3F
_=0
Oa r

Substituting (A.15) and (A.16) into (A.17), and realizing that

KsfXsf + _,wfXwf - Kif_if

the result is

aj
_-ifxif = 'Y0 "qT-.

otf

(A.18)

These equations are now ready to be solved.

functions which are the n state variables x i, the m control variables aj, the n

functions _.i, and the p functions Bk. We have the same number of equations in

(A.I: n equations), (A.2: p equations), (A.10: n equations), and (A.18: m equations).

We also have the n equations A.3, q equations A.4, (n-q) equations A.16, and 1

equation A.19 to determine the n constants Xi0, the n constants of integration for the

state variables, and tf. If tf is fixed for a particular problem, equation A.19 no longer

applies. If these necessary conditions can be satisfied for 7(1 _ 0, then the solution is

said to be normal and 7o can be chosen to equal 1 in equation A.12 without loss of

'k

\
\

\
\

"1
(A. 19)

There are 2n + m + p unknown_
%

generality.

Examine a trajectory problem defined as follows:

cm 1
vi = _ i + gi

i"i = V i

_/[ = -m

where i = 1,2,3 for the X,Y, and Z coordinates, --
CII'I

M
is the magnitude of the engine

thrust per unit mass, 1i are the direction cosines of the thrust vector, and gi are the
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components of gravitational acceleration. M is the mass of the spacecraft and m is

the propellant mass flow rate. Two constraint equations can be defined:

112+12 2+13 2=1

/
i

/ m(mma x - m) = 0

Tk_e latter equation indicates that only no-thrust or maximum-thrust arcs are

allowed on this trajectory. The state vector is:

f/
!

/

f

J

and the control vector is:

The Lagrange expression is:

Vl v2 v3 rl r2 r3 M] T

"[11 12 13 m] T

X(cml )F = - i_,_ i + gi - _.i+3vi + XTm + #1(112 + 122 + 132 -1)+ v2[m(mmax- m)]

Employing equation A.18 and the derivative of A.10 yields:

_'i = -_'i+3

_'i+3 = -_-j 0gj
Or i

(A.20)

(A.21)

(A.22)

cnl _.
0 = ---_-- i + 2_11i

0 =-MXili + X 7 +la2(mmax -2m)

for i and j = 1 to 3. The first two of these equation can be combined to form:

(A.23)

(A.24)
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Equations A.20 and A.21 indicate that the primer and its derivative are continuous

functions of time, ":,_

The Weierstrass condition 2 (submitted here without proof) for this problem

can be expressed as:

\

\

IM 1 lM ;iI 'kili - _-7 m > - _.7 m \
\

for all possible values of 1" and m* which satisfy the constraints. On a no-thrust arc,

m=0, and so the condition requires that the right hand side be negative, or tha_::

_-7 >- "_" iIi

The right hand side of this expression takes its maximum value when the primer is

aligned with the thrust vector. Thus, the condition on no-thrust arcs becomes:

where p is the magnitude of the primer vector.

On max-thrust arcs, two cases need to be considered. First, let m* take on its

maximum value, mmax. In order for the Weierstrass condition to be satisfied:

kil i >_Kil i -

which implies that:

Xil i _>p

Since i is a unit vector, the > will never hold, and so:

_.il i - p
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This indicat.es that the thrust vector must always be aligned with the primer vector.

For the seoond case, let m* take on its minimum value of 0, then it is necessary that

the left hand side of the Weierstrass condition be positive:

on max-thrust arcs.

CX7 < Xili _ _-7 < _P

This leads us to define the switching function

C

K = _-p-t7

On no-thrust arcs, it is necessary that the switching function must be less than or

equal to zero. On max-thrust arcs, the switching function must be greater than or

equal to zero. If impulsive thrusts are allowed in the simulation, periods of

maximum thrust are modeled to be instantaneous, and the switching function must

equal zero at an impulse. If an impulse is required at a point which is not at either

end of a trajectory (a deep space maneuver), the value of the switching function

must be negative immediately preceding and irnmediately following the burn. The

derivative of the switching function has been shown 2 to be continuous, and

therefore, at a deep space maneuver, the derivative of the switching function must

also be zero.

Define the cost function, J, to be the sum of the magnitudes of the AV's over

the whole trajectory, which, by the rocket equation, can be expressed as:

_Mf)

With this cost function defined,

=golspln(M°)

 ,Mf)

_'7 = C C

Mf M
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by equation A.16 at time = tf. Equation A.22 shows that _.7is constant o,n a no-ihrust

arc (since m=0). Therefore, on a no-thrust arc,

C C

_c= -_p- X 7 = -_(p- 1) _ (A.25)

At the two impulses surrounding this no-thrust leg, the switching function equals

zero, and so p must equal 1. Also, the switching function must never be positive on

a trajectory consisting only of impulses and no-thrust arcs. So the maximum

magnitude of the primer vector is unity, and that only occurs at the impulses.

Equation A.25 indicates that

C

We have said that _: must be zero at a deep space maneuver, therefore, the

derivative of the magnitude of the primer vector must also be zero there.

Four necessary conditions to be satisfied for an optimal trajectory allowing

impulsive thrust, and whose cost function is the sum of the AV's have been

derived:

1)

2)

The primer vector and its first time derivative are continuous.

During any impulse, the thrust vector must be aligned with the primer.

3) The magnitude of the primer is a maximum and has a value of one during

any impulse.

4) The derivative of the magnitude of the prime r is zero at a deep space

maneuver.
W
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