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PREFACE

The NASA Propagation Experimenters Meeting (NAPEX) is a forum

convened to discuss the studies supported by the NASA

Propagation Program. The reports delivered at this meeting by

the management and the investigators of the program summarize

the recent activities, as well as plans for the future.

Representatives from domestic and international organizations

who conduct radio wave propagation studies are invited to

NAPEX for discussion and exchange of information. This

Proceedings records the content of NAPEX XV and the Advanced

Communications Technology Satellite (ACTS) Miniworkshop that
followed it.

NAPEX XV, which took place in the Sheraton Armouries Hotel,
London, Ontario, Canada, on June 28, 1991, started on a solemn

note because of the unfortunate failure of the Olympus

satellite. However, spirits rose as soon as Dr. Bertram

Arbesser-Rastburg of the European Space Agency (ESA) announced

the possibility of recovering Olympus in an early course of

time, and the meeting proceeded with due enthusiasm. There

were three sessions. The morning session, chaired by Mr. John

Kiebler in place of Mr. Dean Olmstead, who was unable to

attend the meeting, was dedicated to Olympus and ACTS studies

and measurements. Following the opening remarks by Dr.

Faramaz Davarian, the morning session covered eight technical

papers. There were two sessions in the afternoon. In the

first one, Mr. John Kiebler led the topics in propagation

studies and measurements and covered seven technical papers.

The last session in the afternoon, chaired by Dr. Faramaz

Davarian, was dedicated to a computer-based propagation model

development plan and included two formal technical papers and
a number of informal presentations.

Finally, the meeting was adjourned with closing remarks by
Dr. David V. Rogers.

Sincere thanks are due to Dr. Ernie K. Smith and Heidi Vice

for organizing and executing the logistics of the meeting

flawlessly. Thanks are also due to Dr. Jack Chakraborty for

his assistance in preparing this Proceedings and organizing

the ACTS Miniworkshop, and Erin Kan for editing this
publication.

NAPEX XVI is scheduled for late May 1992.

Faramaz Davarian



ABSTRACT

The NASA Propagation Experimenters Meeting (NAPEX), supported by
the NASA Propagation Program, is convened annually to discuss
studies made on radio wave propagation by investigators from
domestic and international organizations. NAPEX XV was held on
June 28, 1991, in the Sheraton Armouries Hotel, London, Ontario,
Canada. Participants included representatives from Canada, Japan,
Germany, the Netherlands, and the United States, including

researchers from universities, government agencies, and private

industries. The meeting was organized into three technical

sessions. The first session was dedicated to Olympus and ACTS

studies and experiments, the second session was focused on the

propagation studies and measurements, and the third session covered

computer-based propagation model development. In total, sixteen

technical papers and some informal contributions were presented.

Following NAPEX XV, the Advanced Communications Technology

Satellite (ACTS) Miniworkshop was held on June 29, 1991 to review

ACTS propagation activities with emphasis on ACTS hardware

development and experiment planning. Five technical papers were

presented by contributors from government agencies, private

industry, and university research establishments.
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FOREWORD

The NASA Propagation Information Center is located in the Electrical and

Computer Engineering Department at the University of Colorado at Boulder. The Center

has two main objectives: to assist the management of the NASA Propagation Program by

serving as an information resource to those within and outside the propagation community,

and to provide graduate instruction and thesis supervision in radio wave propagation. The

Center, funded by NASA, was founded in July 1988. It is staffed by Professor Emeritus

Warren L. Flock and Professor Adjunct Ernest K. Smith, co-directors; Heidi Vice, student

assistant; and Zeng-jun Zhang, Senior Professional Research Assistant (until August

31,1991).

Professors W.L. Flock and E.K. Smith are involved in several on-going activities

that allow the Center to attain its goals. Flock is the Editor of the NASA Earth-Space

Propagation Newsletter, and Smith is Associate Editor for Propagation for the IEEE

Antennas and Propagation Magazine. Both publications reach the propagation community

world-wide. Smith is also co-chairman of the URSI Working Group on Natural Noise.

The Center organizes monthly Telecommunications Policy Luncheons and Flock

and Smith are actively involved in many propagation groups and workshops: CCIR SG

5/6; URSI Commissions E,F,G; IEEE Wave Propagation Standards Committee; IEEE APS

and NAPEX (NASA Propagation Experimenters).

Smith serves on several thesis committees, both at the master's and the Ph.D. level.

He teaches a course in the spring semester on "Earth-Space Propagation" in collaboration

with Dr. David C. Hogg. This is a course pioneered by Professor Flock. In the fall of

1989 he offered "Fundamentals of Propagation," taught jointly with Dr. Kenneth Davies.

The Center also produces and reviews propagation handbooks and maintains a list

of many journal articles and reports that the NASA Propagation Experimenters have

produced documenting the results of their investigations. Anyone interested in these

materials should call Ernie Smith or Warren Flock at the Center.

Phone: (303)492-7123 E.K. Smith
(303) 492-7012 W.L. Flock
(303) 492-4614 H.Vice

FAX: (303) 492-2758
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NAPEX XV Summary

Faramaz Davarian

Jet Propulsion Laboratory, MS 161-228
4800 Oak Grove Drive
Pasadena, CA 91109

Ernest K. Smith

NASA Propagation Information Center
University of Colorado
Boulder, CO 80309-0425

The NASA Propagation Experimenters Meeting (NAPEX XV) was held at the Sheraton
Armouries Hotel in London, Ontario, on June 28, 1991, in conjunction with the North American
Radio Science Meeting at the University of Western Ontario, June 24-28. There were 39

registrants in NAPEX XV, representing institutions in Europe, Japan, and the USA. Opening
remarks were made by Faramaz Davarian. The first session, "Olympus and ACTS Studies and
Experiments," was chaired by John Kiebler in the absence of Dean Olmstead, who had to cancel
at the last minute. In his review of Olympus Propagation Experimenters (OPEX) activities and

measurements, Bertram Arbesser-Rastburg of ESA/ESTEC reviewed the sequence of events
surrounding the loss of the Olympus satellite. He estimated the chances of the satellite's

resuming full operation at 50%, a better probability than most of the experimenters had believed
possible. Olympus propagation work at Virginia Tech was then described by Warren Stutzman

and Will Remaklus. Following the coffee break, Rod Olsen described Earth-space propagation
work at the Communications Research Center (CRC) in Ottawa. Charlie Mayer described the
needs, facilities, and plans for propagation measurements in Canada. Julius Goldhirsh described

the work at Johns Hopkins University's Applied Physics Laboratory (APL), including an
antenna-pointing experiment for Land-Mobile Satellite Service (LMSS). The morning session
concluded with a presentation by Khaled Dessouky of JPL on proposed mobile experiments with
the Advanced Communications Technology Satellite (ACTS). The conferencers stirred with
anticipation at the lunch break when Dick Horttor announced a 6.0 earthquake in Sierra Madre, a
town near JPL in southern California.

Session II, "Topics in Propagation Studies and Measurements," was also chaired by John
Kiebler. David Rogers led with a description of the rapidly changing state of affairs at the
International Radio Consultative Committee (CCIR). Next was Hiromitsu Wakana, from the
Communications Research Laboratories in Japan, describing recent work there, particularly with
regard to the multi-path in the aeronautical mobile service. He was followed by Gerald Gerace,
an Air Force captain and Ph.D. candidate at the University of Colorado, who compared cloud
models with measurements from Wave Propagation Laboratory (WPL)/NOAA. Ed Westwater
then described the current radiometry program supported by NASA at WPL/NOAA. Wolf
Vogel, from the University of Texas at Austin, described measurements made near L-band in

support of direct sound broadcasting. These involved transmissions from a telescoping, van-
mounted tower to a receiver inside various types of buildings.

The recent draft handbook on Land-Mobile satellite systems was first presented by Julius
Goldhirsh and then critiqued by Ernie Smith. Ernie reported on a meeting on the previous day on
handbooks whose general conclusions were to call the LMSS text something else and to aim
future handbooks towards the systems engineer.

Session III, the final session of NAPEX XV, was to be an informal presentation of computer
models of propagation methods and was chaired by Faramaz Davarian, the JPL program manager
of the NASA Propagation Program. There were two formal presentations, Anil Kantak of JPL
presented a proposal for a code covering a comprehensive collection of different models. Ernie

Smith, from the University of Colorado and the NASA Propagation Information Center,



presented a paper for Zhang Zengjun, a Chinese visiting scholar working with him, who had
programmed the current CCIR methods as incorporated in Report 564 (1990 version).

The NAPEX reception and banquet was also held at the Sheraton Armouries and was attended by
45 people. An added attraction was an after-dinner presentation by Dick Horttor of JPL who
showed the Magellan tapes which had been the highlight of the International Radio Science
Union/Antenna Propagation Society (URSI/APS) Plenary Session on Wednesday morning.
Honored guests at the banquet were Prof. Alan Webster and his wife Erma, from the University
of Western Ontario, and Rod Olsen, from the CRC, Ottawa.

The ACTS Propagation Mini-Workshop, Saturday morning, June 29, was chaired by Jack
Chakroborty of JPL. There were 34 registrants. John Kiebler and Faramaz Davarian gave
introductory comments. John Gevargiz of JPL followed with a presentation of a spectral analysis
study of the ACTS 20-GHz beacon signals. This, in turn, was followed by Frank Gargione of
GE, speaking on the measured characteristics of the ACTS beacons. After the coffee break,
Warren Stutzman took the floor to update the group on the ACTS propagation prototype
terminals.
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AGENDA

NAPEX XV

NASA PROPAGATION EXPERIMENTERS MEETING
AND ACTS PROPAGATION STUDIES MINIWORKSHOP

THE SHERATON ARMOURIES HOTEL

LONDON, ONTARIO, CANADA
JUNE 28/29, 1991

June 28, 1991

8:30 AM OPENING REMARKS

F. Davarlan, JPL

SESSION 1. Olympus and ACTS Studies and Experiments

Chairman: J. Klebler, NASA Consultant

8:45 AM i) Introductory Remarks for NAPEX XV

J. Kiebler, NASA Consultant

8:50 AM 2) A Review of OPEXActivities and Measurements Results

B. Arbesser-Rastburg, ESA-ESTEC

9:10 AM 3) Olympus Propagation Measurement Results at Virginia Tech

W. Stutzman, Virginia Tech

9:30 AM 4) Data Acquisition, Preprocesslng and Analysis for the

Virginia Tech Olympus Experiment

P. W. Remaklus, Virginia Tech

9:50 AM COFFEE/TEA BREAK

10:05 AM 5) Earth-Space Propagation Research at CRC

R. L. Olsen, CRC, Canada

10:25 AM 6) The ACTS Propagation Program

D. Chakraborty and F. Davarian, JPL

10:45 AM 7) Propagation Measurements in Alaska Using ACTS Beacons

C. E. Mayer, U. of Alaska

11:05 AM 8) Planned LMSS Propagation Experiment Using: Preliminary

Antenna Pointing Results During Mobile Operations

J. R. Rowland and J. Goldhlrsh, APL; W. J. Vogel and

G. W. Torrence, U. of Texas
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11:25 AM 9)

11:45 AM

Propagation-RelatedAMT Design Aspects and Supporting

Experiments

K. Dessouky and P. Estabrook, JPL

LUNCH BREAK

SESSION 2. Topics in Propagation Studies and Measurements

Chairman: J. Kiebler, NASA Consultant

1:15 PM i) What Is Happening at CCIR Study Group 5?

D. V. Rogers, CRC, Canada

1:35 PM 2) Propagation Research in Japan

H. Wakana, CRL, Kashima, Japan

1:55 PM 3) A Comparison of Cloud Models Using Measured Cloud Data
Attenuation

G. C. Gerace and E. K. Smith, U. of Colorado; E. R.

Westwater, WPL/NOAA

2:10 PM 4) Measurements of Atmospheric Emission and Absorption

E. Westwater and J. Snlder, WPL/NOAA

2:30 PM 5) Satellite Sound Broadcast Propagation Measurements

W. J. Vogel and G. W. Torrence, U. of Texas

2:50 PM 6) An Overview of the Text "Propagation Effects for Land-

Mobile-Satelllte Systems: Experimental and Modeling
Results"

J. Goldhirsh, APL; W. J. Vogel, U. of Texas

3:10 PM 7) Handbooks of the NASA Propagation Program, Past History and

Thoughts to the Future

E. K. Smith, U. of Colorado

3:25 PM COFFEE/TEA BREAK

SESSION 3.

Cha Irman :

3:40 PM

5:20 PM

6:30 PM

7:30 PM

Computer-Based Propagation Model

P. Davarlan, JPL

INFORMAL PRESENTATION OF CONTRIBUTIONS AND DISCUSSIONS

CLOSING REMARKS ON THE NASA PROPAGATION PROGRAM

D. V. Rogers, Propagation Advisory Committee Representative,

CRC, Canada

RECEPTION

BANQUET
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8:30 AM

8:50 AM

9:10 AM

9:30 AM

9:50 AM

10:05 AM

10:40 AM

11:45 AM

AGENDA ACTS MINIWORKSHOP

D. "Jack" Chakraborty, Chairman

June 29, 1991

i) Introductory Remarks for ACTS Minlworkshop

J. Kiebler, NASA Consultant

2) Advanced Communications Technology Satellite (ACTS) Program
R. Bauer, LeRC

3) 20-GHz ACTS Beacon Spectral Analysis

D. Chakraborty and J. Gevarglz, JPL

4) ACTS Beacons Measurements Data

F. Garglone, GE
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W. Stutzman, Virgina Tech

OPEN DISCUSSION

ADJOURN
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OPENING REMARKS

Faramaz Davarian

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA 91109

1. TASKS AND ACCOMPLISHMENTS DURING THE LAST YEAR

Let us begin by reviewing our past year's major tasks and accomplishments.
been:

• Olympus data collection and processing

• The ACTS Propagation Program

• Satellite Sound Broadcast measurements and analysis

• LMSS Propagation Effects Handbook

• Radiometri¢ techniques

• Information dissemination and program review

The tasks have

During the last year, we completed construction of the Olympus propagation terminals and began
collecting data as of mid-August 1990. Our investigators at Virginia Tech have completed the
preprocessing software and have successfully processed nine months of data. The data analysis
software is almost completed and the results of the measurement analysis will be published soon.

As you are probably aware, the Olympus Propagation Experimenters (OPEX) group suffered a
setback due to the loss of the satellite in late May 1991. We are saddened by this loss and are

trying to find ways to minimize the impact of this unhappy accident.

The Second ACTS Propagation Studies Workshop (APSW-II) was held in Santa Monica in late
November 1990. The recommendations resulting from that workshop were used to draft a plan
for the ACTS Propagation Program that will be discussed later today. Funds will be available for
experimenters who wish to participate in the ACTS Propagation Measurement Program. A
NASA notice of research announcement (NRA) has been drafted and will be released in early
fall.

During the last year, our effort to characterize Satellite Sound Broadcast channels was very
fruitful, and our investigator, Wolf Vogel, was able to provide NASA with useful propagation
data in time to possibly influence WARC 92 decisions.

Propagation handbooks are perhaps our most celebrated products. The preliminary version of the
LMSS Propagation Effects Handbook, that describes propagation effects in Land-Mobile satellite
links, is now available, and the authors are collecting comments.

In the last three years, we have learned that ground-based radiometers are a very practical and
cost-effective means of collecting propagation data. The NOAA radiometers have been busy
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collecting propagation data and our investigators at the Wave Propagation Laboratory have
analyzed the measurements, as you will hear later today.

We remain committed to providing our users with our study results in a timely fashion. The
University of Colorado has published four newsletters and helped us with information
dissemination. Our review committee, consisting of Prof. Gert Bmssaard and Dr. David Rogers,
has continued providing us with enlightening advice.

Regarding international activities, I attended the Olympus Propagation Experimenters workshop
and meeting last April in the Netherlands. I also attended an AGARD meeting in Greece last
October. Participation in international meetings enhances the atmosphere for cooperation and
scientific exchange between the NASA Propagation Program and the international propagation
community.

2. PLANS FOR 1991-92

The program will focus on the following areas during the next year:

• OPEX activities

° The ACTS Propagation Program

• Satellite Sound Broadcast experiments and studies

° Radiometric techniques

° Software propagation models

• Review and revision of the NASA Propagation Handbooks

• Fade detection and compensation

• CCIR activities

• Information dissemination and program review

The loss of the Olympus spacecraft has placed OPEX in a peculiar position. Cooperation among
the OPEX members is needed to lessen the damage resulting from the loss of the satellite. Some
OPEX members have collected over one year of data; some, like us in the U.S., have collected
less than one year of data; and others were about to start their measurements. Since no more data

will be collected, we need to share our limited data banks generously. We also need to exchange
ideas about minimizing the impact of the satellite loss. In short, OPEX has suffered a loss, but it
is not dead.

The ACTS propagation campaign will gain full momentum during the next year or two. The
propagation terminal prototype will be completed, parts for the experiment terminals will be
ordered, and experimenters will be selected. A NASA NRA will be released in early fall 1991,
and experimenters will be selected about nine months later. The mobile propagation terminal will
be completed and tested, and the ACTS Propagation Program plan will be finalized. Our
objectives also call for the participation of the propagation community in the ACTS conference
in August, in San Jose, California. Later this year or early next year, we will have a full two-day
workshop (APSW-III).



Regardingour SatelliteSoundBroadcastefforts,weareplanningto supplementour studieswith
field measurementsusingsatellitebeacons.Our cooperationwith the SatelliteSoundBroadcast
task at JPL will proceed. Also, we will maintainour supportof thenational andinternational
efforts to enabletheSatelliteSoundBroadcastservice.

We will continue increasingour propagationdatabaseat 20, 30, and 90 GHz, using NOAA's
ground-basedradiometers. A more active role for NOAA investigatorsto supportthe ACTS
effort is envisaged.

A new effort next yearwill be thecreationof a software package incorporating the propagation
models that can be found in the NASA Propagation Handbooks and elsewhere. The aim is to

facilitate the use of propagation models by system engineers and other users of propagation data.
After completion, the software package will be distributed to the user community free of charge.
As you may have noticed, today's agenda includes a session to discuss the approach for
developing the software.

Towards the end of the year, the LMSS Propagation Effects document will be published with the
title "Propagation Effects for Land-Mobile Satellite Systems: Experimental and Modeling
Results." We are also planning to revise our existing two handbooks, and discussion is now in
progress as to whether a consolidation of the handbooks for above and below 10 GHz is
warranted.

Fade compensation is crucial for the successful operation of low-margin terminals, especially
when operated in the Ka-band. We addressed this problem in the past year as part of our
Olympus effort. The importance of this subject warrants the examination of it from a different

angle, namely, the control and signal processing viewpoint. We hope to interest a research group
with a strong background in signal processing and controls to have a fresh look at the problem of
fade detection and mitigation.

Little CCIR activity occurred during the past year, except for Robert Crane's attendance at an

IWP-5/3 meeting last December. However, now that we understand the new CCIR organization,
our CCIR activities will increase.

The NASA information center at the University of Colorado will continue its cooperation with
the NASA Propagation Program.
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INTRODUCTORY REMARKS FOR NAPEX XV
JOHN W. KIEBLER

WELCOME TO NAPEX XV

ORGANIZATION CHANGES AT NASA HEADQUARTERS

- COMMUNICATIONS AND INFORMATION SYSTEMS DIVISION IN THE OFFICE OF

SPACE SCIENCE AND APPLICATIONS (OSSA) HAS BEEN DISBANDED

- INFORMATION SYSTEMS RELOCATED TO FLIGHT SYSTEMS DIVISION IN
OSSA

- TECHNOLOGY DEVELOPMENT MOVED TO INFORMATION SCIENCES AND HUMAN

FACTORS DIVISION IN OFFICE OF AERONAUTICS, EXPLORATION AND

TECHNOLOGY (OAET)

- ACTS SPACECRAFT DEVELOPMENT THROUGH LAUNCH RELOCATED TO EARTH

SCIENCE AND APPLICATIONS DIVISION IN OSSA

- ACTS EXPERIMENTS PROGRAM MOVED TO OFFICE OF COMMERCIAL
PROGRAMS (OCP)

- RADIO SCIENCE AND SUPPORT STUDIES WHICH INCLUDES THE

PROPAGAIION PROGRAM MOVED TO OCP

- CENTER FOR THE COMMERCIAL DEVELOPMENT OF SPACE

(COMMUNICATIONS) BEING ESTABLISHED IN OCP

- RAY ARNOLD, FORMERLY DIRECTOR OF THE CO_I4UNICATIONS AND

INFORMATION SYSTEMS DIVISION IS NOW DEPUTY ASSISTANT
ADMINISTRATOR FOR COMMERCIAL PROGRAMS

- DEAN OLMSTEAD IS NOW THE ACIS EXPERIMENTS PROGRAM MANAGER IN
OCP

NON-U.S. PARTICIPATION IN THE ACTS PROGRAM

- POLICY STILL UNDER REVIEW WITH OBJECTIVE OF ALLOWING SOME
PARTICIPATION

- VERY ENCOURAGING THAI CHANGES WILL BE MADE lO CURRENT POLICY

- PARTICIPATION IN ACTS PROPAGATION PROGRAM VIRTUALLY ASSURED

- OUR NON-U.S. COLLEAGUES ARE INVITED TO PARTICIPAIE IN THE ACTS
MINI-WORKSHOP TO, ROW MORNING

11
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A REVIEW OF OPEX ACTIVITIES AND MEASUREMENT RESULTS

B. Arbesser-Rastburg

ESA-ESTEC, Noordwijk, The Netherlands

Abstract
A summary is given of the measurements carried out in the framework of OPEX (OLYMPUS
Propagation Experimenters Group). In particular, the progress since mid 1990 is presented. In this period
two OPEX meetings were held, OPEX XIV (October 1990) and OPEX XV (April 1991) and the First
OPEX Workshop was held at ESTEC on 23-24 April 1991.

1. Introduction

The OLYMPUS Propagation Experimenters were well prepared when ESA's large communications
satellite OLYMPUS was launched in summer of 1989. All important aspects of the measurement

programme had been jointly defined and as far as possible standardized. Handbooks had been produced
to define the requirements for the measurement hardware and the data processing software. However,
only a handful of measurement sites were actually ready to operate - delays in funding and/or hardware
delivery had delayed the start-up of the majority of stations. This was not considered a dramatic
drawback since the satellite was designed for an operational lifetime of at least five years and a

measurement over three years was generally considered sufficient.
In the time since the launch several new stations became operational and an even larger number were

just about to be completed when a major anomaly in the spacecraft's attitude control caused a disruption
of all OLYMPUS experiments on 29 May 1991 at 03:21 UTC.

2. Rain Attenuation Measurements

Several intensive rainstorms with one-minute rainfall rates exceeding 30 mm/h were observed during
the first 1.5 years of operation. British Telecom Research Labs operated their 20/30 GHz beacon
receivers with a 6.1 meter steerable antenna which gave a good dynamic range. Figure 1 shows an

example of a time series recorded during a storm on 15 August 1990 [1].
An interesting aspect of multi-frequency beacon measurements is the instantaneous frequency scaling
which is required for open-loop up-link power control systems. Although the long-term average of rain-
attenuation scaling is fairly constant, the instantaneous ratio is not. Figure 2 shows a scatterplot of
instantaneous 30 GHz versus 20 GHz copolar attenuation values measured at Darmstadt, Germany on

26 August 1990 [2]. Each point represents a 30-second average value - the averaging was used to
remove scintillations. The pronounced hysteresis effect visible on the plot (increasing slope lower than

decreasing slope, counterclockwise progression) comes from the fact that the drop-size distribution

changes during the event.
At the combined experiment of the Dutch PTT and Delft University, the site diversity performance of
2 stations situated 10 km apart was investigated [3]. For high availability services at Ka-band (e.g.

HDTV feeder links) site- diversity may be the only fade restoration method that produces enough
margin. Several events of the summer of 1990 were analyzed. In most cases of convective storm the
diversity performance was adequate (Figure 3). However, there was also an event with extreme high
rainrates observed where both sites were affected at the same time (Figure 4). This means that the site

distance was insufficient to produce the required time-lag between the rain attenuations occurring on
the links.
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3. Cloud attenuation and scintillation measurements

For very small Ka-band terminals which are designed for low availability systems with hardly any
propagation margin not only rain but also clouds can constitute a problem. Rain occurs in most places
for less than 5 percent of the time but clouds occur for more than 50 percent of the time in temperate
climate regions. It is therefore necessary to investigate the occurrence of clouds and the related fade in
the same way as has been done with rain in the past. Several experimenters have embarked on such
investigations, but results have not been analyzed yet.

A theoretical assessment of the propagation phenomena relevant to low-availability systems has been
completed in spring of 1990 [4].

Tropospheric scintillations which are rapid signal fluctuations caused by air turbulence also affect the

link budget and can be problematic for dynamic fade restoration techniques. In previous experiments
using Ku-band beacons, it had been established that scintillations are more intensive at low elevation

angles (longer path) and at higher temperatures (more turbulence). At the University of Louvain-la-
Neuve (Belgium) one of the two receiving stations is equipped with a special 30 Hz acquisition mode for
measuring the scintillations at 12 and 30 GHz [5]. Figure 5 shows the measured spectral density of
the 30 GHz beacon signal. The well known "-8/3" law of propagation through turbulent layers is also
plotted; it shows that the measured spectrum is in good agreement with theory.

4. Depolarization Measurements

Depolarization by oblate raindrops and by ice-needles may cause severe interference problems with

frequency re-use systems. Most experimenters in the OPEX group are therefore undertaking
measurements of the crosspolar beacon levels. A special working group has been set up to study the
proper bias removal procedures [6].

In several stations specialized switching receivers make use of a special feature of the OLYMPUS 20
GHz beacon: The transmitted polarization plane alternates between two orthogonal orientations at a rate

of 933 Hz. Since this switching rate is much higher than the de-correlation time, the received signals (2
co- and 2 crosspolar levels) allow for a quasi-simultaneous retrieval of the full transmission matrix.
Event analysis was performed and reported by the DBP-Telekom group [7] and by the Technical
University of Eindhoven [8]. Some limited statistics (Figure 6) were presented by Telecom Denmark
at the OPEX 14 meeting [9].

An important conclusion from these measurements is the observation that the XPD prediction of the
CCIR [10] heavily under-estimates the ice-depolarization at low attenuation values.

5. Radiometric Measurements

All major stations in the OPEX program are equipped with one or more radiometers. Measuring the sky
noise temperature at one frequency within the water vapour absorption line (22 GHz) and another one
well outside this line (e.g. 30 GHz) allows to retrieve the vapour and liquid water content of atmosphere
along the beacon reception path. [ll] This information is used for calculating the clear air ("0 dB")
reference level for the beacon measurements and to investigate cloud attenuation. Special cloud studies
with a scanning radiometer are undertaken by the Fondazione Ugo Bordoni in Rome, whose staff is also
in charge of the network of 20 GHz receivers in Italy (25 sites).
Another specialized application of ground based radiometry is the simultaneous measurement of the 19

GHz sky-noise temperature at two orthogonal polarizations, as reported by DLR [12]. An example
for the observed differential sky noise temperature (Th-Tv) is given in Figure 7.

The OPEX working group on radiometry (which is also in charge of auxiliary measurements) has very
active participation in the field of comparing and improving retrieval algorithms. A handbook will be
published summarizing all major findings.
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6. Radar Measurements

Several sites are equipped with specific meteorological radars operating at S-,C- or X-band. These radars
are used to establish the drop size distribution of a rain-cell, the horizontal and vertical structure of the

precipitation event, the existence and extent of a melting layer. Radars with doppler processing are also

capable of measuring the air turbulence.
In order to better coordinate their measurements and analyses, the experimenters have formed a Radar

Working Group within OPEX. Of particular interest are the backscatter (at radar frequency) and
forward-scatter (at beacon-frequency) programmes used for raindrops and ice/water mixtures. An
anisotropic melting layer model is also being studied and developed. It is envisaged that all the
achievements of this working group will be published in a handbook. Since the processing of radar data
is known to be time-consuming, analyzed results of joint radar and beacon measurements have not been
available until now but are expected to be presented at the OPEX 16 meeting in Aveiro, in October 1991.

7. The Standardized DAPPER Software

The Data Preprocessing and Analysis Software was completed and distributed by ESA to all signatories

of the OPEX agreement. The general distribution was preceded by a half-year beta-testing phase in
which some experimenters had volunteered to participate. Currently, a conversion of the UNIX-based
software to HP-UX is underway which will make the software available to experimenters using HP-9000
workstations rather than 386- or 486 based PCs.

8. Implications of the OLYMPUS Failure.

On 29 May 1991 at 03:21 UTC the spacecraft went into the "Emergency Sun Acquisition"-mode which
is the pre-programmed position for coping with any sort of potentially dangerous malfunctions.
Attempts to repoint the spacecraft back to the nominal position failed and left the spacecraft in a
spinning condition with depleted batteries. The cause for the problem is under investigation by a special

inquiry board.
With the sun getting into a more favourable angle towards the solar panel new attempts were made to
command the satellite. The recovery of the spacecraft has begun by successfully executing telecommands
on 19 June. However, at this point it is still unclear whether the spacecraft operation can be completely

re-established.
If the recovery is successful, the remaining lifetime of the satellite will be reduced since some of the fuel
needed for station keeping will have been spent in the recovery procedures. But any period of more than

one year continuous operation can be considered worthwhile to continue the interrupted experiments and
to start those measurements that were just about to begin when the failure occurred.

If, on the other hand, the nominal operation of the propagation beacons under nominal attitude control
conditions cannot be restored, the OPEX group will have to turn to alternate beacon sources in order to

achieve the goal of establishing better propagation prediction tools for satellite services using frequencies
above l0 GHz. After all, the cost of the ground equipment exceeds US$ 20 million and a decision to

discontinue this research activity would mean that this investment is lost.
Unfortunately, there is no exact replacement of the OLYMPUS beacon payload in orbit, which means
that experimenters will have to convert their stations to receive beacon signals from other spacecraft. Of
course, the possibility of re-flying the OLYMPUS beacon payload that was built for flight model 2 exists
but even if the technical, contractual and financial questions can be solved, a time frame of at least 2

years is expected for getting this payload into orbit.
In order to co-ordinate the conversion activities and establish the new mode of co-operation in the

OPEX group, a special OPEX meeting has been set up for 3 July 1991 at ESTEC.

14



9. Conclusion

The OPEX group has been very active during the last year and the First OPEX Workshop gave ample
evidence of this point. First results have been obtained and links have been established to other

propagation experimenters groups such as the INTERKOSMOS experimenters in Eastern Europe. Now,
many groups are using the break in the measurements to analyze the data collected so far. Everyone of
course hopes that OLYMPUS can be fully restored to the good performance displayed so far. However,
even if this cannot be accomplished, the co-operative spirit of the group will continue to ensure
scientific results at the highest level to the benefit of the sponsors and, through the submission to the
CCIR, the whole satellite communications industry.
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Scatterplot of instantaneous 30 GHz versus 20 GHz copolar attenuation measured at

Darmstadt, Germany on 26 August 1990 from 14:00 to 15:00 UTC (data averaging: 30

seconds)
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Site diversity observation in Delft (solid line) and Leidschendam (dotted line) on 30 June
1990 from 14:00 to 15:00 UTC. Here the 10 km site distance is in-sufficient.
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OLYMPUS PROPAGATION MEASUREMENT RESULTS

AT VIRGINIA TECH

Warren Stutzman

for the

Satellite Communications Group

Bradley Department of Electrical Engineering

Virginia Polytechnic Institute & State University

Blacksburg, Virginia 24061-0111

Abstract - Virginia Tech is performing a comprehensive set of

propagation measurements using the OLYMPUS satellite beacons at

12.5, 20, and 30 GHz. A second 20 GHz diversity terminal is

portable and is moved to various spacings up to 50 m away from the

fixed 20 GHz terminal. Total power radiometers are included in

each terminal also. Radiometer data are used both to set the

absolute level of the beacon data and to predict path attenuation.

This paper presents initial results from the experiment set.

1. Introduction

The European Space Agency launched the OLYMPUS satellite in

July 1989. In addition to communications experiment packages in

Ku- and Ka-bands, OLYMPUS has frequency coherent propagation

beacons at 12.5, 19.77 and 29.66 GHz. These beacons are visible

from Blacksburg at an elevation angle of 14 ° Virginia Tech has

four receivers, one at each frequency plus a second portable

terminal at 20 GHz for short-baseline diversity measurements.

The receiving system was constructed to take advantage of the

frequency coherent beacons. A frequency locked loop derives

frequency tracking information from the 12 GHz receiver which

experiences smaller fading than that at 20 and 30 GHz. This

permits accurate fade measurements of the relatively frequently

occurring deep rain fades (25 dB or more) on 20 and 30 GHz. The 12

GHz derived FLL also permits rapid reacquisition after loss of

lock.

Measurements at Virginia Tech began in August 1990.

Statistical results are currently being processed. These include;

fade, fade rate, and fade duration for rain and scintillation

events. Frequency scaling results are especially valuable due to

the common elevation angle and location of the receivers. Initial

results confirm the somewhat less than frequency squared scaling

law. For a diversity separation of 50 m for the two 20 GHz

receivers, no improvement during rain fading is experienced, while

decorrelation for scintillation events is common.

Unfortunately, the OLYMPUS spacecraft lost altitude control on

May 29 and has been nonfunctional since. Meanwhile, radiometer

measurements continue at Virginia Tech.
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These data will be used to characterize propagation conditions on

VSAT-type networks for next generation small aperture Ka-band

systems.

2. The Measurement System

The propagation experiment system at Virginia Tech

continuously records the 12.5, 20, and 30 GHz OLYMPUS beacons using

receiving antennas 12, 5, and 4 feet in diameter, respectively. A

block diagram of the measurement system is shown in Figure i.

A unique feature of the OLYMPUS beacon package is that the

three spacecraft beacons are coherent since they are derived from

a common oscillator. The Virginia Tech OLYMPUS receivers take

advantage of their coherence by deriving frequency locking

information from the 12.5 receiver. This information is used to

maintain lock for all four receivers. In effect, this widens the

dynamic range of the 20 and 30 GHz receivers, which experience more

fading during a rain event than does the 12.5 GHz receiver.

The receivers at all three frequencies are very similar. Each

receiver has a low noise amplifier followed by a mixer-preamp whose

output IF frequency is 1120 MHz. A motorized attenuator is

included in the RF section to aid in system calibration. The 1120

MHz IF is subsequently mixed down to produce lower IF frequencies

of 70 MHz and i0 kHz. The I0 kHz signal is then used in detection

and tracking.

A hybrid analog/digital receiver is used in the detection

scheme for the 12.5 GHz system. The analog portion of the receiver

tracks the carrier frequency and maintains the signal within a 3 Hz

window. Simultaneously, the i0 kHz carrier is sampled at a 1 kHz

rate by a 12 bit A/D converter. Each sample is then filtered by a

digital FIR filter and the resulting 16 bit I and Q values are

recorded by the data acquisition system.

Clouds and scintillation can produce up to 3 dB of attenuation

at 30 GHz on a 14 ° elevation-angle path and may be present for a

large percentage of the time. Therefore, it is important in a

slant-path propagation experiment to be able to set the clear air

reference level accurately. Radiometers operate at each beacon

frequency in our receiving system to aid in setting this clear air

reference level. The radiometers are

of the total power design; the RF and IF sections are housed in a

temperature controlled environment to keep gain constant. The

radiometer design is unique in that it uses the same RF chain as

the beacon receiver.
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The output of the receivers and radiometers are continuously

monitored by a PC-based data acquisition system (DAS). Analysis is
performed on a large PC.

3. The Experiment Program

The experiment produces a number of primary and secondary
attenuation statistics. Beacon attenuation cumulative

distributions referenced both to free space and to clear air are

produced. Frequency scaling between frequencies is determined.

Secondary statistics such as fade slope, fade duration, and fade
interval are also generated.

Radiometer predictions of attenuation are also produced.

Small scale diversity as a function of the spacings (and vertical

height differences) of the two 20 GHz terminals is examined.

Uplink power control applications are considered as well.

Here it is hoped that on a 20/30 link with rain fading on the

uplink at 30 GHz the control of the uplink power level

(alternatively, coding rate) can be based on beacon measurements at
20 or 30 GHz.

4. Results

Attenuation statistics are being analyzed. Figure 2 shows an

example of cumulative distributions for January.

Radiometer data must be accurate to set the beacon reference

level, so we examine it first. Radiometer data also take on new

significance now that the OLYMPUS beacons are unavailable.

Radiometer data have been reduced for the month of January 1991.

Radiometer predicted attenuation has an rms deviation of 0.025 dB

from directly measured beacon attenuation. This included events

with fades as high as i0 dB. Figure 3 shows a scatter plot of

radiometric attenuation versus beacon attenuation referenced to
free space.

Scintillation events have been analyzed. Preliminary findings

show that the spectrum at all frequencies obeys the popular - 8/3

power law. The diversity site (up to 50 m separation) does offer

improvement for scintillation events, but not for rain events.

A major use for our data is in uplink power control studies on

narrow margin communication links as for Ka-band VSAT application.

We have found that simple scaling laws work very well. They

apply to both attenuation and to unnormalized signal levels as

would be encountered in practice. For example, predicted

attenuation at 30 GHz follows from measured 20 GHz attenuation as

A30 = a + b A20 (i)

log A30 = c + d log A20 (2)
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for attenuation in dB. In practice, A20 could be measured from a

beacon or even a radiometer. Predictions can also be made from

delayed 30 GHz attenuation as

A30 (t) = e + f A30 (t - to) (3)

Figure 4 shows the rms error for this last prediction method.

5. Conclusions

The experiment program at Virginia Tech has several unique

opportunities. The collection of simultaneous data at three

frequencies spanning the 12 to 30 GHz region is extremely useful in

frequency scaling studies. This is possible because all links have

the same path (14 ° elevation, 105 ° azimuth). The 14 ° elevation

angle is relatively low and data in this region are also very

useful because this is at the lower limit for CONUS coverage with

domestic satellites. Our experiment records low-fade events

accurately. This is valuable in amassing a database for low margin

operational satellite links such as VSAT systems. Another feature

of our OLYMPUS program is that it provides a test bed for ACTS due

to the similarity of frequencies (ACTS beacons are at 20.2 and 27.5

GHz).

Initial results show that radiometer prediction attenuation

agrees with beacon measured attenuation to the fractional dB level

for fading up to i0 dB. Small baseline diversity, as expected,

offers no improvement to rain fading, but does for scintillation

events.
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Data Acquisition, Preprocessing and Analysis for the
Virginia Tech OLYMPUS Experiment

P. W. Remaklus

for the

Satellite Communications Group

Bradley Department of Electrical Engineering

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

Abstract

Virginia Tech is conducting a slant path propagation experiment using the 12, 20 and 30 GHz

OLYMPUS beacons. Beacon signal measurements are made using separate terminals for each

frequency. In addition, short baseline diversity measurements are collected through a mobile
20 GHz terminal. Data collection is performed with a custom data acquisition and control

system. Raw data are preprocessed to remove equipment biases and discontinuities prior to

analysis. Preprocessed data are then statistically analyzed to investigate parameters such as

frequency scaling, fade slope and duration, and scintillation intensity.

The OLYMPUS Experiment

The Virginia Tech experiment equipment consists of four terminals, each of which contains

a beacon receiver and a radiometer. As shown in Figure 1, each terminal utilizes a separate

antenna and all are frequency locked to the 12 GHz beacon. Locking to the less fade prone

12 GHz beacon allows measurement of 20 and 30 GHz fades to the noise floor. Sky noise

measurements via radiometers provide a means to measure gaseous attenuation and hence

the clear sky attenuation. Clear sky attenuation is then added to the measured beacon atten-

uation to obtain attenuation referenced to free space. System status and environmental data

are collected to monitor system performance and examine correlations between propagation

measurements and weather conditions.

Data Collection

Data collection and system control is performed by a standalone data acquisition and control

system (DACS). Figure 2 is a block diagram of the major DACS components. The DACS

is 80286 microprocessor based and is connected to the PS/2 Model 60 collection computer

through a parallel data interface. I and Q detector cards each accept two 10 kHz IF signals

from the receivers and output in-phase and quadrature power measurements for the two

channels at a l0 Hz rate. Status signals and alarms, such as loss of lock, are input to the

digital input card. Similarly, analog signals such as temperature, wind speed, barometric

pressure.., are recorded via the analog input card. The radiometer input card counts the

pulse train from each of the radiometers while the digital output card controls the waveguide
switches and noise diodes that are used for radiometer calibrations. Data from the DACS
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Figure 2: Data acquisition and control system overview.
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Time 16:$9:43
Date 84/13/91

Figure 3: Real time display screen.

Figure 4: OLYMPUS experiment data flow.

are output to the Model 60 personal computer for storage to hard disk and realtime display.

An example of a realtime display screen is presented in Figure 3. Once a day, the collected

data are copied to tape for archival storage and input to preprocessing. Data flow within

the experiment is shown in Figure 4.

Preprocessing

Raw data is generally not suitable for input to analysis. For example, discontinuities during

system maintenance and random glitches in the data must be removed prior to statistical

processing. Furthermore, collected radiometer data require the application of periodic cal-

ibration information to obtain sky temperature. Preprocessing at Virginia Tech consists of

several computer programs. These programs are:

• DP: Generates daily plots using raw data.

• EXAMINE: Automatic location of data discontinuities and extraction of radiometer

calibration information.
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Figure 5: Daily plot of raw beacon and radiometer data.

• EDIT: Allows operator classification of data.

• RPRECAL: Calculates radiometer calibration parameters.

• RCAL: Converts collected radiometer data into sky temperature.

• FILTER: Low pass filters the radiometer data to improve resolution.

• DIURNAL: Removes the effect of spacecraft ,notion.

• CDP: Generates calibrated daily plots.

Within several days of collection, raw data is processed by DP to obtain daily plots for

each of the four terminals. Figure 5 is a daily plot for the 20 GHz system on January 16,

1991. The upper three curves are one minute maximum, average and minimum levels of the

received beacon signal. The separation between maximum and minimum curves provides

an indication of scintillation activity. The large spikes in the radiometer data are periodic

noise diode calibrations while the beacon dropouts correspond to radiometer ambient load

calibrations. These plots along with written log information are invaluable to the operator

when EDIT is executed. Prior to EDIT, the data is analyzed by EXAMINE.

EXAMINE attempts to autonomously find and classify discontinuities in the data and

extract radiometric calibration information. Noise diode and ambient load calibration levels

are easily removed since these events occur at known times during the day. However, data

discontinuities are more difficult to locate. Three types of discontinuities are most prevalent
in the data:

• DACS downtime

• Alarms

• Questionable data

DACS downtime is easily located because there is no collected data for tile duration of the

outage. Phase locked oscillator blocks and the 12 GHz frequency locked loop output alarms
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Figure 6: EDIT display screen in 8 minute mode.

are stored in tile collected data. When an alarm condition is detected, all data channels

that could be affected I)y the alarm condition are marked as discontinuous for the duration of

the alarm. Questionable data are located by comparing the rate of change of a data channel

with a limiting condition. Presently, beacon data arc marked discontinuous for signal changes

of greater than 1 dB/sec or phase differences of more than 15° between samples. Most beacon

data with these characteristics are valid; however locating false discontinuities is preferable to

missing actual discontinuities. The next phase of preprocessing, EDIT, allows the operator

to add, modify or remove discontinuities located by EXAMINE.

EDIT is a mouse driven, graphical program which allows the operator to view data from

one day and confirm, modify or add discontinuity classification information to the output

from EXAMINE. Data can be marked as category:

• 0 Normal operation

• 1 Clear air downtime

• 2 Event downtime

• 3 Calibration downtime

Figure 6 is an example of the EDIT display screen in eight minute display mode. The top

of the display uses color bars to indicate the classification of the data directly below. This

display shows that an operator manually performed a noise diode calibration and then an

ambient load calibration on the 30 GHz system. The buttons on the bottom portion of the

screen allow the operator to select the channel for display, time period for display, and to

classify data as desired.

After using EDIT to remove all data problems, RPRECAL and RCAL are executed

to convert the radiometer data into sky temperature. RPRECAL processes calibration

information from EXAMINE and EDIT for the previous, current and next day to obtain
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Figure 7: Diurnal bias removal.

the calibration parameters necessary to convert raw radiometer data into sky temperature.

RCAL then applies these calibrations to the data. FILTER then applies a 10 second

moving average filter to the radiometer data. This improves the resolution of the radiometer

data to about 0.1 I(.

The final stage of preprocessing is the removal of diurnal biases and calibration of the

beacon data to attenuation relative to free space. Because Blacksburg is located far off

the boresight of the OLYMPUS beacons, diurnal variations of several dB are commonly

present. Removal of this bias can only be performed after the gaseous attenuation has been

removed from the beacon signal thus leaving only the diurnal variation. Figure 7 illustrates

the bias removal procedure for the 20 GHz system during a rain event on January 16, 1991.

Each of the curves on the plot was obtained from six minute average data. Averaging is

necessary to remove scintillations from the beacon signal and maintain a uniform number

of points for each of the curves. The upper curve on the plot is the radiometer predicted

attenuation in absolute dB. Note that the radiometer measures beacon attenuation quite

accurately to about 3-4 dB. The lower curve on the plot is the beacon level during the day

relative to an arbitrary 0 dB baseline. The middle curve is obtained from a sixth order

curve fit of selected portions of the upper and lower curves added on a point by point basis.

This curve fit information along with thresholded radiometer predicted attenuation is then

applied to the raw beacon data to obtain attenuation referenced to free space. As shown in

Figure 7, radiometer data is thresholded at 90 K for 12 GHz and 110 K for 20 and 30 GHz.

Attenuation beyond this point is measured more accurately through beacon measurements.

A plot of calibrated beacon and radiometer data is shown in Figure 8. If this plot showed

any discontinuities or appeared incorrect, the operator would return to EDIT and remove

any problematic data or modify radiometric calibration parameters. Once satisfied with the

quality of the data it is input to the analysis software.
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Analysis

Presently, the analysis software is under development. Analysis requires the following data

from each of the four terminals:

• Attenuation with respect to free space

• Attenuation with respect to clear air

• Sky temperature

• Rain gauge tip times

Output table and graphs include:

• Cumulative rain rate distributions

• Beacon attenuation with respect to free space

• Beacon attenuation with respect to clear air

• Scintillation index

• Fade slope

• Non-fade duration

• Ultimate fade depth versus fade slope

• Diversity gain

• Frequency scaling

Figure 9 is an exceedance plot of attenuation referenced to clear air for January 1991. Note

that frequency scaling of attenuation is clearly present and that some scintillation activity

is indicated by negative attenuation in the 99-100% region.
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Conclusions

Virginia Tech has constructed and is operating a propagation measurement system for the

OLYMPUS experiments. Procedures and methods for data collection, preprocessing and

analysis have been selected and utilized successfully. Presently, data analysis software for

primary statistics; rain rate, attenuation referenced to free space.., is complete. Secondary

statistical analysis; fade rate, fade duration.., software is under development and should be

completed in the near future.
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EARTH-SPACE PROPAGATION RESEARCH AT CRC

Roderic L. Olsen

Communications Research Centre

Department of Communications
Ottawa, Canada

OUTLINE:

14/38 GHz site-diversity measurements t
(LES-8 satellite)

Intercontinental rain attenuation

studies for INTELSAT

Recent Past

• Low-angle fading project

• Rain attenuation measurements in SE Asia

• Studies of propagation mitigation at EHF

• Interference studies
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SITE DIVERSITY RESULTS USING 38 GHz LES-8
SATELLITE AND 14 GHz RADIOMETER

10

"_ 5
GO

q

0

I

0

satellite results

sc(;led radiometer -*...... £e_U, _S

............ predictions from

Fiodge's method

"

/"

,-" t

°°°.°'

°°

°°°°

°
.°

o°

o°°
°

°
°°

°°°°°°°

°°"

°°°
°

°°
°°

°.°

38 GHz

, , I , I I , ' ' ! ,

10 20

S_,ngle s_,_e _z_enucL_,on (dJ_,)

(Lam and Olsen, 1988)

37



ASSESSMENT OF JOINT ATTENUATION ON LOW-
FADE-MARGIN INTERNATIONAL SATELLITE

SERVICES (Segal and AIInutt,1991a,b)

• INTELSAT International Business Service"

Uplink
Downlink

14 GHz

11/12 GHz

Rain fade margin 2.5 dB

Study of possible detrimental effects due to
correlation in rain attenuation between uplink and

downlink during business hours (use of prediction

approach based on rainrate statistics):

N.A. _ EUROPE ; N.A. _ PACIFIC

Main Conclusions

- Max. diurnal enhancement approx, equal

seasonal enhancement

to max.

Effect of large diurnal variations in continental

climate swamped by much larger fade probabilities

(with smaller variability) in maritime climate

Side-benefit: Development of

predicting rainrate one-minute
hour statistics

technique for
statistics from one-
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ONE HOUR TO ONE MINUTE CONVERSION FACTOR CURVES
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CUMULATIVE RAIN-RATE DISTRIBUTIONS FOR MIAMI
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LOW-ANGLE FADING PROJECT

OBJECTIVE: To develop a climatological model for

fading at elevation angles less than about 4 °

BACKGROUND:

CRC has largest low-angle fading data base in

world (4, 6, 7, 30, 38 GHz; Ottawa, St. Johns',

Resolute, Eureka, Alert) (e.g., see Lain, 1987)

the

CRC has developed model for frequency

percentage-of-time scaling of low-angle

(< 4 ° elevation angles) (CCIR, 1989)

and

fading data

CRC has new physical explanation of fading at the

very lowest angles (Olsen et al., 1987)

CRC has developed climatological model for

multipath fading statistics on terrestrial links

(Worldwide version adopted by CCIR)

CRC/University of Western Ontario conducting

terrestrial experiment to compare refractivity

profile and acoustic sounder measurements, etc.

phased array radio measurements

with

POSSIBLE APPROACHES:

refractivity gradient
studies to determine

dependence

(a) Tie existing and new data to
statistics, (b) Ray tracing

beamwidth and elevation-angle
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RAIN ATTENUATION MEASUREMENTS IN
ASEAN COUNTRIES OF SE ASIA

Project funded by Canadian International

Development Agency

12 GHz radiometric measurements of rain attenuation

statistics along paths to future INTELSAT satellite

2 radiometers in Thailand (site-diversity configuration)

1 radiometer in Singapore

2 radiometers in Indonesia

• Initial measurements in fall of 1991

Aim is to have ASEAN researchers doing the analysis

with CRC scientists as consultants
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CHANNEL IMPAIRMENT MITIGATION AND
NETWORKING TECHNIQUES FOR EHF PERSONAL
SATELLITE COMMUNICATIONS

Joint project with the University of Ottawa and

Telesat Canada - funding of 4 graduate students, 2 post-

doctoral fellows over 3 years (Yonga(;oglu et al., 1991)

Use of existing EHF data and data from Olympus

experiment (see Olsen et al., 1990)

OBJECTIVES:

Evaluate impairment mitigation techniques for both

slowly and rapidly changing channel conditions

Jointly optimize candidate techniques using
software/hardware simulations

Develop practical mitigation techniques using digital

processing based hardware

• Test prototype hardware over satellite link

• Investigate new networking strategies
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INTERFERENCE STUDIES

1. DUCT PROPAGATION

Experimental investigation of negative correlation
between transhorizon interfering signal from

earth-station and fading signal at terrestrial

receiver (Olsen and Bilodeau, 1991; Bilodeau and Olsen,

1991)

2. HYDROMETEOR SCATTER

Development of model for scattering cross-
section of melting snow (contracts to University of

British Columbia, sub-contracts to University of

Mississippi, earlier rain cross sections from Dartmouth

College, see Kharadly, 1990,1991)

Comparison of relative importance of rain scatter

and melting snow scatter (contract to University of

British Columbia)

Calculation of new radar reflectivity profiles from

polarimetric radar data (contract to Alberta Research

Council, see Kochtubajda et al., 1991)
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COMPARISON OF SPHERICAL AND OBLATE SPHEROIDAL
MODELS OF MELTING SNOW PARTICLES
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THE ACTS PROPAGATION PROGRAM

D. Chakraborty and F. Davarlan

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

Introduction

The purpose of the Advanced Communications Technology Satellite (ACTS) is to

demonstrate the feasibillty of the Ka-band (20 and 30 GHz) spectrum for

satellite communications, as well as to help maintain U.S. leadership in

satellite communications. ACTS incorporates such innovative schemes as time

division multiple access (TDMA), microwave and baseband switching, onboard

regeneration, and adaptive application of coding during raln-fade conditions.

The success or failure of the ACTS experiment will depend on how

accurately the rain-fade statistics and fade dynamics can be predicted in

order to derive an appropriate algorithm that will combat weather vagaries,

specifically for links with small terminals, such as very small aperture

terminals (VSATs) where the power margin is a premium.

This article describes the planning process and hardware development

program that will comply with the recommendations of the ACTS propagation

study groups.

ACTS Propagation Terminal Development Plan

A plan for the ACTS propagation terminal was initiated at the first ACTS

Propagation Studies Workshop, November 28-29, 1989. The workshop's goal was

to develop the ACTS Propagation Studies Program. During this workshop,

participants delivered a set of recommendations regarding propagation studies

and experiments that would use ACTS. In their recommendations, the group

addressed a number of topics, including the need for propagation data and the

configuration and number of propagation terminals needed.

The participants also provided guidelines regarding measurement

parameters and requirements. These guidelines specify how the terminal should

be configured so that it can record the following propagation and

meteorological parameters:

• 20-GHz beacon receive signal level

• 27-GHz beacon receive signal level

• 20-GHz radiometric sky noise temperature

• 27-GHz radiometric sky noise temperature

• Point rain rate near the terminal
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• Atmospheric temperature at the Earth's surface

• Atmospheric humidity at the Earth's surface

In response to the recommendations concerning propagation terminals, a

two-phase plan has been devised. In phase i, a terminal prototype is being
developed, and in phase 2, six to eight terminals will be manufactured for

distribution to ACTS propagation experimenters.

Prototype Receive Terminal Development

A NASA research grant was awarded to Virginia Polytechnic Institute in

early 1991 for the Prototype development. The Prototype ACTS propagation

receiver terminal will consist of a common antenna, a dual-channel digital

receiver, a dual-channel analog radiometer, and a data acquisition system.

The terminal will also be equipped with meteorological recorders for measuring

the point rain rate and the atmospheric temperature and humidity.

A simplified block diagram of the receiver terminal is shown in Fig. i.
The salient features of the terminal are as follows:

• 1.2-m common antenna

• Ortho-Mode Transducer (OMT) to split 20-GHz V- and H-Pol (if used)

• 20-/30-GHz diplexer to split 20- and 30- GHz V-Pol signal

• Cost-effectlve low-nolse amplifiers followed by single downconverslon to
70-MHz intermediate frequency (IF)

• Total power radiometer with detectable sensitivity of ±I K

• Data collection - PC/AT-based

The design will be based upon modular form for easier integration and
testing.
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Worst-case ACTSlink budget is shown in Table i.

Table i. ACTS Link Calculations

Beacon frequency band (GHz)
27.5 20

Common antenna size (m)

Antenna gain (dB)

Nominal CONUS EIRP (dBW)

Transmission loss (dB)

Modulation loss (dB)

Path loss at 30-deg elevation (dB)

Total loss (clB)

Low-noise-amplifier noise figure (dB)

Receive G/T (dB/K)

Carrier-to-nolse density (C/N), (clB-Hz)

C/N over 15 Hz (dB)

1.2 1.2

49 46.4

16 16

2.0 1.8

. 3.2

215 212

217 217

7 7

17.6 15 .I

45.2 42.7

33.4 30.9

The above table shows the worst-case C/N within the CONUS coverage. For an

experimental site in Alaska, the reduced EIRP as seen from Alaska can be

compensated by a 2-m antenna.

Schedule

The tentative schedule summary for ACTS Propagation Studies is shown

below:

Completion of Prototype Terminal

Selection of Experimenters

Completion of 6-8 Terminals Production
Installation and Calibration of Terminals

ACTS Launch

Start of Data Collection

Feb. '92

Aug. '92
Oct. '92

Dec. '92

Late '92

Early '93

Data Collection Sites

Rain climate zones without prior propagation data w&ll receive special

consideration. Sites with an ongoing environmental sensing program employing

radiosondes, weather radars, etc., will be given higher priority.
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Additional ACTS-Related Tasks

In addition to the planning discussed above, the following tasks need to
be completed:

• Plan propagation study pertinent to mobile environment

• Plan fade detection and compensation via uplink power control

• Support ACTS Conference in August '91 and organize ACTS Workshop in

late 1991 or early 1992

• Possibly organize a 20-/30-GHz Technology Workshop in GLOBCOM '92

• Select a central processing site for ACTS data reduction and analysis

Conclusions

The ACTS Propagation Study Planning and developmental efforts are

highlighted. No major constraint is foreseen at this time.
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PROPAGATION MEASUREMENTS IN ALASKA USING ACTS BEACONS

Charles E. Mayer

Electrical Engineering Department
University of Alaska Fairbanks

Fairbanks, Alaska 99775

Abstract--The placement of an ACTS propagation terminal in Alaska has several
distinct advantages. First is the inclusion of a new and important climatic zone to the
global propagation model. Second is the low elevation look angle from Alaska to ACTS.
These two unique opportunities also present problems unique to the location, such as
extreme temperatures and lower power levels. These problems are examined and
compensatory solutions are presented.

1. Introduction

Alaska has always been, and will continue to be, at the forefront of high
technology satellite resource usage. From the first U.S. tracking of Sputnik to the
installation of more than 200 remote video and voice C-band earth stations throughout

rural Alaska, the unique location and population diversity of Alaska require innovative
solutions to realize the State's telecommunications needs. New technologies, such as

ACTS, provide additional opportunities for new solutions. Alaska is reliant on satellites
for communications to its remote regions, and the State is committed to providing
educational and health communications throughout the state. The location of a large
teleconnected research university with three major campuses (Fairbanks, Anchorage, and
Juneau) and many smaller campuses across the State, the demand for transportable
USAT earth stations and mobile satellite service (Hills, 1988), and the growing demand

for video and audio communications throughout the State, all point to the need for
expansion into Ka-band communications. Accordingly, propagation statistics for Ka-
band frequencies in Alaska are essential. Alaska offers two major advantages to the
ACTS Propagation Program. The first is the addition of a new and important climatic
zone to the global propagation model. The second is the low elevation look angle to the
satellite. These two advantages provide a unique opportunity for collection of Ka-band

propagation data from ACTS.

2. History

Alaska was the first state to enter the satellite communications age. The first

satellite, Sputnik, was launched into a highly inclined orbit (65 °) and passed over Alaska
on October 4, 1957. Given 2 hours of advance notice by NASA Goddard, the EE faculty
and students assembled receivers and recorders. Bob Merritt, Engineer on the Radio
Astronomy Techniques project at the University of Alaska Fairbanks (UAF), and now
Professor Emeritus of Electrical Engineering, fabricated 2 dipole antennas, arranged them
into a baseline interferometer, and connected the antenna system to both 20 and 40 MHz
receivers. Using a chart recorder, Merritt and his team were able to give NASA 0.1
second accuracy on the Sputnik transit time. Additional studies with the Sputnik data
provided an estimate of the electron density of the ionosphere along the propagation path
to the -120 mile altitude satellite. A few days after launch, the tumbling Sputnik was
visually observed reflecting the sun in the predawn light.

NASA then funded Minitrack System at UAF. Minitrack consisted of an array of
antennas and was used to provide precision tracking position data and telemetry for the
overhead passage of satellites. Array calibration was performed by flying an airplane-
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born transmitter over the site. NASA built its first 85-foot reflector at the Gilmore

Creek Tracking Station, some 20 miles from Fairbanks. The reflector tracked NIMBUS,
for the short lifetime of the satellite. Other data were downlinked from the TIROS

weather satellites, LANDSAT, and SEASAT, as they passed overhead in highly inclined
orbits. Also satellites, such as the Canadian ALOET were used in top side sounder
experiments. The array and the reflector were also used to study ionospheric propagation
effects at 135, 404, and 1705 MHz, where new high latitude effects were discovered.
Gilmore Creek remains operational today.

Alaska participated with ATS-1, with it's push-to-talk 135.6 and 149.2 MHz
downlink and uplink frequencies. The Alaska Public Health Service contracted to
provide emergency communications to remote villages inaccessible by road or any form
of communications except unreliable (due to solar activity) HF radio. From these
beginnings, Merritt and others developed the Alaska Village Satellite System, a C-band
satellite star network connecting some 200 villages with audio connection to the state,
and world, telephone grid (Hills, 1983). Later, this network was expanded to include
delivery of 2 channels of television, one educational and one entertainment, to all the
remote Alaskan villages with a population over 25 people. Today, systems similar to the
Alaska Village System are being deployed in developing countries and in countries with
rugged and remote regions. Propagation studies at C-band were conducted at Sitka,
where some noteworthy features of high latitude propagation were measured.

Current activities include the Alaska SAR Facility, a receive only earth station to
collect data from polar orbiting SAR satellites. The United States did not launch a SAR
satellite, but an agreement has been reached with other countries giving US researchers
access to SAR data in exchange for the collection of data by the Alaska downlink facility.
The foreign countries and organizations include ESA (Earth Resources Satellite), Japan,
and Canada (RADARSAT).

3. ACTS Propagation Opportunities

The placement of an ACTS propagation terminal in Alaska offers several unique
opportunities for the collections of Ka-band data. The first is the climatic zone of the

state. According to the Crane global model (Crane, 1985), Fairbanks is in region B1,
close to the region A boundary. Very little data has been collected in either of these two
climatic zones, and yet they are important for several reasons. Convergence of the global
model will be benefitted by data from all the zones. Scientific research work in the arctic
and antarctic regions is increasing rapidly, partially due to the global warming issue.

Rapid data transfer to the supercomputers used for global modelling will require satellite
links. Furthermore, basic communications in these isolated and often harsh areas of the
world is heavily dependent upon satellite links. Design of reliable communications links
requires adequate knowledge of propagation statistics. Therefore, collection of
propagation data from this Alaska climatic zone is of utmost importance.

A second opportunity lies in the advantage of a low elevation look angle from
Fairbanks to ACTS. At no other location in the United States does the opportunity exist
for low elevation propagation studies. The power level from ACTS is still fairly high in
Alaska, as shown in Figure 1 from GE Astro (Cashman, 1990). Alaska delivers a large
range of look angles across the state (0 ° < 0 < 22°), as shown in Figure 2. Fairbanks
provides a look angle of 7.9 ° to ACTS, scheduled for a geosynchronous orbital slot at
100 ° West Longitude. While a look angle of 7.9 ° is not considered extremely low, it
does require propagation through more than 7 air masses, many more air masses, by a
factor of >3, than possible anywhere in the contiguous 48 states. Hawaii provides a look
angle on the order of 20 ° , but is much farther down on the radiation pattern from ACTS.

A third opportunity would be a short term study of extremely low elevation Ka-
band propagation effects. The location of a mobile terminal at a site such as Barrow,
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with a look angleof 1.2°, wouldprovidea supplyof very low angledata. The standard
ACTS beaconscouldbeusedfor thisexperiment,or thesteerableantennacouldfurnisha
greaterEIRP for thetimethatit couldbeallocated.

Clearly, thereareattractiveadvantagesto theplacementof anACTS propagation
terminal in Alaska. An examinationof thelink budgetfrom Fairbanksexplainshowwell
suchapropagationterminalwould function.

4. Link Budget

As seen in Figure 1, the ACTS EIRP in Fairbanks is less than in the contiguous
states. There are three components of the link budget which are affected by the location
of the receive site, which will cause the received beacon power to be less in Fairbanks

than in the contiguous states. These three components are beacon antenna gain (given as
EIRP), free space or path loss, and clear sky loss. We will compare the ACTS beacon
levels available in Fairbanks with those available in two representative lower 48

locations, specifically Blacksburg and Seattle. Defining dBBB as decibels relative to
Blacksburg and dBSEA as decibels relative to Seattle, Table 1 presents the EIRP levels in
Fairbanks relative to Blacksburg and Seattle. Additionally, Fairbanks is located farther
from ACTS than either Blacksburg or Seattle, thereby increasing the path loss by the
amounts listed in Table 1. The third component is clear sky attenuation due to gaseous

absorption by the atmosphere on the path length. Calculations according to the NASA
Propagation Handbook (Ippolito, et al.) show that there is slightly more clear sky loss in
Fairbanks during the worst case summer conditions as displayed in Table 1. In the winter
months, there will be only miniscule clear sky losses in the cold, dry Alaskan air. The
total worst case Fairbanks beacon power level deficit relative to Blacksburg and Seattle is
tabulated in the last column of Table 1.

Table 1. Fairbanks Signal Levels Relative to Blacksburg and Seattle.

Frequency
GHz

20.2

27.5

EIRP

dBBB dBsEA

-7.5 -5.0

-7.0 -5.5

Path Loss

dBBB dBsEA

-0.7 -0.5

-0.7 -0.5

Clear Sky

dBBB dBsEA

-0.2 0.0

-0.2 0.0

Total Deficit

dBBB dBsEA

-8.4 -5.5

-7.9 -6.0

All other parameters of a link budget calculation would be identical between the
various locations. Given identical receiver stations, the C/N available in Fairbanks will
be less than that available in Blacksburg or Seattle by 5.5 to 8.4 dB, as given in Table 1.
There are two methods of making up this deficit, namely the use of a larger ground
station antenna and/or the use of a lower noise receiver. The advantages/disadvantages

of these two methods will now be examined.
A large fraction of the power level deficit can be readily restored with the use of a

larger antenna. Harris Corporation manufactures both 1.2-m and 2.4-m antennas for their
LBR-2 ACTS terminal. Harris lists a 6.0 dB increase in gain for the larger antenna

(Koenig, 1990). Both antennas are of the same offset reflector geometry, and use the
same feed horn. The surface tolerance error for both reflectors is the same, < 11 mils
rms. This surface error would give a surface tolerance loss of 0.24 dB at 20.2 GHz and
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0.45dB at27.5GHz,still well upon thegainvs. frequencycurve. Therearedifferences
betweenthe two antennas. The first is the difference in wind loading. The 2.4-m
antennacan remain operational for winds >40 mph, whereasthe 1.2-m antenna is
operationalfor windsof 60mph. Theno-damagestatefor thetwo antennasare>80and
100mph, respectively. This doesnot representany limitation or dangerin Fairbanks,
becauseof thelow level of local winds. A moreseriouseffect is thesmallerbeamwidth
of the largerantenna.ACTS is specifiedto bemaintainedwithin +0.05 ° in both azimuth
and elevation of its assigned orbital position. The maximum offset from the assigned
position is therefore 0.07 °. GE Astro expects the station keeping to be tighter than the
maximum specified above. Calculations of estimated antenna beamwidths, given in
degrees, are listed in Table 2, below.

Table 2. Antenna Beamwidths in Degrees

Antenna Diameter 1.2 m 2.4 m

Frequency (GHz) 20.2 27.5 20.2 27.5

0.25 dB BW 0.26 0.19 0.13 0.10

1 dB BW 0.49 0.36 0.24 0.18

3 dB BW 0.89 0.65 0.45 0.33

10 dB BW 1.62 1.19 0.82 0.60

Examining the worst case situation, the beamwidth of the larger antenna at the higher
frequency, and extrapolating between the tabulated values, the maximum variation in
received beacon level due to satellite movement within the antenna beam is found to be

<0.5 dB. GE Astro expects the satellite drift to be <_+0.03 °, which would give a
maximum variation at the higher frequency of <0.25 dB. The lower frequency beacon
variations would be less by about a factor of 2.

The second method of increasing the signal-to-noise ratio in Fairbanks is to use a
lower noise receiver. The most straight forward way to accomplish this is to add low
noise preamps at 20.2 and 27.5 GHz before the respective mixers. There are several
disadvantages to this approach, however. First, to effect a 6 dB C/N difference requires a
change in the system temperature by a factor of 4. The system temperature of the
proposed VPI receiver is -1800 K, estimating TANT = 80 K. A quick calculation gives a
noise figure of <3.7 dB for the lower noise receiver. Another disadvantage is that gain
variations in the amplifier would induce calibration problems into the data. With the
temperature extremes of Fairbanks, there would most certainly be amplifier gain
variations.

Using either the larger antenna or the lower noise receiver, it is possible to get
back most if not all of the signal reduction caused by the remote location of Alaska.
Furthermore, the fade depth in the Fairbanks climatic zone is not expected to be as deep as
those found in coastal climatic zone.

5. Problems specific to Fairbanks

There are several problems specific to Alaska. The first is the extreme
temperatures. The temperature range extends for a record high of 99 ° F to a record low
of-67 ° F. Typical yearly variations include highs in the 80's to lows in the 40 belows.
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While the upper temperatureswill be experiencedat otherACTS propagationterminal
sites, the lows will not. The outdoor componentsmust be maintainedwithin their
specifiedthermalranges.Onesolutionwouldbe to wrap thereceiverwith heattapeand
anotherlayerof insulation. Theamountof excessheatappliedwouldbeheldconstant,ie
turnedon all winter, off in summer,so that temperatureinducedgain variationswould
notbeaproblem.

The lower levelsof receivedbeaconpower were alreadyaddressedin the link
budgetdiscussion,Section5. A largerantennaand/ora lower noisereceiverproveto be
relativelystraightforwardsolutions.

A potentially more seriousproblem is causedby the changein pointing of the
satellite throughouttheday. This wouldcausevariationsin thereceivedbeaconpower,
due to the time changingantennagain contours. Fortunately,becauseof its spotbeam
capabilities,ACTS is specifiedto keeptrue pointing within +0.025 ° , which will induce
negligible variations in received power levels.

6. Conclusions

Alaska presents a unique opportunity to the ACTS Propagation Program. The
understanding of high latitude effects is vital to reliable communications system design.

Major advantages to the location of an ACTS propagation terminal in Alaska are the
inclusion of a new and important climatic zone to the global propagation model. Also the
low elevation angle would give a longer propagation path through the atmosphere in
general, and clouds, rain, and snow events in particular. The beacon power levels are
reduced from those of lower 48 sites. However, the C/N ratios available can be increased

to comparable values through the use of a larger antenna or a lower noise receiver. The
choice of a larger antenna seems to present a more stable and less troublesome solution.
Any problems due to the location or climate of Alaska can be solved. Therefore, there
are no technical obstacles to prevent the placement of an ACTS propagation terminal in
Alaska, only great opportunities to contribute to the understanding of high frequency

propagation.
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Planned LMSS Propagation Experiment Using ACTS:
Preliminary Antenna Pointing Results During Mobile Operations

John R. Rowland+, Julius Goldhirsh+, Wolfhard J. Vogel#, GeoffreyW. Torrence#

+The Johns Hopkins University, Applied PhysicsLaboratory, Laurel, Maryland
#The University of Texas,Electrical EngineeringResearchLaboratory, Austin, Texas

Abstract - An overviewand a status description of the planned LMSS mobileK band
experimentwith ACTS is presented.As a precursor to the ACTS mobile measurementsat
20.185Gllz, measurementsat 19.77GtIz employing the Olympus satellite were originally
planned [Goldhirsh et al., 1990]. However,becauseof the demiseof Olympus in June of
1991,the effortsdescribedherearefocusedtowards the ACTS measurements.In particular,
wedescribethe designand testing resultsof a gyro controlled mobile-antennapointing sys-
tem. Prelimary pointing measurementsduring mobile operations indicate that the present
systemis suitable for measurementsemployinga 15cm aperture (beamwidth _ 7°) receiv-
ing antennaoperating with ACTS in the high gain transponder mode. This should enable
measurementswith pattern lossessmaller than -4-1 dB over more than 95% of the driv-

ing distance. Measurements with the present mount system employing a 60 cm aperture

(beamwidth _ 1.7 ° ) results in pattern losses smaller than + 3 dB for 70% of the driv-

ing distance. Acceptable propagation measurements may still be made with this sytem by

employing developed software to flag out bad data points due to extreme pointing errors.

The receiver system including associated computer control software has been designed and

assembled. Plans are underway to integrate the antenna mount with the receiver on the Uni-

versity of Texas mobile receiving van, and repeat the pointing tests on highways employing

a recently designed radome system.

1. Introduction

Since 1983, the authors have been involved in 11 experimental campaigns dealing with

mobile satellite measurements at UItF and L band (see references). As a natural follow-

on, mobile propagation measurements are important at K band in that they will provide

information at a frequency where none exists. In particular, mobile communications and

data transfer at K band will result in significantly larger bandwidths accomodating more

users. As a consequence of employing higher gain antennas, larger fade margins will also be

available to overcome precipitation and tree attenuation.

2. Link Margin Characteristics

The link paramctcrs for tile beacon and high gain transponder mode of ACTS for different

receiver antenna sizes are tabulated in Table 1. Three antenna sizes are planned for the ACTS

K band mobile campaigns; 61 cm (2'), 30.5 cm (1'), and 15.25 cm (6"). Repeat runs will be

made for each of these antennas as these will provide information of the increased multipath
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Table 1: Link Parametersfor ACTS-K Band Mobile System

PARAMETER

Satellite:

Longitude (°W)

Frequency (GHz)

Polarization

Receiver:

Latitude (°N)

Longitude (°W)

Elevation Angle (o)

Azimuth Angle (°)

Polarization

Antenna Efficiencies

Antenna Gains (dB)

Beamwidth (°)

Nominal System Temperature (K)

Link Budget:

EIRP (dBW)

Free Space Loss (dB)

Atmospheric Gas Loss (dB)

Radome Loss (dB)

Modulation Loss (dB)

Mobile G/T (dB/U)

Signal Power (dBW)

Noise Power (dBW/llz)

Carrier/Noise (per Itz)

Carrier/Noise (400 Hz)

BEACON ] HIGH GAIN

Receiver Antenna Diameter (cm)

60 30 15 60 30

100

20.185

Vertical

39.25

77.0

38.7

213.9

ttorizontal

15

0.6

40 34 28 40 34 28

1.7 3.4 6.8 1.7 3.4 6.8

430

20 50

210.1

0.5

0.5

3.0

13.6 7.6 1.6 13.6 7.6 1.6

-154.2 -160.2 -166.2 -124.2 -130.2 -136.2

-202.2

48.0 42.0 36.0 78.0 72.0 66.0

22.0 16.0 10.0 52.0 46.0 40.0
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contributions for variousbeamwidth sizes.Measurementsemployingtransmissionsfrom the
ACTS beacons(20 dB e.i.r.p.) and the high gain transponder (_ 50 dB e.i.r.p.) are also
planned. The latter mode will require a ground station to transmit to the satellite a cw
signal which will be transpondeddown to the receivingvan. Sinceplanned experimental
mobile runsare individually short, reservedtime slots for this transmissionof approximately
4 hours or lessare required.

3. Gyro-Antenna Mount Tracking System

3.1 Block Diagram

In Figure 1 is a block diagram depicting the logic of the antenna mount control. The

mount is an "elevation" over "azimuth" system. The antenna and vertical gyro (Block #2)

are located on the elevation assembly and the azimuth gyro and flux gate compass (Block #1)

are on the azimuth assembly. The synchro outputs represent the actual pointing direction

of the antenna axis. A single output exists for the azimuth gyro (relative to magnetic north)

and there are two outputs, pitch and roll, (relative to true vertical) for the vertical gyro.

The gyro outputs are fed into corresponding synchro/digital converters (Blocks #5,

#7, #8) whose outputs are connected to a digital input/output (I/O) PC interface card

(Block #10). The PC (Block #11) compares the azimuth, pitch, and roll angles of the

mount with the respective "true values" and generates digital error signals for each which

are in-turn fed back through the interface card (Block #10) to the azimuth (Block #6) and

elevation (Block #9) mount control drivers. These drive the azimuth (Block #3) and ele-

vation motors (Block #4) in such a direction as to reduce the error signal. Ultimately this

feedback system results in a condition of zero pointing error and the antenna is pointed in

the true direction.

3.2 Computer Control Features

If the differences between true and actual pointing in azimuth and elevation are each

within 0.1 °, no error signals are generated by the computer. This feature eliminates small

angle hunting. More efficient tracking and further mitigation of hunting is achieved by

controlling (via the PC) the speed of the elevation and azimuth mounts in the following

manner: [1] For pointing errors greater than 2 °, the slew rate is 10°/s. [2] For pointing

errors between 1° and 2 ° the slew rate is 5°/s. [3] For pointing errors smaller than 1°, the

slew rate is 2°/s. The above logic is software selectable and is based on the present PC

(80286 processor with 12 Mllz clock). The above conditions are expected to be modified

for a planned faster computer system (80486 processor with a 33 MHz clock) and improved

mount system having faster motor speeds.

4. Preliminary Mobile Tracking Tests

Several pointing tests were executed with the tracking antenna system during mobile

operation. The objectives of these tests were to establish preliminary pointing accuracies

of the designed tracking system during mobile operations and to establish requirements for
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improving the system.Sincethe radomewasunavailable,all mobile testswere madewithin
APL grounds at speedssmaller than 15 mph. The mount and controlling computer (and
staff) wereplacedatop a pick-up truck and a sequenceof runswere madealonga relatively
rough road having frequent sloping surfaces.

The mobile runs were made at fixed speeds(e.g., 0, 5, 10, and 15mph) and included:
[1] tracking the sun and [2]pointing towardsthe Olympussatellite. As thesemeasurements
were made prior to the demiseof Olympus, ACTS pointing measurementswere not made.
The pointing results for the Olympuspointing areexpectedto be similar to thoseof ACTS.
Prior to theseruns, softwarewasdevelopedto operatewith "Quickbasic" enabling the mea-
surement of the actual pointing and true pointing angles,and subsequently the pointing
errors for both the sun and satellite runs [Miller, 1991,Sterner, 1991a,1991b,1991c].Dur-
ing the mobile runs, the mount azimuth and elevationsweresampledat a 50 Hz rate. These
positions werecomparedwith the true values,and the mount pointing wasupdated (at this
rate) following the logic describedin Section3 and Figure 1. The "actual" and "true" point-
ing angleswere stored in computer memoryat a selectablesampling rate and subsequently
written into files.

In Figure 2 are cumulative distributions describing the percentagenumber of samples
for which the pointing error is smaller than the abscissavaluesfor repeated sun tracking
runs. As mentioned,becauseno radomewasavailable, theseruns were madeat slow speeds
alonganapproximateonekm road stretch. The samplesizesrangedbetween100to 200at a
samplingrate 1 to 10seconds.The circular and bell shapeddata points in Figure 2 represent
the azimuth and elevationpointing error cases,respectively.The upper, middle, and bottom
curvesfor azimuth and elevationrepresentzerovehiclespeed,5 mph, and l0 mph. In Figure
3 are showna similar set of distributions describingthe pointing errors for mobile-Olympus
runs (azimuth of 111.6° and elevationof 15.9°). As mentioned, it is expectedthat pointing
errors for mobile-ACTS run (azimuth of 213.9° and 38.7°) will give similar results.

We note that overapproximately98%of the driving distance, pointing errors are implied

smaller than 2 ° for both the azimuth and elevation cases. These errors imply pattern losses

of less than -k- 1 dB employing a 15 cm aperture (_ 7° beamwidth). Using the high gain

transponder mode of ACTS with the 15 cm aperture will provide a nominal 40 dB carrier

to noise ratio (Table 1). For the 60 cm aperture (2 ' dish), Figures 1 and 2 imply an

approximate 4- 3 dB pattern loss over approximately 70% of the driving distance. Even if

the present mount system were used with ACTS (which it will not be), a software has been

developed which flags receiver data for which the pointing errors are unacceptable. We note

from the figures that an increase of the vehicle speed results in a monotonic increase of the

pointing errors. This increase is due the combination of slow mount and computer speeds.

As mentioned, plans are underway to correct both of these deficiencies.

5. Receiver and Data Acquisition

5.1 Block Diagram

We describe here the receiver system which, at this writing, has been designed, the
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Figure 3: Cumulative distributions of pointing errors for mobile-Olympus runs at drive

speeds of 5, 10, and 15 mph.
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components integrated (with the exception of the mount system), and tested. With reference

to Figure 4, the received signal enters the antenna-feed assembly (Block #1) and is then

passed through a low noise amplifier mounted near the antenna (Block #2). The output

signal is fed through a 1.7 to 2.2 GHz downconverter (Block #3). The amplified output signal

from the low-noise converter is fed to a microwave spectrum analyzer (Block #4). Using

a spectrum analyzer in the IF chain significantly enhances the functionality of the receiver

by supplying built-in RF diagnostics, easy signal identification, and flexible receiver tuning.

Once the correct signal has been acquired under computer control (Block #6) over the

General Purpose Interface Bus (GPIB) interface, the spectrum analyzer mode is changed to

non-sweeping and is centered at the desired beacon signal frequency. The 10 MHz IF output

from the spectrum analyzer is converted to 10 kHz at the frequency tracking down-converter

(Block #5). At that frequency, a filterbank comprised of eleven narrow filters has been

implemented for the automatic frequency tracking function. The differential signal voltage

from the two filter-channels straddling the center filter is used to tune an oscillator in the

10MIIz to 10 Kttz converter. On another path, the signal is quadrature detected, 500 tIz

low-pass filtered, and fed to the data acquisition board in the PC (Block #6). The vehicle's

speed will sensed (Block #7) and recorded once per second by the PC.

The antenna mount control system (Blocks #1, #8, #9, #10) is presently interfaced

with a separate computer system (Block #10) which has an 80286 processor and 12 MItz

clock). It is the intention to eliminate this system for further planned pointing tests and the

ACTS experiment and to interface the mount control system with the existing receiver PC

(Block #6) which has as 80486 processor and a clock speed of 33 Mllz. This and planned

mount improvements should improve the pointing accuracy allowing for more rapid updates.

5.2 Doppler Spread

For an omni-directional antenna, the maximum Doppler spread of a CW signal due to

the range of relative motion in an environment filled with multipath scatterers is twice the

speed divided by the wavelength. At 20 Gttz, a maximum spread of 3.3 klIz results at 25

m/s speed (_ 55 mph). The receiving antenna does not couple into all directions, however,

and therefore acts as a filter. With a high gain antenna practically all the power will be

received from directions very close to the direction to the transmitter and the spread will be

small. Although the transmitter frequency will be shifted by an amount proportional to the

relative speed of the vehicle and the transmitter platform, the receiver AFC will be capable

of tracking changes in this shift brought about by vehicle speed or direction variations.

6. System Integration with Van

The van to be used is the same in which eleven land-mobile measurement campaigns

have been conducted. It is equipped with a shock-mounted standard equipment rack, a

115 vac primary power system, a video recorder and an electronic speed transducer. The

video recorder captures the scene in front of the vehicle and the speed transducer enables a

recording of the vehicle speed every second. The receiver data acquisition software, originally

written in Microsoft Fortran, has been converted to a LabWindows/QuickBasic environment

to take advantage of more modern and efficient software technology. As mentioned, the PC
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inside the van has a 80486 processor with a 33 MHz clock. It will serve the function of

controlling both the receiver and the mount and will write data to 20 MHz Bernoulli Box

disks. Plans are underway to integrate the mount-antenna control system with the van and

its receiver system during the summer of 1991.

7. Planned Measurements

7.1 Pointing Measurements After System Integration with Van

As mentioned in Section 4, preliminary pointing measurements were executed using a

slow speed computer system with the mount-antenna system having no radome placed atop

an open truck. These preliminary measurements indicated the need for an improved mount

system with faster motors and a higher speed computer; both changes of which are planned.

In the meantime, the present antenna-mount control system will be integrated with the

receiver and computer system within the van (described in Section 5.). A radome, which has

already been designed and fabricated will be placed over the antenna-mount system atop

the van and pointing measurements of the type described in Section 4 will be made using

the integrated system on a highway traveling at normal speeds (e.g., 25 m/s).

7.2 LMSS Propagation Experiments with ACTS

Roadside tree propagation measurements will be instituted employing transmissions from

the ACTS satellite for a system of roads in Central Maryland (Routes 295, 108 and 32).

Under the NASA Propagation Program, attenuation measurements have been executed for

this system of roads at 870 GHz and 1.5 Gtlz employing a helicopter and MARECS-B2

geostationary satellite as transmitter platforms [Goldhirsh and Vogel, 1991, 1989, 1987;

Vogel and Goldhirsh, 1990]. It is planned to use the beacon measurements (20 dB e.i.r.p.)

for making preliminary measurements and to follow these by repeat measurements with

the high gain transponder (nominal 50 dB e.i.r.p.). The high gain measurements will enable

the employment of a 15 cm antenna (6 inches) and result in a 40 dB carrier/noise at a 400

Hz bandwidth (Table 1). Since the beamwidth will be nominally 7 ° for the reduced aperture,

minimal pattern losses are expected during tracking under mobile operation.

The analytical aspects will involve characterizing the fade distributions for the various

road types, establishing the fade durations, combining the results with previous measure-

ments at UIIF and L band, and extending "frequency scaling" concepts from UttF to K

Band. Analyses will be performed which are, in part, similar to those described by Vogel

and Goldhirsh [1990], and Goldhirsh and Vogel [1991, 1989].

Some examples of propagation results to be derived for mobile-propagation experiments

at K-band using ACTS are as follows: [1] cumulative fade distribution at 20 Gttz due

to roadside trees, [2] equi-probability cross polarization discrimination measurements, [3]

cumulative fade distributions for different antenna size demonstrating the effects of enhanced

multipath, [4] simulation of antenna diversity employing measured time-series fade data at

K-Band, [5] equi-probability frequency scaling of cumulative fade,distributions, [6] effects

of foliage on cumulative fade distributions (measurements at different seasons), [7] fade
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reduction statistics versus side of road, [8] fades caused by individual trees (static case), and

[9] possible extension of the empirical roadside shadowing model to include K-Band.

8. Summary and Conclusions

A first generation gyro-controlled antenna tracking system has been designed and has

undergone preliminary mobile testing by tracking the sun and the Olympus satellite. Al-

though these measurements were performed before the demise of Olympus, the pointing

results for ACTS are believed to be approximately similar. These measurements indicate

that the present system may be used as is with a 15 cm aperture antenna (_ 7° beamwidth)

employing the high gain transponder mode of ACTS. Minimal pattern loss due to pointing

errors will ensue (e.g., < + 1 dB) for this mode which should result in a carrier to noise ratio

of approximately 40 dB. Beacon measurements employing the present system and the 60

cm antenna (1.7 °) will experience enhanced pattern losses (e.g., + 3 dB for 75% of the dis-

tance), although acceptable measurements may even be made with this system by generating

pointing error flags and not using propagation data during pointing degraded periods.

Plans are presently underway to: [1] Integrate the present system with the receiving

antenna, the van, and a radome, [2] Repeat mobile pointing measurements on highways with

the integrated system, [3] Update the present mount sytem by interfacing higher speed mount

motors and connecting the system to a higher speed computer system (80486 processor, 33

Mttz clock). The possibility of further updating the system to receive the ACTS 27.5 GHz

beacon during mobile operations is also being explored.
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1. Introduction

The ACTS Mobile Terminal (AMT) is presently being developed with the goal of significantly
extending commercial satellite applications and their user base. A thorough knowledge of the Ka-
band channel characteristics is essential to the proper design of a commercially viable system that
efficiently utilizes the valuable resources. To date, only limited tests have been performed to
characterize the Ka-band channel and they have focused on the needs of fixed terminals. (See for
example [1,2] as well as the articles in these proceedings.) As part of the value of the AMT as a

Ka-band test bed is its function as a vehicle through which tests specifically applicable to the
mobile satellite communications can be performed. The exact propagation environment with the

proper set of elevation angles, vehicle antenna gains and patterns, roadside shadowing, rain and
Doppler is encountered. The ability to measure all of the above, as well as correlate their effects

with observed communication system performance, creates an invaluable opportunity to
understand in depth Ka-band's potential in supporting mobile and personal communications. This

paper discusses the propagation information required for system design, the setup with ACTS that
will enable obtaining this information, and finally the types of experiments to be performed and
data to be gathered by the AMT to meet this objective.

2. Experimental Setup

The AMT experimental setup with ACTS is shown in Figure 1. To support the FDMA architecture
adopted (at least in the earliest experiments), an unmodulated pilot is transmitted from the fixed

stauon to the AMT. This pilot is used by the mobile terminal for antenna tracking, as a frequency
reference for Doppler correction and pre-compensation, and in measuring rain attenuation. For
system efficiency, a pilot is transmitted only in the forward direction; i.e., from the fixed to the
mobile terminal. Hence, in the AMT system setup two signals will exist in the forward direction,
the pilot and the information link which could be voice or data. In the return direction (mobile to
fixed) only the information channel (commonly referred to as the data channel) is transmitted. The
data rate is selectable among 2.4, 4.8 and 9.6 kbps depending on channel conditions. A separate
higher rate of 64 kbps will also be supported but under restricted link conditions.

Consistent with a Ka-band test bed approach, the AMT links have been designed to maximize
utilization of the available ACTS resources to support as wide an array of channel measurements as
possible. This is reflected in the link budgets of Table 1. ACTS was designed to support high
data rate communications; as a result, even with the lowest TWT drive levels in the HBR-LET, the

single user forward link has ample margin. This margin can be utilized to investigate the
deleterious effects of the 20 GHz channel by permitting signal tracking through 15 - 20 dB of
attenuation. Thus the range of channel impairments of practical interest can be studied with the
AMT. (The different measurements will be discussed in Section 4.) In contrast to the forward
link, the need to minimize radiation hazard in the neighborhood of the vehicle and practical limits
on amplification in the user unit lead to a modest margin on the return link under normal operation.
This is evidenced in Table 1. Nevertheless, under restricted experimental conditions this margin
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couldbeboostedby up to 10dB. Hence30GHzpropagationinvestigationsinitiatedat themobile
terminalwill coverchanneleffectsof up to 10-15dB of attenuation.

To supportanextensivesystem/channeldatagatheringcampaign,theAMT experimentalsetupwill
beequippedwith a stateof the art dataacquisitionsystem(DAS). The DAS will becapableof
capturingandrecordingup to half a Mbyte/sof channelandsysteminformation. In addition, it
will recordhalf aMbyte/sof synchronizedvideoinformationfrom a cameradesignedto observe
thephysicallink. It waslearnedfrom MSAT-X experiencethatoneof themostpainstaking(and
timeconsuming)aspectsof experimentanalysisis correlationof thegathereddatawith thechannel
thatwasencountered.Not only is keepingtrackof thevariouspropagationenvironmentshardto
do,butalsoidentifying theeventsthatresultin peculiardatais practicallyimpossible.Thecamera
will bemountedon a slaveplatform thatfollows thepointing of theAMT antenna.The camera
platform will be locatednear the rearof the van outsidethe field of view of the antenna. In
additionto thevideo, experimenters'voiceswill berecordedon theDAS andsynchronouslytime
taggedfor easylogging andretrieval of comments. Thus,a multitudeof datatypesaugmented
with synchronizedvideoandaudioannotationwill beavailableto thepostexperimentanalyst.To
supportthetransferof thedatato analysisworkstations,eitherthecompacttapeswill beduplicated
at theworkstationsor anEthemetinterfacewill beincludedin theDAS. To complementall of the
above,theDAS will havesubstantialrealtimeandnearrealtime analysisanddisplaycapabilities.
Theseareprimarily intendedto assisttheexperimentersin thefield. Theycan,however,serveas
startingpointsfor themoredetailedanalysisthatwill follow.

At presenta sixmonthinitial experimentationphasewith ACTShasbeenplanned.FromMarchto
Septemberof 1993mobileexperimentswill beperformedusingthe AMT van. Another setof
experimentswill beperformedusingthesedan;however,the sedanwill not beequippedwith a
DAS andwill thereforebemoresuitedto subjectivequality tests.This phaseis currentlyplanned
for 1994.

3. Channel Information Required for Mobile System Design

A commercially viable system must efficiently utilize the available resources while providing the

user with an acceptable grade of service. Highest possible system capacity is critical to exploiting
the economies of mass markets, and consequently to reducing user cost. Also, a careful balance
has to exist between the design, capabilities, and cost of the different system segments, namely,
user terminals, spacecraft, and fixed ground station(s). In general, more robustness means higher
cost, either through the allocation of extra resources or added system or subsystem complexity.

To enable the careful design required, as much as possible detailed knowledge about the physical
channel is required. This is particularly true for the AMT which operates in a challenging
propagation environment that can have a very significant impact on terminal performance, terminal
design and implementation cost. This propagation environment is central to the determination of
link requirements, link operation and protocols, and ultimately, system capacity and overall
viability.

The two most obvious propagation effects in the Ka-band mobile channel are shadowing and rain
attenuation. Shadowing is handled in the AMT at different levels, in the pilot tracking/acquisition
circuits, in the antenna controller, and in the modem and speech coder. The pilot tracking and
antenna pointing schemes have to withstand a certain degree of signal drop-out due to shadowing.

Frequent loss of tracking and/or switching to an acquisition mode is disruptive to terminal
operation. The duration and depth of the typical shadowing events are extremely important for the
proper design of these subsystems. Shadowing is also handled through the design of a modem
that can "freewheel," i.e., not lose symbol synchronization through a deep fade and reproduce
valid data soon thereafter. The statistics of fade length and the nature of the onset and recovery of
shadowing episodes for a variety of road types are important parameters required for proper
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modem design. Short duration statistics of light fading are also useful in the design of the speech
codec, particularly frame repetition or other schemes employed to enhance operation for brief

outages. Finally, sufficient information should be available about shadowing profiles to support
the design of robust communication protocols (link setup, etc.) and the rain compensation
algorithm (RCA) which has to distinguish between rain and shadowing.

Very limited information is available about shadowing in the Ka-band land-mobile channel. In the

design of the AMT a rough estimate of the extent of shadowing is being obtained by applying an
empirical formula 1 [4] to L-band data collected with a medium gain antenna [5]. In addition
models of signal outage produced by periodic sequences of utility poles are being generated. Both
estimates of shadowing data will be used as testing sequences for the AMT. However, this data

falls far short of the accurate, reliable statistics sought, particularly for light to moderate shadowing
which is of the most interest in AMT design.

Rain attenuation is handled in the AMT primarily through data rate reduction. This is

complemented with power control on the forward uplink. Due to the power limitations of the user
terminal, the most critical link is that between the mobile unit and the satellite. The AMT's RCA

relies on real time pilot power measurement at the mobile terminal and satellite beacon power
measurement at the fixed station. Proper design of the RCA rests on the availability of rain and
rain rate statistics. The probability of rain, the temporal characteristics of rain events, the impact of
vehicle motion on temporal rain statistics are all required for the proper design of the RCA.
Measurement averaging periods, decision criteria and regions, interaction between the RCA and the
communication protocol, as well as the data rate change procedure within the communication

protocol itself, are all detailed aspects of AMT design that require the applicable rain information.
This information has to be for the proper range of elevation angles and locations that the AMT will

operate in. The measurements and analysis being performed at VPI are a step in the direction of
understanding Ka-band rain at low elevation angles. Some of the theoretical models [6,7] are also
useful for the initial design of the RCA. There is, however, no substitute to experimentation using
the actual mobile terminal to refine and validate any rain compensation procedures for Ka-band
mobile terminals.

4. Propagation Related AMT Experiments

The emphasis during AMT experiments will be on collecting propagation data that directly impacts
AMT operation, and as explained above, is necessary for optimizing system design. The channel

conditions experienced in the operational locations, and hence with the pertinent elevation angles,
will be observed through the actual antenna of the mobile terminal, i.e., with the proper gain and
beam characteristics. A conscious effort will be made to correlate the operation of the various
AMT algorithms with the observed propagation characteristics.

A typical set of AMT experiments is summarized in Table 2. The experiments combine
propagation measurements with system and subsystem performance characterization. The detailed

definition of the complete set of experiments will evolve in parallel with the latter phases of AMT
development, namely, subsystem implementation and terminal integration and checkout.

As can be seen from Table 2, pilot signal measurements are central to all propagation related

experiments. At the mobile terminal both coherent and non-coherent measurements of the pilot
will be recorded. Sampling rates will be chosen to significantly exceed any possible pilot
frequency variation or spreading due to Doppler or channel scatterers (such as tree tops or

1 This formula was derived by Weissberger [3] to predict the attenuation at various frequencies of a signal between
200 MHz to 95 GHz through groves of trees.
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branches, poles, etc.). 2 The pilot tracking loop is being designed for a nominal C/N0 of 50 dB
Hz, but will continue to track at lower C/N0s. Hence, in the absence of rain (98% of the time in
L.A.), shadowing-induced fades of up to 30 dB could be measurable.

The data or voice channel signal will be measured by means of a power meter as well as through a
received signal quality estimate obtained in the modem. Modem bit error rate performance will be
measured quantitatively by using preselected PN sequences.

5. Future Experiments and Propagation Related Information

Several institutions have expressed the desire to use the AMT for land mobile experimentation.
One of the possible applications would involve mounting the AMT onto a satellite news gathering
truck to enable the exchange of FAX and compressed video, in addition to voice and data
messages. These services would be provided between the newsroom and the truck while it is en
route to the news event. The impact of the mobile Ka-band channel on these services and the AMT

protocols that handle them will be evaluated.

Other experiments are being proposed to utilize much of the AMT equipment after the van and
sedan tests are performed. One experiment would involve mounting the AMT on an aircraft in
order to measure the Ka-band aeronautical channel. This would permit several channel
characteristics to be measured, e.g., shadowing due to the aircraft body, multi-path at low aircraft-
to-satellite elevation angles, and Doppler and Doppler rate. The tracking performance of
electronically and mechanically steered aircraft antennas could also be ascertained. A second
experiment would seek to demonstrate seamless handover of a satellite-initiated call to a cellular
mobile system and vice-versa. Operation of such a hybrid satellite/terrestrial system would be
tested and the effects of the two distinct channels assessed. The required equipment and protocols
would then be recommended.
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Table 1. AMT Link Budgets for Propagation-Related Experiments

FORWARD (LeRC-TO-ACrS-TO-AMT)
9.6 KBPS VOICE AND PILOT IN CLEAR WEATHER

DBPSK, CODED R=l/2, K=7, BER=IE-3
AMT AT L.A., EL=46, SUPPLIER AT CLEVELAND

UPLINK: LeRC SUPPLIER-TO-ACTS

..............................................

TRANSMI'Iq'ER PARAMETERS

EIRP, DBW

POINTING LOSS, DB
PATH PARAMETERS

SPACE LOSS, DB

(FREQ., GHZ/MHZ

RANGE, KM)

ATMOSPHERIC A'ITN, DB
RECEIVER PARAMETERS

POLARIZATION LOSS, DB

G/F, DB/K

POINTING LOSS, DB

BANDWIDTH, MHZ

RECV'D C/NO, DB.HZ

TRANSPONDER SNR IN, DB

EFF. LIM. SUPPRESSION, DB *

HARD LIM. EFF. SNR OUT, DB

DaTA P/LOT

65.00 65.00

-0.39 -0.39

-213.48 -213.48

29.63 29.63

38000.00 38000.00

-0.92 -0.92

-0.50 -0.50

19.60 19.60
0.00 0.00

900.00 900.00

97.91 97.91

8.37 8.37

-3.80 -3.80

4.57 4.57

DOWNlJNK

AcrS-TO-AMT

TRANSM]'I'FER PARAMETERS

EIRP, DBW 56.22 56.22

POINTING LOSS, DB 0.00 0.00
PATH PARAMETERS

SPACE LOSS, DB -209.89 -209.89

(FREQ., GHZ/MHZ 19.91 19.91

RANGE, KM) 37408.00 37408.00

ATMOSPHERIC A'ITN, DB -0.61 -0.61
RECEIVER PARAMETERS

POLARIZATION LOSS, DB -0.50 -0.50

RADOME LOSS, DB -0.20 -0.20

ANT. DIRECTIV1TY (MIN.), DBI 23.50 23.50

SYS.TEMP (REFTO ARRAY), K 1400.00 1400.00

G/T, DB/K -7.96 -7.96
POINTING LOSS, DB -0.50 -0.50

DOWNLINK C/NO, DB.HZ 65.15 65.15
OVERALL C/NO, DB.HZ 65.15 65.15

REQ'D EB/NO (AWGN--SIM.), DB 5.75

MODEM IMPLEMENT. LOSS, DB 0.75

REQUIRED EB/NO (TOTAL), DB 6.50

FADE ALLOWANCE (OVERALL), DB 2.50
DATA RATE, BPS 9600.00

REQ'D EFFECTIVE C/NO, DB.HZ 48.82 50.00

PERFORMANCE MARGIN, DB 16.33 15.15

* CASE OFTWO EQUALLY STRONG SIGNALS IN NOISE

RETURN (AMT-TO-ACTS -TO-LeRC)
9.6 KBPS VOICE, CLEAR WEATHER

DBPSK, CODED R=l/2, K=7, BER=IE-3

SUPPLIER AT CLEVELAND, AMT AT L.A., EL=46

UPL1NK: AMT-TO-AC'rS

................................

/gATA
TRANSM1TYER PARAMETERS

EIRP, DBW 22.00

POINTING LOSS, DB -0.50

RADOME LOSS, DB -0.40
PATH PARAMETERS

SPACE LOSS, DB -213.34

(FREQ., GHZ/MHZ 29.63

RANGE, KM) 37408.00
ATMOSPHERIC ATI'N, DB -0.61

RECEIVER PARAMETERS

POLARIZATION LOSS, DB -0.50

G/F, DB/K 17.30

POINTING LOSS, DB 0.00

BANDWIDTH, MHZ 900.00

RECV'D C/NO, DB.HZ 52.55

TRANSPONDER SNR IN, DB -37.00

LIM. SUP'RSS FACT. GAMMA ** 0.79

DOWNLINK

ACTS-TO-SUPPLIER (CLEVELAND)
..............................................

TRANSMrlTER PARAMETERS

EIRP, DBW 29.45

POINTING LOSS, DB 0.00
PATH PARAMETERS

SPACE LOSS, DB -210.03

(FREQ., GHZ/MHZ 19.91

RANGE, KM) 38000.00

ATMOSPHERIC ATrN, DB -0.92
RECEIVER PARAMETERS

POLARIZATION LOSS, DB -0.50

ANT. DIRECrlVITY (MIN.), DBI

SYS. TEMP (REF TO ARRAY), K
G/F, DB/K 27.30

POINTING LOSS, DB -0.50

DOWNLINK C/NO, DB.HZ 73.90
OVERALL C/NO, DB.HZ 51.47

REQ'D EB/NO (AWGN--SIM.), DB 5.75
MODEM IMPLEMENT. LOSS, DB 0.75

REQUIRED EB/NO O'OTAL), DR 6.50

FADE ALLOWANCE (OVERALL), DB 2.50
DATA RATE, BPS 9600.00

REQ'D EFFECTIVE C/NO, DB .HZ 48.82

2.65PERFORMANCE MARGIN, DB

** CASE OF ONE SIGNAL IN NOISE
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Table 2. Top-Level Summary of AMT Propagation-Related Experiments

TEST CONFIGURATION/CONDITIONS

I. CLEAR SKYTESTS

1. PILOT SIGNAL STRENGTH

!II.

2. PILOT + FORWARD DIRECTION DATA

3. PILOT + RETURN DIRECTION DATA

4. PILOT + VOICE

RAIN (ON ONE LINK) TESTS

1. PILOT SIGNAL STRENGTH
- CLEAR IN CLEVELAND

- CLEAR IN L.A.-UPLINK POWER

CONTROL OFF AT LeRC

2. PILOT + RETURN DIRECTION DATA
- SAME AS PRECEDING

- POWER CONTROL ON AT LeRC

3. PILOT + FORWARD DIRECTION DATA

4. PILOT + VOICE

A.

B°

A.

B.

A°

B°

A.

A°

B°

A°

B.

m.

A°

B°

TO MEASURE

SHADOWING CHARACTERISTICS
- ATTENUATION STATISTICS

- DURATION STATISTICS
- SIGNAL STRUCTURE FOR SPECIFIC

LIGHT SHADOWING CASES

ANTENNA SUBSYSTEM PERFORMANCE

PILOT AND DOPPLER TRACKING (IN AMT IF)

MODEM PERFORMANCE (BER, SYNC, ETC.)
- RESIDUAL DOPPLER TRACKING
- FREEWHEELING THROUGH SHADOWING

TWO-WAY DOPPLER CORRECTION (IN AMT IF)
- L.O.S. AND SHADOWING CONDITIONS

MODEM PERFORMANCE (SIMILAR TO ABOVE)

SPEECH CODEC PERFORMANCE
- L.O.S. AND SHADOWING CONDITIONS

L.A. TEMPORAL RAIN CHARACTERISTICS
- ATTENUATIONS AND DURATIONS AT 20 GHZ
- ATTENUATION SLOPES AT 20 GHZ

CLEVELAND TEMPORAL RAIN
CHARACTERISTICS
- ATTENUATIONS AND DURATIONS AT 30 GHZ
- ATYENUATION SLOPES AT 30 GHZ

CORRELATION OF 20 AND 30 GHZ SIGNALS

OPERATION OF AMT COMM. PROTOCOL

AND RCA

OPERATION OF AMT COMM. PROTOCOL
AND RCA

FULL TESTING OF RCA & COMM. PROTOCOL
WITH VOICE DATA RATE CHANGE ON THE FLY

FULL SUBSYSTEM PERFORMANCE TESTING

(MODEM, CODEC, IF PILOT TRACKING, AND
TERMINAL CONTROLLER)
- L.O.S. AND SHADOWING CONDITIONS
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WHAT IS HAPPENING AT CCIR STUDY GROUP 5?

David V. Rogers

Communications Research Centre

Department of Communications, Ottawa, Canada

ABSTRACT--At the Plenary Meeting of the International Radio

Consultative Committee (CCIR) in 1990, significant changes in the

organization were adopted. These changes will affect working

methods and consequently impact to some degree the technical

aspects of the CCIR. Changes specific to CCIR Study Group 5
(Propagation in Non-Ionized Media) are summarized.

i. INTRODUCTION

At the XVIIth Plenary Meeting of the CCIR in D0sseldorf in

May-June 1990, new working procedures were adopted (CCIR, 1990).

The new format, forged somewhat in response to criticism of CCIR

reliance on Reports (instead of Recommendations) and the time

required to develop Recommendations, is still evolving as part of

a general restructuring of the ITU. The CCIR itself has

restructured into I0 Study Groups (e.g., Barclay, 1990); the main

changes are the merging of Study Group (SG) 3 into SG 9 and SG 2

into SG 7, and creation of a new SG 12 on Interservice Sharing and

Compatibility. SG 5 is now defining its own work areas and nature

of its documentation. Changes in SG 5 technical information and

its dissemination will be of concern to many users of CCIR

Recommendations and Reports.

2. CCIR STUDY GROUP 5

2.1 Organization

Each SG receives study Questions from the CCIR Plenary

Assembly, which the SG then assigns either to a Working Party

(somewhat permanent bodies that address long-range concerns) or a

Task Group (for short-term, single-topic tasks). The work of SG 5

is now divided among 3 Working Parties: WP 5A (Radiometeorology)

replaces Interim Working Party (IWP) 5/3; WP 5B (Terrestrial

broadcast and mobile, and mobile-satellite) assumes elements of

IWP 5/1 plus the mobile-satellite area; and WP 5C (Fixed, fixed-

satellite and broadcast-satellite) replaces IWP 5/2, and mobile-

satellite. WPs 5A, 5B, and 5C are respectively chaired by Gert

Brussaard (The Netherlands), John Cavanagh (USA), and Martin Hall

(UK) . At present there are no SG 5 Task Groups.

Previously, during each 4-year CCIR cycle SG 5 held Interim

and Final Meetings lasting 2-3 weeks. Numerous technical input

documents were discussed and acted on, and the Interim ("MOD I")

and Final ("MOD F") versions of the documents were agreed.
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In the new structure, essentially final versions of documents

will be decided within the WP responsible for a given topic. The

Interim and Final Meetings will now be brief (a few days), held

mainly to either approve or reject the proposals submitted by WPs;

set the SG's program of work for the next 2 years; and draft

proposed new Questions or Recommendations for the CCIR Plenary.

The SG is also empowered to approve new Recommendations provided

they have been selected by the CCIR for the accelerated-approval

procedure. Participation in WP deliberations appears essential to

influence the technical content of CCIR Volume 5, since little if

any drafting will be possible at the Interim and Final Meetings.

2.2 Organization of SG 5 Technical Information

In the past the main technical content of Vol. 5 was embodied

in Reports that contained engineering advice, prediction methods,

assorted measured data, and even provisional advice (perhaps "to

be used with caution"). Prior to the 1990 CCIR Plenary Meeting,

the CCIR's reliance on Reports (instead of Recommendations) was

criticized as was also the length of time required for the CCIR to

approve its Recommendations. Furthermore, the CCIR itself had

recognized that providing advice that had "to be used with

caution" was not likely to be useful to systems designers.

Therefore SG 5 has recently emphasized Recommendations as the

primary source of information for users of its propagation

information, and is in the process of transferring much of the

information now in Reports to corresponding Recommendations. Data

in Recommendations must be sufficiently well-developed to justify

confidence in its application to systems design. Less-developed

or provisional material will not transfer to the corresponding

Recommendation. Reports will persist as a repository for support

or developing information, mainly for internal use by the SG, and

will not be formally published (but will appear in the Interim

booklets). Conversely, new or revised Recommendations will be

disseminated as soon as they are approved. A loose-leaf format

might perhaps be selected for easy incorporation of modifications.

At a joint meeting of WPs 5A and 5C in Rio in December 1990,

guidelines were adopted to promote transfer of much of the

existing material in SG 5 Reports to Recommendations. Some of the

ground rules that were adopted by WPs 5A and 5C for creating SG 5

Recommendations from existing Reports may be of interest, and are

summarized here:

a .
Recommendations should be brief, and recommend the use of the

prediction methods, engineering advice, etc. in the Annex.

b , Support or provisional information or advice is to be in a

supporting Report.

c. Texts are to be clear and unambiguous.

84



d,

e o

f ,

g,

h.

i o

Repetition among Recommendations is to be minimal to avoid

inconsistencies resulting from revisions.

Cross-references (to equations, etc.) are to be stated in

both the Source and Quoting Recommendation.

Literature references are to be avoided in Recommendations

unless they are a prime source (e.g., for a table or map);

support information should be in the supporting Report.

Basic radio meteorology is to appear in the texts of WP 5A.

Basic radio engineering and service-oriented predictions,

including geometry and specific algorithms in texts of WP 5C.

Explanatory notes that are not part of the Recommendation may

be labelled and inserted in the text where required.

3. RECENT TECHNICAL ACTIVITIES

IWP 5/2, now WP 5C (Chaired by Martin Hall) and IWP 5/3, now

WP 5A (then Chaired by R.K. Crane, USA) convened a joint meeting

in Rio de Janeiro, Brazil, during 10-14 December 1990, mainly to

address the problem of rain attenuation prediction. The impact of

new tropical propagation data on the CCIR rain attenuation method

is a major WP 5C assignment for the current study period (the

other is interference prediction and determination of coordination

distance, discussed below). The meeting immediately followed an

URSI Commission F Special Open Symposium in Rio on "Regional

Factors in Predicting Radiowave Attenuation due to Rain," with an

emphasis on predicting rain attenuation in tropical regions of the

world (J. Allnutt et al., 1991).

New data available at the Rio meeting were insufficient to

generate proposals for modification to the current method for

predicting rain attenuation, but 4 critical areas were identified

for study:

use of the 0.1% rain rate for prediction of attenuation in

tropical regions, where the 0.01% rain rate can be extreme

and difficult to measure (approach may also be beneficial

for low-margin satellite communication systems);

possible application of a vertical reduction factor to

increase climate sensitivity of the existing method;

study of the nonmonotonic behavior of path attenuation vs

rain rate exhibited at high rain rates on terrestrial paths

by the current prediction method;

comparison of the slope of measured attenuation distributions

with the CCIR slope (which is constant for all cases).
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Based on the current availability of relevant data, the main focus
in the coming period will be on the first two areas above.

WP 5C held another meeting in Abingdon, UK, during 7-14 March
1991 to focus on the problem of interference prediction and the
determination of coordination distance. This meeting followed an
international symposium on "Influence of the Atmosphere on
Interference Between Radio Communication Systems at Frequencies
Above 1 GHz," held at Leeds Castle on 5-6 March 1991, to provide
the final results of the COSTProject 210 (Hall, 1991).

For Report 724 ("Propagation data required for the evaluation
of coordination distance in the frequency range 1-40 GHz"), WP 5C
proposed that the existing procedure for calculating the Mode 1
(great-circle propagation) contours be extended up to a time
percentage of 20% from the current 1%, and that the graphical
methods for prediction be deleted from the Report. For Report 569
("The evaluation of propagation factors in interference problems
between stations on the surface of the Earth at frequencies above

about 0.5 GHz"), which is to be converted to a Recommendation, the

following proposals were offered:

- introduce the COST-210 method for duct propagation (after

extension worldwide using Bean-Dutton refractivity gradient

statistics), provided testing of the method is successful;

- possibly introduce COST-210 method for diffraction after

testing;

- introduce the CCIR method for rain scatter interference as

modified by COST-210;

The background for the new methods proposed for incorporation into

the Recommendation and the background for the old methods of

Report 724 is to be included in a draft Report.

The results had significant impact on CCIR Task Group 12/3

(Appendix 28) that met in Geneva during 13-22 May 1991. T. Hewitt

of the UK, coordinator of the WP 5C project group on interference,

chaired the Working Group on propagation at the TG 12/3 meeting.

4. TECHNICAL ISSUES FOR THE FUTURE

The near-term commitments of SG 5 concern mainly the meetings

of WPs 5A, 5B and 5C that will be held in Geneva in December 1991,

and the SG 5 Interim Meeting scheduled for 20-22 May 1992 in

Geneva. Additional requirements are associated with the second

meeting of Task Group 12/3 on possible revisions to Appendix 28 of

the ITU Radio Regulations in mid-January 1992, and some input to

preparations for WARC-92 (Frequency Allocations in Certain Parts

of the Spectrum) that will commence in Spain in February 1992.
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As to technical issues that CCIR SG 5 must address in support
of the above meetings and its own program of work, the following
are likely examples. In WP 5A (Radiometeorology), transfer of
data on gaseous absorption and atmospheric refractive effects will
be necessary. There will continue to be critical studies of the
horizontal and vertical structure of rainfall, with emphasis on
features in tropical climates that affect prediction methods.
With continuing evolution of small-margin satellite communication
systems, data will be required on propagation mechanisms for
percentages of time greater than, say, 1% of the year, including
clear-air effects and rain rate statistics.

WP 5B will address the areas of propagation over the Earth's

surface, including the electrical characteristics; diffraction;

and propagation over irregular terrain, with a particular emphasis
on the application of digital terrain databases. With its new

responsibilities in the increasingly important area of mobile-

satellite systems, a program to attack related technical issues

will be needed. As mobile-satellite systems will now be removed

somewhat from deliberations on the other slant-path topics, a
mechanism for coordination between WPs 5B and 5C to ensure that

technical data are exchanged will be required.

In WP 5C, a traditional domain of user Recommendations and

Reports, as indicated above attention must be concentrated in the

near future on regional (mainly tropical) aspects of rain

attenuation prediction, and prediction of intersystem interference

and evaluation of coordination distance. Continuing developments

in small-margin communication systems will stimulate interest in

propagation impairments for higher time percentages and dynamic

features of propagation events (especially for application to

adaptive impairment mitigation techniques). For the fixed

services, work will continue on propagation distortion, diversity,

a variety of clear-air effects, and fading distributions.
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Propagation Research in Japan

By Hiromitsu Wakana

Communications Re.arch Laboratory, MPT

893-1 Hirai, Kashima, lbaraki 314 Japan

Abstract L-band propagation measurements for land-mobile, maritime and aeronautical

satellite communications have bccn carried out by using the Japanese Engineering Test Satellite-

Five (ETS-V) which was launched in August 1987. This paper presents propagation characteris-

tics in each mobile satellite communications channel.

1. Introduction

In the Communications Research Laboratory, propagation research has been carried

out for many years by using various satellite beacons at many different frequencies. Since the

launch of the ETS-V satellite, L-band propagation measurements are mainly being carried out for

future mobile-satellite communications systems. This paper presents experimental results of

propagation characteristics for vehicles, trains, airplanes and vessels.

Propagation effects between a gcostationary satellite and mobile earth stations are: (1)

blockage and shadowing (2) multipath scattering and reflections (3) ionospheric scintillation or

Faraday rotation, and (4) Doppler frequency shifts.
In land-mobile satellite channel, multipath fading, shadowing and blockage from roadside

trees, utility poles, buildings and terrains arc typical problems. Maritime satellite channel has

multipath fading caused by rcl]cctions from the sea surface at low elevation angles. In aeronauti-

cal satellite channel, multipath fading is caused by reflection from the sea surface and from air-

planes' wings. It is shown that ionospheric scintillation is still of significance at frequencies

abovc I GHz and can impair mobile satellite communications channels.

2. Land-mobile satellite communications channel

2.1 Propagation characteristics for motor cars

L-band left-hand circularly polarized CW transmitted from the ETS-V satellite was re-

ceived at a propagation measurement van with various antennas. Elevation angles of measure-

ments along urban, suburban and rural roads and freeways arc about 46 to 47 degrees.

Figure 1 shows a cumulative distribution of a receiving signal power with respect to the

line-of-sight level, measured by a mechanically stirred four-clement spiral array antenna (12dBi).

Data were sampled with cquidistancc sampling pulses of a period of 3.14cm. Therefore, the re-

sults are independent of the vehicle speed.

Data in Tokyo urban areas show the fades of more than 5dB at the 33% probability level,

which are mostly caused by blockage by ten-storied buildings and shadowing due to roadside
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treesandutility poles. At a suburbanarea,it is foundthat for 13%of thc distancethc fadcex-
ceeds5dBducto trees,utility polesandhouses.On theotherhand,thefadeexceeds5dBat only
3%probabilityalongfreeways.Mainobstaclesarcoverpassesandtrees.

Figure2 showsprobabilitydensityfunctionsof thereceivedsignal. It showsthatthefade
statisticscanbc dividcd into two parts. One is statisticallydescribedby a Rician distribution
aroundthelinc-of-sight level. In mobilesatcllitcchanncls,whenboth a dominantline-of-sight
signalandscatteredsignalarcrcccivcd,thecompositesignalhasa Riciandistribution. Theother
ischaracterizedbythefadeslargerthanabout6to 8dB,which are causcd by blockage and shad-

owing. Thcsc data show that an cffcctivc fading margin is about 5dB for land-mobile satcllitc

channels, although this value may depend on gains or patterns of the vehicle's antennas.

Based on a givcn thrcshold of a signal levcl, it can bc dctcrmined whether a propagation

channel is on a fadc statc (below thc thrcshold) or on a non-fade state (above the thrcshold).

Figures 3 and 4 show cumulative distributions of fade and non-fade durations, respectively. In

Tokyo urban areas, the fade state continues over 10 meters at the 8% probability for all the fade-

duration distributions. Such long fades arc caused by blockage from buildings. Cumulative dis-

tributions of fade duration in suburban areas and freeways show moderate vegetative shadowing

and can be presented by a lognormal fit (Vogel ct al., 1989; Hasc ctal., 1991).

Except data in freeways, cumulative distributions of non-fade durations can be also ap-

proximated with the cumulative distribution of the Iognormal distribution, which differs from that

measured in Australia by Vogel ct al. (1989).

Figure 5 shows a receiving noise measured in urban areas with omni-directional, mechani-

cally stirred and phased array antennas. Impulsive noise, most of which may be generated by

ignition of motorcars or motorcycles, has bccn observed, except for the phased array antenna. It

shows that this effect depends on radiation patterns of mobile antennas. As a result of measuring

bit error rates with 4.Skbps BPSK, it is found that this impulsive noise causes bit errors. In

urban areas, impulsive noise is one of the effects which impair mobile communication channels.

2.2 Propagation characteristics fi,r trains

A new satellite-based train control' system is going to be introduced. In train-satellite

communications channels, blockage and shadowing due to power poles, overpasses and noise gen-

erated from pantographs and motors impair communications quality. Figure 6 shows measured

C/No ( carrier-to-noise-power-density ratio ) with an omni-dircctional antenna installed away

from pantographs. Blockage duc to trolley beams occurred periodically but impulsive noise was

not observed. Except for blockage due to bridge's structures, overpasses and tunnels, durations of

most lades are very short. The cumulative distribution shows the fades of more than 5dB at the

5% probability level.

3. Aeronautical satellite communications channel

In the CRL's experiment, the aircraft earth station was installed on a B-747F freighter of

Japan Air Lines. A phased-array antenna of G/T of about 13dB/K was installed on the top of the

fuselage. In-flight experiments wcrc started in November 1987 and were conducted 24 times

until March 1989, mainly on flight routcs between Narita and Anchorage (Ohmori, 1990).
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MostdatashowconstantC/No andno fadingexceptthe periodwhenthedirectionof the
ETS-Vsatellitecoincideswith thatof themainwings. Figure7showsstandarddeviationsof signal
levelsversusantenna-beamdirectionsandFigure8showsantenna-beamdirectionsduring flights
betweenNaritaandAnchoragcandbctwccnNarita andSingapore.Thesefiguresshowthat sig-
nallevelfluctuationsoccuronlywhenantenna-beamdirectionscoincidewith thatof themainwings
andarecausedbyreflectionsfromthemainwings,vibrationsof thewingsandrollingof theairplane.
Exceptat very low elevationanglesbelow0°, fadingcausedby reflectionsfrom theseasurface
hasneverbccndctccted. The reasonis that wavesreflectedfrom the seasurfaceareblocked

out by thefuselageandwings.
Yasunagaet al.(1989)havecarricdOut propagation measurements using a helicopter with

several antennas installed at both sides of the fusclagc. Figure 9 shows statistics of multipath

fading caused by sea reflections as a function of clcwltion anglcs. At an altitude of 10km and 5 °

elevation angle, the 99% fading level is less than that in the maritime satellite channel only by 2dB.

4. Maritime satellite communications channel

Muitipath fading characteristics in maritime satellite communications channels have been

studied by many authors and a lot of the literature has been published (Sandrin and Fang, 1986).

Here, we present a brief introduction of our ETS-V's experiments. The ship earth station em-

ploys an improved short-backfirc antcnna of 40 cm in diameter (antcnna gain of 15dBi) and has a

two-axis mount (AZ/EL) with a program tracking function slaved to the ship-borne navigation

system. It can compensate ship motions and keep the antenna pointing toward a satellite with a

motion detector installed at the center of gravity of the ship. The CRL has developed a multipath

fading reduction technique by using reflected cross-polarized components (Ohmori and Miura,

1983).

Figure 10 shows cumulative distributions of the received signal at several elevation anglcs.

These data are found to be a good fit to the Rician distribution with a Rice factor, which is the di-

rect-power-to-multipath-powcr ratio, of 5-9 dB, 6-12 dB and 15 dB at 3 °, 6 ° and 10 ° elevation

angles, respectively.

The generalized model for fading statistics proposed by Sandrin (1986) is described for

antennas with gains ranging IYom 0 to 16 dBi as lollows:

K=E/+4 for 2 ° < El < 4 °,

where K is the Rice factor in dccibcls and El is an clcvation angle in degrees. Thcrefore, as

shown in Fig. 10, our measured data can bc fit into this relationship at elevation angles less than

10 degrees.

Figure ! 1 shows a cumulative distribution of the C/No with respect to the medium of the

C/No measured without the fading reduction technique. The fading depth is improved from 10.9

dB to 1.4 dB by the lading reduction technique. Both cumulative statistics without and with the

lading reduction follow thc Rician distribution with Rice factors of 6 dB and 20 dB, respectively.

An increase of the Rice factor indicates reduction of reflected co-polarized components. This

technique has a definite advantage at elevation angles lower than 6 °.
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5. Ionospheric scintillation

Figure 12 shows ionospheric scintillation measured on 30 November 1988 (Wakana and

Ohmori, 1991). Both enhancement and negative fades with respect to the line-of-sight level were

observed. The maximums of enhancement and fades arc 6riB and -34dB, respectively. Mobile-

satellite communication systems have only a small link-margin of about 4dB. Therefore, the fade

duc to ionospheric scintillation providcs scrious impairment in mobile-satellite communication
channels.

Figure 13 shows observed places, frequencies and periods when the scintillation occurred.

The data were measured by using signals transmitted from scvcral satellites at diffcrcnt frequen-

cies. Numbers abovc the pcriods show peak-to-peak variations of the signal level in decibels. As

shown in this figure, ionosphcric scintillation started simultaneously from low to middle latitudes

at different frequencics, exccpt at thc Kashima carth station. The scintillation was observed even

at the frequencies of 20GHz: this frequency is the highest frcqucncy of ionospheric scintillation

observed in Japan until now.

Since the ETS-V satellitc is not always transmitting a beacon, wc cannot monitor the prop-

agation condition continuously. Howcvcr, we havc observed scintillation of about 2dB once cv-

cry several months. From a satellite communication point of view, service availability which is

the fraction of time that satisfactory satellite servicc is obtained on dcmand, is vcry important tot

users. Typically, systems in the fixed-satellite scrviccs arc cxpcctcd to achieve availability of

99.9% or better. Thcrcl_rc, largc attcnuations produced by rare events of ionospheric scintillation

can be ignored for the mobile satellite system design.

6. Conclusions

Mobile satellite communications experiments using the ETS-V satellite have providcd fruit-

ful experimental data about communication qualities and propagation characteristics. This paper

presents the results of propagation measurements for land-mobile, aeronautical and maritime

satellite communications.

In land-mobile satellitc channels, blockage and shadowing by trees, buildings and terrains

are a serious impairment rather than multipath fading, and a large link margin to combat blockage

and shadowing is incffcctivc tk_r providing acceptable services. Other aspects such as fade rate,

fade and non-fade duration, delay sprcad and impulsive noise arc important for the error correction
scheme, data rate and data lormat.

In aeronautical satellite channels, propagation conditions are superior to those of land-

mobile and maritime satellite channels because of no obstacles in link between a satellite and

mobile stations. It was tound that multipath fading due to sea-surface reflections can be ignored

when the antenna is installed on the top of the fuselage, while a small amount of fading occurred

due to reflections from main wings.

For maritime satellite channels, multipath fading statistics due to reflections from the sea sur-

face are presented. Fading statistics can bc modclcd by the Rician modcl liar most of the time.

Furthermore, a technique to combat multipath fading which is applicable to commercial maritime

communications links is presented.

Ionospheric effects arc very important for radio communications systems opcratcd at the

frequencies below IGHz. It was shown that this effect is still of significance at frequencies above
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1GHz and can impair mobile satellite channel. However, from scrvicc availability point of view,

large attenuation produced by rare events can bc ignored lk_r the mobile satellite system design.
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receiving signal powers with respect to
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mechanically stirred antenna of 12 dBi.

Figure 2 Probability density of
receiving signal powers with respect to
the line-of-sight levcl, measured by a
mechanically stirred antenna of 12 dBi.
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Abstract

Simultaneous measurements of

surface atmospheric parameters

and cloud liquid water are used

to test and compare the
accuracy of three different

cloud models.

I. Brief Review of Cloud

Attenuation Models

Numerous models for predicting

the attenuation of electro-

magnetic waves propagating

through clouds were developed

over the years from a variety

of theoretical and empirical

methods. Cloud modeling for

the purposes of assessing

attenuation can be divided into

essentially three different

catagories: I) attenuation is

computed by using a Rayleigh

approximation to Mie scattering

theory [Gunn, East, 1954],

[Staelin 1966], [Liebe, Manabe,
Hufford, 1989]; 2) attenu-

N9 a-- I 4

ation is directly correlated to

surface absolute humidity

[Altshuler, Mart, 1989]; 3)

Meteorological data and compu-
tations are used to determine

cloud liquid and then attenu-

ation is computed using a
slightly modified version of

the catagory 1 models described

above. [Slobin, 1982],

[Dintelmann, Ortgies, 1989].

Although their math-

ematical form and predictions

vary over a fairly large range,

a parameter common to all

models is the liquid water

content of the cloud. Unfor-

tunately, this fundamental

parameter is also the most

difficult to predict and to
measure.

A detailed comparison of

five prominent cloud models

developed over the last forty

years shows good agreement at

frequencies below 40 GHz for

light to medium clouds cond-

itions [Gerace, Smith, 1990].

However, for heavy to very

heavy clouds and frequencies

above 10 GHz, the models

diverge from each other.

The recent availability of
radiometric measurements of

atmospheric parameters and the

worldwide availability of

surface atmospheric meas-

urements have inspired the

development of new cloud at-

tenuation models. These new

models strive to relate surface

atmospheric measurements to

cloud attenuation. The overall

underlying assumption is that

the liquid water content of

clouds is in some way related

to the water vapor present at
the earth's surface.

This paper describes how

three of these new cloud models
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perform on a cloud event that
was in no way related to the

empirical data used to develop

the models. The preliminary

results presented below are an

attempt to qualitatively verify
both the mathematical cloud

models (types 2 and 3) and the

latest methods available for

extracting data from an

independent cloud event. A

complete statistical analysis

is forthcomming when we

complete our analysis using
cloud data measured au numerous

sites worldwide.

We begin by introducing

the Altshuler-Marr, Dintelmann-

Ortgies, and GSW cloud

attenuation models and briefly

discussing a method for

measuring cloud liquid water.

We then present our methods for

comparing the models along with

graphical results. The results
are also cross checked with the

well established Slobin cloud

models [Slobin, 1982].

2. Altshuler Model

By correlating data of

absolute surface humidity with

measurements of zenith cloud

attenuation in the Boston area,

Altshuler derived the following

empirical model for a nominal

cloud temperature of 10"C

[Altshuler, 1989]:

=i-0.02_2 ÷0. 0007sX÷_]_Iz. 3+p)

(i)

where

_=zenith attenuation (dB)

k=wavelength (mm)

p=surface water vapor
density (g/m 3)

To account for elevation angles

other than 90 degrees, eq. 1

must be multiplied by the

following:

csc (8 ) z

_@)=_(ae+ho)2-ae 2 cos2(@)]

[ -aesin (8)

(2)

where

8 = elevation angle

a. = effective radius of

the earth (4/3 earth taken as

8497 km)

h. = 6.35-0.302p effective

cloud height (km)

p = surface absolute

humidity (g/m 3)

While the Altshuler model

is primarily an empirical model

the next model is more appro-

priately classified as a

semiempirical model.

3. Dintelmann-Ortgies Model

Using standard meteoro-

logical equations along with
radiometer attenuation and

concurrent meteorological

measurements, Dintelmann and

Ortgies derived the following

semiempirical model for cloud

attenuation prediction

[Dintelmann, Ortgies, 1989] :

Zo/_ 2
P°-_[z---C RTo]

(g/.,')

(3)

where
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M = cloud liquid water
(g/m 3)

To = surface temperature

T = cloud temperature

P0 = surface water vapor
density (g/m 3)

K = the ratio of the

specific heat of water at

constant pressure to the

specific heat of water at

constant volume (approximately
= to 4/3)

g=acceleration of gravity
(9.8 m/s 2)

R=gas constant for air

(approximately 287 J/K-Kg)

H = height of the 0 degree
isotherm (m)

The height of the 0 degree

isotherm can be approximated
by:

e9+0.16S(To-2V3)
(4)

where

To = Surface Temp. (K)

Then the attenuation

through the cloud can be

computed using an equation
Dintelman borrowed from

[Slobin, 1982]:

a _

4. 343 "10 o .olz2 (291-_ -I
"I. 16M

A2

(5)

where _ is now in dB/km, T is

the cloud temperature in

Kelvin, and k is the wavelength
in centimeters.

To obtain the total attenuation

through the cloud, Dintelman

used radiometer measurements to

obtain the following empirical

formula for the cloud vertical

extent:

A =0 •15-0 •023M+0 •0055M _ (kin)

(6)

where M is the cloud liquid in
g/m 3.

Inherent in this model is

the assumption that clouds form

around the 0"C isotherm. The

next model attempts to refine

the Dintelmann-Ortgies model by

including a calculation aimed

at predicting more accurately
the altitude of cloud
formation.

4. GSWModel

The altitude at which the

actual water vapor density
exceeds the saturated water

vapor density for the

temperature and pressure at

that point is called the

lifting condensation level. The

GSW (initials of authors' last

names) model assumes that this

is the altitude at which clouds

begin to form. The model can

be described as follows:

The initial version of the

GSW model assumes a linear

adiabatic temperature lapse

rate of 6 deg C per kilometer:

T(h) =To-yT

7=6°/Km

(7)

Then a vertical saturated

water vapor profile can be
computed as follows:
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(8)

where e, is the water vapor

pressure and is given by the

following formula due to

[Nordquist, 1973]:

e#=10 x where

x=cl-l. 3816 e -v'1°_

+8. 1328e -m1°_

2949. 076

T

(9)

where

pI=II.344-0.0303998T

(lO)

Now a vertical water vapor

profile can be computed as
follows:

p (h) =Po_ I---_- RTo)

(13)

One can compute the

lifting condensation level by

equating equations (8) and (13)

and solving for the height, h.

This is where the saturation

vapor density equals the actual

vapor density and is most

likely the altitude at which

the cloud begins to form.

Above the lifting

condensation level, water vapor

continues condensing as long as

the actual vapor density

exceeds the saturated vapor

density. Loosely based on
actual measurements of total

integrated cloud liquid water

and typical values of cloud

liquid water densities, an

estimate of the cloud liquid

water content can be computed

as follows :

;)2=3.49149-
1302.8866

T

(11)

ci=23. 832261-5. 028081og (T)

(12)

M=p (.6)-ps (/_)

(14)

where h' is the altitude at

which p = 1.25 p,.

Then cloud attenuation can

be computed using equations 5

and 6 with equation 6 modified

by multiplying all of the

coefficients by a factor of
ten. This factor of ten will

most likely be refined as we
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average in more data sets from

various sites to improve our
model.

Next, we describe a method

for measuring the amount of

liquid water in a cloud.

5. Cloud Liquid Water
Measurements

Radiometer measurements of

atmospheric absorption at two

frequencies, a water vapor
sensitive frequency and a cloud

liquid water sensitive

frequency (say 20.6 and 31.65

MHz), can lead to a

determination of total

integrated cloud liquid water,

L [Westwater, 1978]. The

computation can be summarized

as follows:

L= (-Kvuf l+Kvlfu)

KVIKLu-KVuKLI)

(15)

KLu = path averaged
absorption coefficient of

liquid at the upper liquid

water sensitive frequency, u.

_vl = path averaged

absorption coefficient of vapor

at the lower water vapor
sensitive frequency, i.

_m = path averaged
absorption coefficient of

liquid at the lower liquid

water sensitive frequency, i.

Tmr = mean radiating
temperature

T_b -- cosmic background

"big bang" brightness

temperature (2.8 K)

Tbv = measured value of

the microwave brightness

temperature at frequency, v.

_dv = dry absorption at
frequency, V.

where

fv=-z_-in

(16)

for v = i, u

where

Kvu = path averaged

absorption coefficient of vapor

at the upper liquid water

sensitive frequency, u.

Measurements of cloud

liquid water using the above

algorithm are currently being

made by the Wave Propagation

Laboratory (WPL) of the

National Oceanic and

Atmospheric Administration

(NOAA) at San Nicolas Isand,
CA, and Denver Colorado.

We are now intensively

analyzing data that was

collected throughout the 1980s.

The results in this report are

based on data taken in July
1984.

6. Method of Comparison

Figure 1 depicts our

method of comparison. Using

surface atmospheric

measurements taken in Denver

CO, cloud liquid water contents
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Figure 1. Method of Comparison

computed using the Dintelmann-

Ortgies and GSW models were

compared to measurements of

cloud liquid present at the
time the surface measurements

were recorded. Attenuation

predicted by the Altshuler

model was compared to that

predicted by the Dintelmann-

Ortgies model (via the Slobin

approximation discussed above).

7. Results.

A time series of the

surface measurements taken

during a sample cloud event is

shown in figure 2. Figure 3

shows a comparison of the

Dintelmann predictions to

NOAA's measurements of cloud

liquid water. Figure 4 shows a

similar comparison for the GSW
model. Note that the order of

magnitude of the total

integrated liquid (cm) for all

three models is correct.

However, the shape of the

curves agree qualitatively only

during the last half of the

three hour measurement period.
Also note that the Dintelmann-

Ortgies model predicts high

liquid water content (g/m 3) and

low vertical cloud extent as

compared to the Slobin models

described in figure 5. But the

two effects sort of cancel each

other out when computing the

total integrated liquid (cm)
because the units conversion

from g/m 3 to cm is as follows:

) (cm)=

(17)

where M is the cloud liquid and

is the extent of the cloud.
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Figure 2. Surface Measurements of Atmospheric Parameters During
the Cloud Event.

The GSW predictions are a

little closer to the Slobin

models but also exhibit some

disagreement during the first

half of the time period.

All of this probably

points to some physical

phenomena that is not being

accounted for in these simple

"state equation" models.

Improvements in modeling the

vertical temperature profile,

for example, might help

matters. We are currently

using simultaneous measurements

of vertical temperature

gradients and cloud liquid to

improve the model.

It is also of interest to

note that the GSW model

predicts the lifting
condensation level to be a

kilometer or so below the zero

degree isotherm as shown in

figure 6. We are now analyzing

measurements of the lifting

condensation level to improve

cloud base altitude

predictions.

A striking result is shown

in figure 7. Although the
Altshuler and Dintelmann-

Ortgies models were derived

quite differently, they predict

almost identical cloud

attenuation time series

patterns during the cloud

event. Note however that the

absolute magnitudes and the

dynamic range of the patterns
do differ.

8. Continuing Work

The complexity of cloud

physics and the lack of
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Figure 7. Comparison of Zenith Attenuation Predicted by the

Dintelmann-Ortgies and Altshuler-Marr Models.

measured data has always

hampered cloud liquid research.

Now as data begins to trickle

in, we are seeing the

beginnings of a new cloud

liquid science--a blend of

theory and experiment. The

models presented here are a

building block toward the

understanding of cloud
attenuation. As we continue

working with more data sets at

various locations, we are

seeking to improve temperature

profiling and condensation

level predictions. Gradually

we hope to incorporate and
validate more detailed cloud

physics to describe the

condensation and mixing

processes associated with

clouds. We openly welcome your

critiques and ideas.
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BRIGHTNESS TEMPERATURE AND ATTENUATION

STATISTICS AT 20.6 AND 31.65 GHz

E. R. Westwater and M. J. Falls

NOAA/ERL/Wave Propagation Laboratory

Boulder, CO

Abstract--Attenuation and brightness temperature statistics

at 20.6 and 31.65 GHz are analyzed for a year's data that were

collected in 1988 at Denver, and Platteville, Colorado. The

locations are separated by 49 km. Single-station statistics are

derived for the entire year. Quality control procedures are

discussed and examples of their application are given.

I. Introduction

In previous NAPEX meetings, we have presented attenuation

and attenuation diversity statistics for a limited number of

station months (Westwater et al., 1988; Westwater et al., 1989;

Snider et al., 1989). Because of an extensive data base of

radiometric observations at 20.6 and 31.65 GHz in the front range

of eastern Colorado, we are currently developing monthly and

yearly statistics at these frequencies. Our goal is to develop

statistics representing each of four locations, as well as

appropriate diversity statistics for pairs of stations for the

year 1988. This paper is a status report in which 1988 data from
Denver and Platteville, stations 49 km apart, are analyzed.

Details of the characteristics of our radiometers and our

calibration procedures are reported in Westwater et al. (1990).

II. Quality Control

The radiometric data were taken by radiometers that operated

in an unattended mode, although bimonthly on-site calibrations

were done. For the most part, the data were of high quality,

although occasional outliers had to be removed from the data.

Such outliers can arise from liquid and ice buildup on the

antennas, spurious signals of electromagnetic origin, calibration

drifts in the receivers, and data transmission errors. To

eliminate obvious erroneous data, we plotted and inspected daily

time series of the following quantities: brightness temperature

T b at 20.6 and 31.65 GHz; derived attenuation [ at 20.6 and 31.65

GHz; and precipitable water vapor and cloud liquid. If a record

had an obvious error at either or both frequencies, data from the

entire record were removed. Next, scatter plots of TbS at both

frequencies were constructed; usually, suspicious points were

easily identified from these plots. We show in Fig. 1 scatter

plots showing both (A) original data and (B) data with outliers

removed. During cold conditions, the total range of TbiS much

less than 300 K. Therefore, for these cold conditions, we also

constructed scatter plots over a 15 K range. In Fig. 2, obvious
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Fig. I. Examples of brightness temperature scatter plots for

quality control. (A) scatter plots with encircled outliers;

(B) scatter plots with outliers removed. Denver, CO, 1/88.

outliers with 31.65 GHz TbS less than ~ 8.5 K are shown.

Finally, in Fig. 3, we show scatter plots of quality-controlled

TbS for a year's data taken at Denver and Platteville. The

potential of using these plots for quality control is apparent.

The general behavior of the scatter plots may be explained as

follows: due to far wing absorption from 0 z and for clear, dry

conditions, T b (31.65 GHz) may be larger than T b (20.6). For

increasing water vapor concentration, T b (20.6) rapidly becomes

the larger of the two. Finally, since cloud attenuation is

greater at 31.65 GHz than at 20.6 GHz, during many cloudy

situations T b (31.65) will again be the larger of the two.

15

12

v

." 9

; 6.
,@
t,-

/ /

0
0 3 6 9 1"2 1'5

Tb =t 20 60 GHz (K)

Fig. 2. Scatter plots of

brightness temperatures for

T b < 15 K. Note the
approximately 6 K and 9 K

minimum TbS at 20.6 and
31.65 GHz. Outliers are

encircled. Platteville,

CO, i/i - 12/31/88.

III. Briqhtness Temperature

Statistics

The first paper in which the

climatological variations of

brightness temperatures were

considered was given by Slobin

(1982), who constructed statistics

of Tb at a variety of locations and

frequencies. His work was based on

climatological radiosonde data.

Since conventional radiosondes do

not measure cloud liquid, modeling

of this component requires

additional assumptions: Slobin
assumed a modified adiabatic cloud

liquid distribution. We will

compare later his results with

ours.

For a given location, the

dominant variable in determining

the range of T b is cloud liquid.
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Fig. 3. Scatter plots of T b at 20.6 and 31.65 GHz for (A)

Denver, and (B) Platteville, CO for 1/1 - 12/31/88.

At Denver, in the winter, cold temperatures limit the amount of

liquid that clouds can hold; hence, in the winter months, T b
values are limited to a range of less than -75 K. During warmer

months, cloud liquid greatly increases as does the range of T b.

Figs. 4 and 5 show scatter plots of T b for each month of 1988 at

Denver; similar results were obtained for Platteville.

The cumulative T b statistics at 20.6 and 31.65 GHz for
Denver and Platteville are shown in Fig. 6. For percentages of

time greater than 0.1%, the probability distributions are almost

identical. We also show in Fig. 6 (B) Slobin's estimated

probability distribution for Denver. Given the uncertainties in

modeling cloud liquid statistics from radiosonde data, the

agreement is remarkable.

IV. Attenuation Statistics

We also derived attenuation T(dB) from brightness

temperature by using the well-known formula (Westwater et al.,

1990)

T(dB) = 4.34 in{(T. - T c)/(T, - Tb) } , (1)

where

and
Tm = medium temperature (K),

T c = cosmic background temperature = 2.75 K.

In deriving T, we used monthly mean values of T m that were

calculated from our radiative transfer and cloud models. Yearly

cumulative probability distributions of T are shown in Fig. 7.

Since water vapor attenuation at 20 GHz is larger than 31.65 GHz
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and since the situation is reversed for cloud liquid attenuation,
there are crossovers in the cumulative probability distributions.

Another crossover occurs for the very low attenuations that

occur during dry, cold conditions when 31.65 GHz is again larger
than 20. We note that 8 dB is exceeded at the 0.01% level for
the 31.65 GHz channel.

V. Summary and Plan_

For the first time, we derived yearly brightness temperature

and attenuation statistics at 20.6 and 31.65 GHz for Denver and

Platteville, two Colorado locations separated by 49 km. A strong
seasonal variation in attenuation was observed and maximum values

in the summer months exceeded those in the winter by a factor of

three or four. In our NAPEX XIV report, we reported on

attenuation diversity between Denver and Platteville for three

summer months. We are currently developing single station

statistics and joint-station diversity statistics for all four

stations of the Colorado Research Network for the 1988 data.

We have also shown the utility of using 20 vs. 31.65 GHz

scatter plots for quality control. We plan to extend the

procedure by developing confidence intervals as a function of

attenuation and brightness values. Strict confidence intervals

are required when precipitable water vapor and cloud liquid are
derived from the radiometric data.
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COMPARISON OF OLYMPUS BEACON AND RADIOMETRIC ATTENUATION

MEASUREMENTS AT BLACKSBURG, VIRGINIA

J. B. Snider, M. D. Jacobson,

R. H. Beeler, and D. A. Hazen

NOAA/ERL/Wave Propagation Laboratory

Boulder, Colorado 80303

Abstract - Measurements of attenuation of the 20 and 30 GHz beacons

on board the OLYMPUS satellite are compared to simultaneous

observations of atmospheric attenuation by a multichannel microwave

radiometer along the same path. Departures from high correlation

between the two measurements are believed to be related to differ-

ences in antenna beamwidths. Mean equivalent zenith attenuations

derived from the slant path data are compared to zenith observa-

tions made at previous locations.

I. Introduction

The availability of the OLYMPUS satellite with beacons

operating near 12.5, 20, and 30 GHz offers an opportunity for high

frequency propagation measurements in the eastern United States.

In cooperation with the NASA Propagation Program, The Satellite

Communications Group at Virginia Polytechnic Institute and State

University (Virginia Tech) at Blacksburg, VA, has constructed

receivers and is performing a one year period of measurements of

the beacon signal levels. In addition, the receivers are equipped

with microwave radiometers to permit the measurement of low values

of attenuation by the clear atmosphere and liquid-bearing clouds.

The radiometric measurements also allow determination of a clear

sky reference level for the beacon measurements. The Virginia Tech

OLYMPUS propagation study program and receiver/radiometer design is

discussed in more detail by Stutzman (1990) and McKeeman (1990).

The Virginia Tech radiometers employ the same antennnas and

share some of the RF circuitry in the beacon receivers. As the

antennas are designed for fixed angle operation, it is not possible

to employ "tipping curve" calibrations which inherently include

calibration of the antenna and front-end losses. For this reason,

the National Oceanic and Atmospheric Administration/Wave Propaga-

tion Laboratory (NOAA/WPL) steerable beam, multichannel radiometer

(20.6, 31.65, and 90.0 GHz), was employed to assist in the calibra-

tion of the Virginia Tech radiometers operating near 20 and 30 GHz.

In addition, the WPL radiometer was used to obtain attenuation

statistics at 20, 31, and 90 GHz for Blacksburg, VA to add to the

database begun in 1987 at San Nicolas Island (Snider et al.,

1989) .

2. Experimental Plan and Instrument Configuration

The NOAA/WPL transportable radiometer with steerable antenna

(Hogg et al., 1983) was moved to Blacksburg, VA where it was
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operated from 8 August to 13 September 1990. The separation
between the WPL radiometer and the three beacon receivers was about

20 m. Antennas were directed along the slant path to the OLYMPUS

satellite (13.9 deg elevation, 109.4 deg azimuth). Thus, all

instruments viewed approximately the same region of the sky.

However, because of the different antenna sizes employed by the

various instruments (see Table I), each instrument observed

slightly different fields of view. The antennas of the NOAA/WPL

radiometer are designed to produce approximately equal 2.5 deg

beamwidths at each frequency (Hogg, et al., 1983). Further details

of the WPL radiometer have been discussed at previous NAPEX

meetings and will not be repeated here. However, it should be

noted that the NOAA/WPL radiometers are calibrated using the

"tipping curve" method which includes the effects of the antenna.

Radiometers in the OLYMPUS beacon receivers are total power

systems that measure atmospheric emission in a 25 MHz bandwidth

within a few tens of MHz from the beacon operating frequencies.

The radiometers are operated in temperature controlled enclosures

to maintain a constant gain without switching. Components ahead of

the input to the radiometers include the antenna, low noise

amplifier, and bandpass filter. The antennas used with the beacon

receivers are not capable of being moved over a sufficient range of

elevation angles to perform tipping curve calibrations. Instead,

initial calibrations were performed using cold (-80 K) loads and

hot loads (273-303 K). This technique does not allow for calibra-

tion of the antenna system. In addition, uncertainties about the

emissivity of the cold and hot loads reduce the absolute accuracy

of the calibration to about ±i K. One objective of the partici-

pation by NOAA was to help reduce the uncertainty in calibration of
the 19.77 and 29.65 GHz radiometer channels.

Table I. Characteristics of Microwave Radiometers Employed in OLYMPUS Propagation
Observations at Blacksburg, VA.

Antenna

Frequency(GHz) Aperture (m) Beamwidth (de(I)

Virginia Tech

Approximate

Bandwidth (MHz) Sensitivity (K)

Integration

Time _s)

12.50 4.0 0.44 25 < 1.0 1-3

19.77 1.5 0.72 25 < 1.0 1-3

29.65 1.2 0.60 25 _<1.0 1-3

NOAA/WPL

20.60 0.51 2.50 500 _____0.3 1

31.65 0.51 2.50 500 __0.3 1

90.00 0.15 2.50 500 _____0.4 1
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3.0 Initial Results

It had been planned to present a preliminary comparison of

brightness temperatures measured by the NOAA and Virginia Tech

radiometers at NAPEX XV. However, as the Virginia Tech radiometric

data are not yet available, we shall instead discuss observations

of attenuation made by the two instruments during August and

September 1990.

3.1 Comparison of Beacon and Radiometric Attenuation Observations

Examples of beacon fade data and simultaneous observations of

attenuation at 20 and 31 GHz by the WPL radiometers are shown in

Figs. 1 and 2. The relative values of the radiometric attenuation

data have been adjusted with a constant offset in order to match

approximately the beacon levels during clear weather. Excellent

correlation between the beacon and radiometer is found up to an

attenuation of about 15 dB. Higher values of radiometric attenua-

tion were not calculated due to uncertainties in the brightness

measurement and the mean radiating temperature of the atmosphere.

In general, the beacon and radiometer attenuation measurements of

Fig. 1 vary in synchronism during a fade. However, Fig. 2 reveals
several cases where radiometer and beacon attenuations do not track

closely. These instances are believed to be caused by regions of

attenuation by clouds or precipitation on relatively small spatial

scales which do not simultaneously fill the different antenna

beamwidths of the various instruments. Attenuation measured by

the radiometers in the beacon receivers would be expected to track

more closely with the beacon level since common antennas are used.

We will determine if the latter expectation is the case when the

Virginia Tech radiometer data become available.

3.2 Attenuation Statistics

Cumulative distributions of attenuation at 20, 30, and 90 GHz

derived from the WPL radiometer are shown in Figs. 3-5. Although

the data were measured along a slant path, they have been normal-

ized to equivalent zenith values for comparison with previous

measurements at other geographic locations. The distributions

appear to have the same shape as seen previously. Mean attenuation

data at Blacksburg and mean values for locations previously

examined are shown in Table II. Note that the values include both

clear and cloudy data. The greater mean equivalent zenith attenua-

tion at Blacksburg may be due to measurements being made along a

slant path with frequent rain showers present. Future analyses

shall compare only the clear sky attenuation data to determine the

relative background attenuations at the different locations.
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Table II. Comparison of Mean Attenuation Observed at 20.6, 31.65, and 90.0 GHz for

Locations Examined to Date. Clear and Cloudy Data Combined.

Mean Zenith Attenuation (dB)

Location 20.6 GHz 31.65 GHz 90.0 GHz

San Nicolas Island

July 1987 0.398 0.321 1.128

Denver, Colorado
December 0.159 0.158 0.411

August 0.497 0.278 1.190

Wallops Island, Virginia

April/May 0.428 0.398 1.239

Blacksburg, Virginia*

August/September 0.661 0.444 1.711

*Blacksburg data are normalized to zenith from 13.9 deg slant path

4.0 Summary

In general, excellent correlation was observed between direct

measurements of OLYMPUS satellite attenuation by the Virginia Tech

beacon receivers and radiometric attenuation observations by the

NOAA/WPL multichannel microwave radiometer. Occasional differences

are likely to be the result of different antenna beamwidths

employed by the two measurement systems. Equivalent zenith atten-

uation values observed at Blacksburg are greater than seen at

previous locations. This result may be due to observations being

made on a slant rather than a vertical path.

5.0 Future Plans

Future analysis will include comparison of NOAA and Virginia

Tech brightness temperature observations to determine if systematic

differences exist. Based upon these comparisons, the feasibility

of calibrating the beacon receiver radiometers with an independent

radiometer will be evaluated. Finally, the radiometric attenuation

statistics recorded during clear weather will be analyzed to deter-

mine the variability of the background attenuation as a function of

path-integrated water vapor.
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Satellite Sound Broadcast Propagation Measurements

Wolfhard J. Vogel and Geoffrey W. Torrence

Electrical Engineering Research Laboratory, The University of Texas
10100 Burnet Road, Austin, TX 78758-4497

Abstract-Power transmitted from atop a 17.9 m tower in simulation of a satellite signal, emitted by a

tone generator sweeping from 700 to 1800 MHz,was received using a 90 ° beamwidth linearly scanning

antenna at many locations inside six buildings of solid brick, corrugated sheet-metal, wood-frame,

mobile home, and concrete wall construction. The signal levels were found to have much structure in

the spatial and frequency domain, but were relatively stable in time. Typically, people moving nearby

produced less than 0.5 dB variations, whereas a person blocking the transmission path produced 6 to 10

dB fades. Losses, which at an average position in a room increased from 6 to 12 dB over 750 to 1750

MHz, could be mitigated to 2 to 6 dB by moving the antenna typically less than 30 cm. Severe losses

(17.5 dB, mitigated to 12.5 dB) were observed in a concrete wall building, which also exhibited the

longest multipath delays (>100 ns). Losses inside a mobile home were even larger (>20 dB) and

independent of antenna orientation. The losses showed a clear frequency dependence.

I. Introduction

Several efforts [1]-[3] are underway to develop systems for direct broadcasting of radio programs from

geostationary satellites (BSS-Sound) to inexpensive personal receivers in houses and cars. Such features as a

shareable space-segment in a safe location, tailored footprints from global to local using multiple spot-beams,

and flexible sound quality through digital signal processing combine to make this an attractive technology.

Three potential frequency bands for BSS-Sound have been proposed by the FCC: 728-788 MHz, 1493-1525

MHz, and 2390-2450 MHz. This paper reports on signal strength measurements made inside six buildings

over the 700-1800 MHz band, using a tower-mounted transmitter in simulation of a satellite. Radio wave

building attenuation measurements were reported [4] at 860, 1550, and 2569 MHz, using the ATS-6

geostationary satellite as a source platform. The average attenuation into wood-frame houses with and without

brick veneer was found to be 6.3 dB for elevation angles from 36 ° to 55 ° and increasing by 3 dB from 860 to

2569 MHz. The widelyspaced, single frequency results presented were spatially averaged, however,

allowing no conclusions about the fine structure of signal levels within a room. The experiment described

here has been carried out to determine the excess path loss associated with reception inside buildings. Such

information is needed for the preparation of international standards [5].

II. Experimental Aspects

A. Instrumentation

The measurement system makes use of an erectable 17.9 m tall tower attached to a van which has been

outfitted with radio transmission and reception equipment as well as a data acquisition and control computer.

Continuous wave (constant frequency or swept) signals from a tracking generator synchronized to a

microwave spectrum analyzer are fed through a cable to the top of the tower, amplified, and transmitted
towards the location under test. There they are received by an antenna which is mounted to a linear

positioner about 1.4 m above ground and pointed towards the transmitter. After amplification the received
power is conducted through an 80 m cable back to the spectrum analyzer in the van. The positioner can be

manually oriented to allow computer controlled antenna motion along any arbitrary axis. For the

measurements presented here the receiving antenna position was varied in 16 steps of 0.05 m, resulting in a
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total scan distance of 0.8 m along either the vertical direction or in the horizontal plane parallel with or at

tight angles to the propagation path.

The measurement system, shown as a block diagram in Figure 1, functions like a scalar network analyzer.

It is capable of determining transmission loss over a maximum frequency span from 700 to 1800 MHz with a
resolution bandwidth of between 10 kHz and 1 MHz and an overall accuracy of better than 0.5 dB. By

varying the transmitter to receiver range from 15 to 75 m, elevation angles of 12 ° to 48 ° can be obtained.

Both antennas are circularly polarized cavity-backed spirals with 90 ° half-power beamwidth and gain

increasing from -2.5 to 4.5 dB over the 700 to 1800 MHz frequency range. They were chosen because of

their wide bandwidth and relatively constant directivity characteristics. The pertinent system parameters are
summarized in Table I below.

Table I: Pertinent System Parameters

Frequency
Coverage: 700 MHz to 1800 MHz

Span: 0 Hz to 1100 MHz
Resolution: 1 MHz to 10 kHz

Amplitude
Range: 45 dB
Resolution: 0.2 dB

S/N Ratio: >45 dB

Error: <0.5 dB

Antennas

Type: Cavity Backed Spiral
Polarization: Right-hand Circular

Beamwidth: 90 ° (3 dB)
Gain: -2.5..+4.5 dB

Elevation Angle: 12 ° to 45 °

B. Calibration Method

The system was calibrated to power levels relative free space with height-gain measurements performed
over the entire 1100 MHz frequency range at distances from 15 to 75 m in a flat open field. In this situation

the received signal mainly consists of a combination of two waves: the direct wave and the specular ground

reflection. Increasing the height of the receiver causes additional delay of the reflected relative to the direct

wave and changes the pattern of con- and destructive interference as a function of frequency. Typical peak-

to-peak received power variations in a full frequency sweep were 10 dB at 75 m and 1.5 dB at 15 m. The free

space level was determined by linearly averaging the composite maximum and minimum of the power levels

versus frequency obtained at 16 vertical positions from 2.0 to 2.8 m.

An example of such a procedure for the distance of 25 m (elevation angle 32 °) is depicted as Figure 2.
The vertical scale has been adjusted relative to free space using the overall calibration results. Absolute

power levels consistent with propagation loss calculations and with errors of typically less than 0.5 dB for all

frequencies and distances were obtained. Some of the remaining ripple is due to the residual impedance
mismatch between the receiving antenna and the cable to the low-noise amplifier.

C. Measurement Sites

The measurement campaign covered six locations and many positions at each location. The

characteristics of the receiving locations are as follows:
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BRC 16--4: A comer room office (about 6x7 m) with two large windows in a single story building. The

exterior walls are of concrete-block masonry. They are covered with plasterboard on the inside. The ceiling

is formed by acoustic tiles suspended at 3 m height from metal hangers. The double-glazed reflective

window in the wall exposed to the transmitter has a modern aluminum frame, but no screening, and takes up

about 3/8 of the wall. The roof of the building is flat, consisting of concrete panels supported by steel beams.

The room contains wooden office furniture and two large plants. Trees and shrubs on the outside of the

building did not obstruct the line-of-sight (LOS) between transmitter and receiver. The transmitter was at a
distance of 33 m from the closest inside receiver location, resulting in an elevation angle of 27.5 °. The

azimuth angle between the wall and the line-of-sight was 50 °.

BRC 15-24: A small room (about 3x4 m) with two windows taking up about 5/8 of the exterior wall. A

cable chase separates the two windows. The construction is similar to that of BRC 16-4. The room is

furnished with metal filing cabinets. The location was illuminated over the top of several trees at an elevation

angle of 18° from a distance of 52 m, but the LOS between transmitter and receiver was clear. The azimuth

angle between the wall and the LOS was 50 °.

Commons: A 5x5 m corner foyer with a large reflective glass door taking up half of one outside wall.
Wooden double doors lead from this room to the interior of the building. The external walls are of concrete

tilt-wall construction; internal walls have metal frames covered with plasterboard. The ceiling consists of

acoustic tile suspended at 3.5 m height. Several small trees in front of the measurement location did not

shadow the propagation path. The transmitter was 57 m from the building at an azimuth angle of 45 °, making

both sides of the outside corner visible. The elevation angle was 16° .

Metal Shack: A 3x6 m shack (approximately 2.5 m high) with corrugated sheet-metal walls and roof on

the outside and plywood on the inside. The shack stands in an open field. It has one small, unscreened
window on each of the two narrow sides and a metal covered door centered between two windows (also

unscreened) on one of the long sides, which was in the direction to the transmitter. The distance to the

transmitter was 35 m, the elevation angle 25 °, and the azimuth angle between the wall and the LOS was 60 °.

Farm House: An 1870 vintage restored and furnished 2-story ranch house with wood siding. The walls are
filled with rock wool and covered with sheetrock on the interior and wood siding on the exterior. No metallic

heat-shield is installed. The attic is insulated. The gabled roof is covered with wood shingles. Windows

have wooden sashes and are not covered with metallic screens. There are two large trees near the house, but

the propagation path was not shadowed. Measurements were made in two rooms on the ground floor and one
room on the second level. The distance to the transmitter was 35 m, the elevation angle 25 °, and the azimuth

angle between the wall and the LOS was 45 °.

Mobile Home: A 40'x8' empty mobile trailer home with sheet-metal exterior and aluminum frame
windows with metal screens. The distance to the transmitter was 35 m, the elevation angle 25 °, and the

azimuth angle between the wall and the LOS was 45 ° .

III, Measurement Results

A. Data Examples

An example of the power received versus frequency from 700 to 1800 MHz during a vertical position scan

near a window in BRC 15-24 is given in Figure 3. The two outside traces in the plot are the composite

maximum and minimum signal levels measured at 16 positions with 5 cm spacing. The trace meandering

between the outside two represents the received power versus frequency at just one of the positions. At best,

the signal was attenuated by 0 to 5 dB: at worst troughs of over 20 dB were found. Figures 4 and 5 more

clearly show signal levels in this scan at two positions separated by 50 cm. In the first case, the deepest

troughs happen to be located near 800 and 1100 MHz: in the second case one is close to 1400 and another to
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1500 MHz. Over a frequency span of about 25 MHz, from 725.3 to 749.5 MHz, a trough near the center

position of the scan changes its location and depth only slightly, as depicted in Figure 6.

Taken in a different building, the Metal Shack, two frequency sweeps from a horizontal position scan

which were separated by 50 cm are shown in Figures 7 and 8. In contrast to the similarity of the two previous

scans, these two scans are quite dissimilar. At position 2 the receiving antenna was looking through the open

door, at position 12 it was shielded by the wall between the door and the window, resulting in the loss of most

of the direct signal and consequently greater variations due to multipath scattering across the entire frequency

span. A scan taken in Commons in the vicinity of the window at a position where the LOS penetrated the
exterior wall is shown in Figure 9. As in Fig. 8, the average attenuation was 15 to 20 dB, but the variations

with frequency are faster, indicating multipath contributions arriving from greater distances. Moving the

antenna by 50 cm resulted in a LOS path through the window, and as can be seen in Figure 10, the signal

level increased across the band, with some frequencies being enhanced to above the free space level by

constructive interference, probably from the specular ground reflection. Figure 11 illustrates the high degree

of correlation with frequency for a span of 25 MHz at 1500 MHz over an 80 cm motion, except at very low
signal levels.

It is easy to calculate that in the case where both a direct wave and a reflected wave are received, the

resulting linear power has a sinusoidal variation across the bandwidth of the receiver with a frequency-
periodicity that is inversely proportional to the delay of the reflection relative to the direct path. The

periodogram of the signal level versus frequency, therefore, represents an estimate of the time delay spread

spectrum. This has been determined for the scans of Figs. 4, 8, and 9, and the results, shown in Fig. 12, give
the percentage of the delayed power with delays less than the abscissa. The small room, BRC 15-24, suffered

the shortest delays with 95% of the multipath power delayed by less than 15 ns. In the Metal Shack, the

percentage increased rapidly after about 17 ns, which corresponds to the turn-around time between the

receiver and the walls. In the Commons building, a large structure, more than 10% of the muitipath power
was received with delays greater than 80 ns (24 m distance).

B. Time Variations

In order to assess the time-variability of the received power, repeated frequency sweeps were obtained at

many measurement locations while keeping the receiving antenna stationary. Statistics of amplitude changes

at each frequency were determined from 99 sweeps taken over a period of about 6.5 minutes, with each sweep

lasting 1 s. Some typical results are shown in Figs. 13 and 14, which give the maximum, average, and

minimum power versus frequency and the standard deviation versus the average, respectively. The gross
structure of the losses remains quite stable, whereas the standard deviation increases with falling average

power level, presumably as more distant and variable multipath components become effective.

By making single frequency measurements over durations of 100 seconds, it was determined that power
variations within the 1 s full sweep time of the receiver tended to be smaller than the 0.5 dB measurement

accuracy of the equipment to signal levels of about -15 dB. Variations brought about by scattering from

people walking in the vicinity of the receiving antenna were also quite small, except when someone moved
directly into the LOS, in which case fades of 6 to 10 dB were observed. We conclude that time variations of

near free-space-level power levels transmitted into buildings are not of primary importance in characterizing
the transmission channel.

C. Lom_

In each of the six buildings, at between eight and twenty locations, horizontal and vertical scans were

taken. The power levels obtained were analyzed to derive losses at the average and at the best position in the

scans for bandwidths of 1, 2, 5, 9, 18, 45, and 90 MHz from 700 to 1800 MHz. As no bandwidth dependence

of the losses was found, Figure 15 gives probability contours for the signal level being less than the ordinate

at 99, 90, 50, 10, and 1% at the average position in the scan for BRC 15-24 averaged over all the bandwidths
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listed above. The median loss increased from 5 dB at 750 MHz to 13 dB at 1750 MHz. Assuming that the

receiving antenna was placed at the best position in a scan, the median losses were reduced, varying from 1.5

dB to 7 dB over the same frequency span. The central percentiles at that position show less variability than

those at the average position, especially at the low frequency end. Table II summarizes the losses observed in

all buildings. By moving from the average position to the best position, the signal level can be improved by

about 3 to 6 dB. The trend is for higher frequencies to suffer more attenuation when losses are moderate. In

Commons losses are rather uniformly high across the full frequency span.

Table lI: Median Power Levels as a Function of Frequency.

Average Position Best Position

750 ...... 1750 MHz 750=,.,.= 1750 MHz

BRC 16-4 -5 .......... -11 dB -2 ............ -6 dB

BRC 15-24 -5 .......... -14 dB -2 ............ -5 dB

Metal Shack -9 .......... -11 dB -5 ............ -6 dB

Commons -17 .......... -18 dB -12 .......... -13 dB

Farm House -5 .......... - 11 dB -3 ............ -5 dB

Mobile Home -20 ........ <-24 dB -16 .......... -22 dB

After averaging over all frequencies, the probability distribution functions (PDF) at the average and best

positions were calculated for each building and the results for the Metal Shack have been plotted against a

normal probability scale in Figs. 17 and 18. The means and standard deviations derived with linear

regressions are summarized in Table III.

Table llh Signal Distributions at the Average and Best Position.

Average Position Best Position

Mean ........... STD Mean ........... STD

BRC 16-4

BRC 15-24

Metal Shack

Commons

Farm House

Mobile Home

-7.9 dB .... 5.5 dB

-9.1 dB .... 4.4 dB

-9.7 dB .... 6.3 dB

- 15.4 dB .... 8.4 dB

-9.0 dB .... 4.5 dB

-24.9 dB .... 3.8 dB

-4.2 dB .... 4.2 dB

-5.4 dB .... 3.7 dB

-5.2 dB .... 4.9 dB

-9.7 dB .... 6.7 dB

-5.4 dB .... 3.7 dB

-19.8 dB .... 3.4 dB

In the first three buildings all distributions deviate from normal at the upper signal level tails, as can be

seen in the examples of Figs. 17 and 18; in Commons the fit is Ix)or across the entire range. Loss

measurements performed at 900 MHz [6] into a well shielded metal building have shown the signal

amplitudes in a multipath environment to be Rayleigh distributed, but all amplitude data collected in this

experiment except for the Mobile Home case were obtained under less severe attenuation conditions and the
Rayleigh distribution did not provide a better fit than the normal one.

For each building, using all the data collected, the percentage of positions P (%) at which the average

received power was less than a given threshold THR (from -3 to -18 dB) has been determined. For example

in the Metal Shack as a function of frequency F (in GHz) from 50 to 65 percent of positions had signals lower

than -9 dB. At all six buildings P can be approximated by the relations:

where
P = A + B'F, (1)

A = A0 + AI*THR, (2)
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and
B = B0 + BI*THR. (3)

Table IV summarizes the coefficients derived for the six buildings, including the rms error of P in

percentage points.

Table IV: Fit Coefficients for the % Positions at Which the Signal is Below a Threshold

A0 A 1 B0 B 1 RMS-Error

BRC 16-4 66.2 5.3 16.0 -0.54 4.0

BRC 15-24 74.1 7.0 20.3 -1.2 8.4

Metal Shack 97.8 6.2 -3.8 - 1.5 3.4

Commons 105.7 3.1 -7.8 -0.34 2.8

Farm House 67.2 5.2 24.9 -0.1 6.1

Mobile Home 61.9 -1.3 11.1 -0.02 13.2

IV, Summary_ and Conclusion

The experiment described has been performed to allow a more detailed description of radio wave

propagation into buildings than has been hitherto available in the literature. Such comprehensive information

is needed for the design of BSS-Sound systemS, which will have to mitigate unfavorable propagation

characteristics with additional power, coding, or space- and frequency-diversity. Although measurements
were made into dissimilar buildings of brick, metal, wood-frame, or concrete construction, many similarities

among the results were uncovered. Temporal variations at levels within about 15 dB of the free space value

were only of the order of 0.5 dB. Only in one of the buildings were delays greater than 50 ns of importance.

The predominating effects of short delays for satellite systems have previously been observed in the land
mobile case [7] and are a feature of near free-space propagation.

Losses increased with frequency, although many specific counter examples could be found. In light of the

demonstrated frequency insensitivity of multipath effects, increased losses at higher frequencies are believed

to be due to greater absorption by the walls of the buildings studied. By moving the receiver to a position of a

signal strength crest, losses could be reduced.
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vertical scan of Fig. 3 shows the deepest fade troughs
near 850 and 1100 MHz.

v 0.5

-1 ......

-1.5
700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

FREQUENCY (MHz)
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Fig. 3. The composite maximum and minimum of the
received power in a vertical position scan near window in
BRC 15-24, and a single position trace.
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Fig. 16. Probability contours for the signal level being
less than the ordinate at 99, 90, 50, 10, and 1% at the best
position in the scan for BRC 15-24.
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AN OVERVIEW OF THE TEXT

"PROPAGATION EFFECTS FOR LAND-MOBILE-SATELLITE SYSTEMS:

EXPERIMENTAL AND MODELING RESULTS"

Julius Goldhirsh* and Wolfhard J. Vogel #

*The Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland

#The University of Texas, Electrical Engineering Research Laboratory, Austin, Texas

Abstract - We present an overview of the contents of the text having the above title

and which is now in the form of a preliminary document titled, "Propagation Handbook for

Land-Mobile-Satellite Systems-Preliminary" [Goldhirsh and Vogel, 1991]. At this writing

the text is undergoing peer review, and the final revised manuscript will be published in the

near future as a NASA document. The text was inspired by a series of Land-Mobile-Satellite

System (LMSS) experiments by the authors and other investigators at UHF and L-Band.

The rationale for its writing is to place in a single document an overview of the previous

propagation related salient experimental and modeling results pertaining to LMSS scenarios

(see References).

It is apparent that LMSS propagation at UtIF and L-Band can be seriously degraded

because of attenuation (e.g., greater than 10 dB) caused by roadside tree shadowing. The

extent of attenuation is shown to depend on such factors as the elevation angle to the

satellite, the bearing of the line-of-sight path to the satellite relative to the line of roadside

trees, the side of the road in which the vehicle is driven, the season, and the frequency.

Multipath effects during line-of-sight communications are shown to cause less serious fading

(e.g., smaller than 3 dB for 90% of the driving distance).

1. Introduction

During the period 1983-88 a series of experiments (Table 1) were undertaken by the Elec-

trical Engineering Research Laboratory of the University of Texas and the Applied Physics

Laboratory of The Johns ttopkins University in which propagation impairment effects were

investigated for Land Mobile Satellite Service (LMSS) configurations. Prior significant LMSS

propagation investigations were performed in Canada [Butterworth, 1984a; 1984b], and in

Europe [Jongejans et al., 1986]. More recently, LMSS propagation measurements were re-

ported from Australia [Bundrock, 1988], England [Renduchintala et al., 1990], and Spain,

France, and Sweden [Benarroch et al., 1989].

The results described in this text are mostly derived from systematic studies of propa-

gation effects for LMSS geometries in the United States associated with rural and suburban

regions. Descriptions of these efforts have appeared in a number of technical reports, con-

ference proceedings and publications (see References). The rationale for the writing of this

text was to locate the salient and useful results in one single document for use by commu-

nications engineers, designers of planned LMSS communications systems, and modelers of

propagation effects.
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Table 1" Land-mobile propagation measurement campaigns of EERL, University of Texas,

and APL, The Johns ttopkins University.

Date

10/83

1/84

11/84

6/85

10/85

3/86

7/86

8/86

6/87

12/87

lo/88

Source

Balloon

Balloon

Balloon

Remotely piloted

aircraft

ttelicopter

tlelicopter

Balloon

tlelicopter

Helicopter

MARECS-B2

ETS-V and

INMARSAT

Location Freq.

UttFEast Texas

to Louisiana

East Texas

East Texas to

Alabama

VA

Central MD

Central MD

East Texas to

New Mexico

Colorado

Central MD

Central MD

S.E. Austral.

UHF

UI|F, L

UttF

UItF

UttF

UttF, L

UHF, L

UHF, L

L

L

Objectives

First U.S. data set for,

forested and rural roads

(600 kin), max el = 35 °

150 km, max el = 30 °

Freq. comparison,

El = 50 °, variety

of roads and terrain

Single tree attenuation,

stationary receiver

Systematic roadside tree,

sampling, single tree

attenuation in fall foliage

Systematic roadside tree,

sampling, no foliage

Open terrain, optical,

sensor, 45 ° , scatter model

Mountain roads, canyons

multipath limits

Systematic roadside tree

sampling, full foliage

Systematic roadside tree

sampling, ERS model

Systematic roadside tree

sampling, fade durations,

diversity, cross pol

Ref

V and H; 1988

V and H; 1988

V and G;1986

G and V;1987

G and V;1987

V and 1I; 1988

V and G; 1988

G andV;1989

V and G; 1990

V et ai.; 1991

H et al.; 1991
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Where applicable, the authors have also liberally drawn from the results of the other

related investigations. The results are presented in a "user friendly style" in the form of

graphs, tables, and "best fit" analytic functions.

A "preliminary" version has been disseminated to reviewers for their comments and

suggestions [Goldhirsh and Vogel, 1991]. The revised manuscript will be published as a
NASA document in the near future.

2. Background

The propagation experiments by the authors were performed in the Southern United

States (New Mexico to Alabama), Virginia, Maryland, Colorado, and South-Eastern Aus-

tralia. These experiments were executed with transmitters on stratospheric balloons, re-

motely piloted aircraft, helicopters, and geostationary satellites (INMARSAT B-2, Japanese

ETS-V, and INMARSAT Pacific). The earlier experiments were performed at UHF (870

MHz), followed by simultaneous measurements at L-Band (1.5 GHz) and UHF. The satel-

lite measurements were performed only at L-Band. During these experiments, the receiver

system was located in a van outfitted with the UHF and L-Band antennas on its roof, and

receivers and data acquisition equipment in its interior.

3. Objectives

The general objectives of the above tests were to assess the various types of impairments

to propagation caused by trees and terrain for predominantly rural and suburban regions

where terrestrial cellular communication services are presently non-existent and commer-

cially impractical. Data acquired from the above experiments and other investigations have

provided insight into the following LMSS propagation related characteristics described in

the planned text:

Attenuation and attenuation coefficients due to various tree types for non-mobile cases

and their relation to elevation angle and frequency (Chapter 2).

Attenuation and related statistics of the attenuation of roadside trees, including sea-

sonal and frequency effects (Chapter 3).

Attenuation caused by mountainous and roadside tree environments where line-of-sight

propagation is maintained (Chapter 4)

Fade duration, non-fade duration and phase characteristics for road-side tree environ-

ments (Chapter 5)

Effects on fade statistics employing different gain antennas, feasibility of frequency

re-use, and space diversity modeling (Chapter 6)

Modeling of propagation effects (Chapter 8)
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Also included for completeness are fade distribution measurements obtained from various

experimenters from different countries (Chapter 7).

We emphasize L-Band since The World Administration Radio Conference for Mobile

Services (WARC-MOB-87) in 1987 has allocated frequencies in this band for both the uplink

and downlink modes. In particular, the agreed uplink and downlink bands are: [1] 1631.5

to 1634.5 MHz and 1530 to 1533 Mttz, respectively, and [2] 1656.5 to 1660.5 MHz and 1555

to 1559 Milz, respectively, where the first set of bands are to be shared with the maritime

mobile satellite service [Bell, 1988].

The results and methods described here deal with propagation for mobile satellite geome-

tries in suburban and rural environments for elevation angles generally above 15 ° . Results

"not" covered are associated with measurements performed in urban environments which

may efficiently be serviced by cellular communications. Also, not examined here are measure-

ments which pertain to channel effects associated with wide bandwidth modulated signals;

with the exception of fade and non-fade durations and phase spreads (Chapter 5).

4. Table of Contents

Although, as of this writing, the preliminary manuscript is undergoing peer review, the

following contents (as they presently exist) should provide the flavor of the final text.

1. Introduction

1.1 Why This Text?

1.2 Background

1.3 Objectives
2. Attenuation Due to Individual Trees - Static Case

2.1 Background
2.2 Attenuation and Attenuation Coefficient

2.3 L-Band Versus UttF Attenuation Scaling Factor-Static Case

2.4 Effects on Attenuation Caused by Season and Path Elevation Angle

3. Attenuation Due to Roadside Trees-Mobile Case

3.1 Background

3.2 Time Series Fade Measurements

3.3 Empirical Roadside Shadowing Model

3.4 Validation of the Empirical Roadside Shadowing Model

3.5 L-Band Versus UHF Attenuation Scaling Factor-Dynamic Case

3.6 Seasonal Effects on Attenuation - Dynamic Case

3.7 Fade Reduction Due to Lane Diversity

4. Signal Degradation for Line-of-Sight Communications

4.1 Background

4.2 Multipath for A Mountain Environment

4.3 Multipath Due to Roadside Trees

5. Fade and Non-Fade Durations and Phase Spreads

5.1 Background

5.2 Experimental Aspects
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5.3 Cumulative Distributions of Fade Durations

5.4 Cumulative Distributions of Non-Fade Durations

5.5 Cumulative Distributions of Phase Fluctuations

6. Propagation Effects Due to Cross Polarization, Gain, and Space Diversity

6.1 Background

6.2 Frequency Re-Use

6.3 Distribution from Low and High Gain Receiving Antennas

6.4 Diversity Operation
6.4.1 Joint Probabilities

6.4.2 Diversity Improvement Factor, DIF

6.4.2 Diversity Gain

7. Investigations from Different Countries

7.1 Measurements in Australia

7.2 Measurements in Canada

7.3 PROSAT Experiment-Belgium, France, and Sweden
7.4 Measurements Performed in the United States

7.5 Measurements Performed in Japan

8. Modeling for LMSS Scenarios

8.1 Background

8.2 Background Information Associated with Model Development

8.2.1 Diffusely Scattered Waves

8.2.2 Faraday Rotation

8.2.3 Ground Specular Reflection

8.3 Empirical Regression Models

8.3.1 Large Scale - Small Scale Coverage Model

8.3.2 Empirical Roadside Shadowing Model

8.4 Probability Distribution Models

8.4.1 Density Functions Used in Propagation Modeling

8.4.2 Loo's Distribution Model

8.4.3 Total Shadowing Model

8.4.4 Lognormal Shadowing Model

8.4.5 Simplified Lognormal Shadowing Model

8.4.6 Models with Fade State Transitions

8.5 Geometric Analytic Models

8.5.1 Single Object Models

8.5.2 Multiple Object Models

8.6 General Conclusions

9. References

5. Salient Results and Conclusions

Some of the major conclusions that may be gleaned from the results in the text are

summarized as follows:

1. An Empirical Roadside Shadowing (ERS) model developed by the authors may be used
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to arrive at fade levels ranging from 3 dB to 26 dB over elevation angles between 20 °

and 60 ° over percentages ranging from 1% to 20% (percentage of the distance driven

over which fades are exceeded). This model, which has as inputs elevation angle and

percentage of distance driven, gives the fade exceedance. The model corresponds to aver-

age driving conditions (left and right side driving along multiple roads), a maximum

shadowing line-of-sight orientation, and roads in which the percentage of optical tree

shadowing ranged between 55% to 75%. It was validated by independent measurements

in Australia [Vogel et al., 1991].

2. The attenuation may be scaled upwards or downwards between UttF (870 MHz) and

L-Band (1..5 GHz) employing the square root of the ratio of the frequencies [Goldhirsh

and Vogel, 1989]. The results of Bundrock and Harvey [1988] indicate this scaling may

be extended to S-Band (e.g., 3 GHz).

3. Measurements made during a full blossom period in the summer and in the winter time

during which deciduous trees are devoid of leaves have demonstrated that in the 1%

to 30% percentage interval, approximately 80% of the signal attenuation is caused by

the wood part of the trees (branches and trunk).

4. Significant fade reductions (e.g., 8 dB at 60 degrees elevation at L-Band) may be

achieved by switching lanes.

5. Signal fading due to multipath is generally less than 3 dB for both mountain and

roadside tree environments for 90% of the driving distance. The dominant attenuation

is hence caused by shadowing of the line-of-sight path. These results presume an

azimuthal omni-directional antenna with a beamwidth in elevation over the interval

15% to 75%.

6. Simulations using real data show that separated antennas may lead to significant fade

reductions for diversity mode operations. For example, a 5 dB single terminal fade

may be reduced to 3 dB, for a 1 m separation employing diversity operation. Rapid

switching is implied (e.g., 10 milliseconds).

7. When the line-of-sight is completely blocked by continous obstacles such as mountains,

buildings, or overpasses, not enough power is contributed by multipath scattering to

enable communications through a satellite system with a commercially feasible fade

margin of 6 to 12 dB. For such a case LMSS is not functional.

8. The model development efforts and comparison of experimental results with model

results show:

- When the propagation path is unshadowed, Rician statistics apply most of the

time, although the K-factor (ratio of line-of-sight and multipath powers) cannot strictly

be assumed constant.

- When a single scatterer dominates, as might be the case with a utility pole, Rician

statistics are no longer applicable.

Geometrical analytic models involving single point scatterers give time series

fading results consistent with drive-by results associated with a single utility pole.
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- More accurate model descriptions of "undshadowed propagation" than those given

by existing Ricean multipath scatter models and geometric-analytic models are not

necessary in that fading due to multipath is less than 3 dB for 90% of the driving
distance.
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Handbooks of the NASA Propagation Program, Past History

and Thoughts to the Future

Ernest K. Smith

NASA Propagation Information Center

ECE Department

University of Colorado

In this contribution I would like to say something about the

history of handbooks in the NASA Propagation Program, review our

options, and report on a luncheon meeting at the University Club on

June 27, 1991.

1. The "handbooks" of the NASA Propagation Program were

initiated, I believe, by Dr. Louis J. lppolito when he was program

manager. The current "Ippolito" series has progressed through four

editions. I believe the first three were produced at ORI, Inc. under

contracts which Dr. lppolito managed. The third edition of this series

is:

A) NASA Reference Publication 1082(03). Propagation Handbook

for Satellite Systems Design A summary of Propagation

Impairments on 10 to 100 GHz Satellite Links with

Techniques for System Design, by Louis J. Ippolito, R.D. Kaul and

R.G. Wallace. June 1983 (468 pp).

The fourth edition was prepared by Dr. Ippolito personally

after retiring from NASA in December 1983 through a contract from

NASA/JPL to Westinghouse.

B) NASA Reference Publication 1082(04). Propagation Effects

Handbook for Satellite System Design A Summary of

Propagation Impairments to 10 to 100 GHz Satellite Links

with Techniques for System Design, by Louis J. Ippolito,

February 1989.

A second series of current handbooks was initiated by me

when I became JPL program manager in 1980 and interest in UHF

and L-band was beginning to surface. Warren Flock was spending a

year with me at JPL and took on the job of preparing a parallel

"handbook" for frequencies between 100 MHz and 10 GHz. This text

has now gone through two editions.

140



C) NASA Reference Publication 1108. Propagation Effects on

Satellite Systems at Frequencies Below 10 GHz A Handbook

for Satellite Systems Design by Warren L. Flock, December 1983

(420 pp).

D) NASA Reference Publication 1108(02). Propagation Effects on

Satellite Systems at Frequencies Below 10 GHz A Handbook

for Satellite Systems Design by Warren L. Flock, 1987 (502 pp).

Earlier "Handbooks" produced for the NASA Propagation

Program or its predecessors and referenced in the literature include:

E) R. Kaul, R. Wallace and G. Kinal. A Propagation Effects

Handbook for Satellite Systems Design, NASA Headquarters,

Washington, D.C., Rep. ORI TR 1679, Mar. 1980.

F) R. Kaul, D. Rogers and J. Bremer. A Compendium of Millimeter

Wave Propagation Studies Performed by NASA, ORI, TR 1278,

Nov. 1977.

G) R.K. Crane and D.W. Blood. Handbook for the Estimation of

Microwave Propagation Effects Link Calculations for

Earth-Space Paths, Doc. No. P 7376- TR1, ERT, Inc (Prepared for

NASA Goddard)June 1979.

A new series of "Handbooks" was initiated by Dr. Faramaz

Davarian who commissioned Julius Goldhirsh and Wolf Vogel to

undertake handbooks on propagation for the mobile services, the

first volume to be on the land mobile service. The first draft of this

text has been distributed for review.

The immediate questions, as I understand it are: (1) Should the

Flock and Ippolito series of handbooks be combined into one

handbook? (2) Should the MSS section in the Flock handbook be

removed and offered to the Goidhirsh-Vogel handbook'? (3) Should

the Goldhirsh-Vogel (G/V) handbook be called something else?

Definition of "Handbook": A manual; A concise reference book

covering a particular subject (Webster's New Collegiate Dictionary).
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2. There were three important contributions to the June 27

meeting. Faramaz Davarian's memo laid out the options as

A. Status quo including an LMSS Handbook.

B. Status quo except LMSS section is transferred from Flock to

Goldhirsh-Vogel (G/V).

C. The Ippolito handbook remains unchanged but Flock and

G/V are combined.

D. Ippolito and Flock are combined and the G/V series covers

all MSS.

John Kiebler's input memo pointed out:

A. That it is difficult to combine handbooks.

B. G/V is not yet comprehensive.

C. Suggests integrating G/V into Flock or else publishing it as

something other than a handbook.

Ernie Smith's contribution reviewed some texts called

"handbooks" and suggested some other titles. He also pointed out

that the Ippolito and Flock handbooks are written from two points of

view. Ippolito is more directed to the systems engineer; Flock is

more scholarly and gives the physical bases for model development.

There is a lot of common ground in the two handbooks; both treat

rain attenuation and depolarization, gaseous absorption, prediction

techniques, and link budgets. There is relatively more attention to

rain in the Ippolito handbook than in Flock. However, as would be

expected, there is extensive treatment of the ionosphere and surface

effects in Flock and not in Ippolito. There is also a difference in

style. Ippolito is more of an engineer's approach, Flock has much

more physics and is more academically oriented. As my

undergraduate degree was in physics I relate more readily to Flock,

but engineers may find the Ippolito approach more satisfying. There

is some rationale for these two approaches. In the NBS Central Radio

Propagation Laboratory (CRPL) the Radio Propagation Physics

Division was concerned with ionospheric propagation while the Radio

Propagation Engineering Division was concerned with tropospheric

propagation. The two handbooks can be combined but something

will be lost in the process.

Additionally, there is very little duplication of material

between the Flock Chapter 6: Propagation Effects on Mobile-Satellite

Systems, and the Goldhirsh/Vogel text; so the need to reduce

duplication there is minimal.
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3. At the luncheon meeting (attended by Davarian, Goldhirsh,

David Rogers, Smith, and Vogel) Goldhirsh proposed the title for the

G/V text: "Propagation Effects for Land Mobile Satellite Systems:

Experiment and Modeling Results." Goldhirsh also suggested a hard

cover for the volumes.

David Rogers, our advisory committee representative, made the

following points:

1. Ionosphere scintillation will be very important at L-band at

low latitudes and deserves mention in G/V.

2. The systems engineering approach is appropriate for the

NASA Handbook series they are the customers NASA is

trying to reach.

3. A combined handbook 100MHz -100 GHz is desirable. It

could be in two volumes.

The consensus, after discussion, was that of the cost of updating

vs. combining the existing handbooks should be investigated. If the

combining of the handbooks is possible then a good man willing to

dedicate the order of 1 or more man-years would need to be

identified.
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Database for Propagation Nodels

N94-169  9

_nil V. Kantak

Jot Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive

Pasadenae California 91109

1.0 Introductionz

A propagation researcher or a systems engineer who intends to use

the results of a propagation experiment is generally faced with
various database tasks such as the selection of the computer

software, the hardware, and the writing of the programs to pass the

data through the models of interest. This task is repeated every

time a new experiment is conducted or the same experiment is

carried out at a different location, generating different data.

Thus the users of this data have to spend a considerable portion of

their time learning how to implement the computer hardware and
software towards the desired end. This situation may be facilitated

considerably if an easily accessible propagation database is
created that has all the accepted (standardized) propagation

phenomena models approved by the propagation research community.

Also, the handling of data will become easier for the user.

Such a database construction can only stimulate the growth of the

propagation research if it is available to all the researchers, so
that the results of an experiment conducted by one researcher can

be examined independently by another, without different hardware

and software being used. The database may be made flexible so that
the researchers need not be confined only to the contents of the

database. Another way in which the database may help the

researchers is by the fact that they will not have to document the
software and hardware tools used in their research since the

propagation research community will know the database already. The
following sections show a possible database construction, as well

as properties of the database for the propagation research.

2.0 Objsctivss and Properties of the Databasoz

The proposed database will contain all the accepted propagation

phenomena models by the propagation research community. The
database will also contain some example data for each model in the

database, but it will not attempt to be an extensive database by

any means. This is because of the fact that the database is

intended to run on a personal computer which generally has memory
restrictions. Thus every user will have to use his own storage
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medium for storing his experimental data. The database will be

modular in form, i.e., the propagation models will be kept in

modules in the database and may be accessed easily by the user

without his having to know the internal working of the database.

The database will have enough bells and whistles to steer the user

away from making incorrect inputs, thereby avoiding the confusion

that results from the output of such a run of the database. The

database will have on-screen help for the user that will guide the

user step by step through the procedure necessary to run the

database, allowing even the novice user of the database to obtain

the same performance as the experienced user.

Many times the user only wants printouts of the models included and

the data that is present to be used with the models; hence,

printout either to a printer or to a file will be allowed for any

module of the database. The database will be flexible enough to

allow the users to change the default values of the models or

change the model itself (the formula), and to run the database with

either the data stored in the database or with their own data. The

output of the database will be in terms of graphs as well as

tables, depending on the model. The software selected for the

database will be such that the graphs resulting from the models

will be flexible, i.e., after creation of a graph, manipulation

will be allowed to fit it to their own requirements. The graphs

will be able to be printed out or stored for later use.

3.0 Database Hardware and Software:

For maximum use, the database will be designed to run on a personal

computer and not a work-station or a mainframe computer. Whether

the personal computer be an IBM PC or Apple Macintosh, the database

will work for it. A personal computer that has a clock speed of

16 MHz or more will be reasonable for this purpose. This does not

indicate that the slower computers will not run this database, only

that the slower-clock computers, such as 8-MHz speed, will take

more time to run the database request. It is recommended that the

computer have 4 MB of RAM so that the program can be properly

loaded and there is enough memory space for it to work. It is also

recommended that the PC should have a hard disk drive of at least

40 MB. To make the list of needed hardware complete, the setup

should also have a monitor and a laser printer. The monitor may be

a color monitor or just a monochrome monitor; it will not make any

difference in the working of the database software. The laser

printer is recommended for its clarity of printing and the control

it offers in fonts, etc. However, other printers may be used.

The selection of software necessary for the database falls into two

distinct categories: compiler-based software and spreadsheet-based

software. Each category can do the complete job; however, there are

advantages and disadvantages of each type of software. Microsoft's

Professional Basic 7.1 compiler and Microsoft's Excel spreadsheet
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were selected as possibilities for the database software. Following

is a discussion of advantages and disadvantages of these two

software.

Regardless of the PC selected, i.e., either the IBM PC or Apple,

Windows 3.0 software for the IBM PC will make it operate virtually

like the other. The Excel software is available for both types of

computers. The Excel spreadsheet will use macros to do all the

processing. The Excel macros have an impressive array of functions

for the processing, as well as on-screen help for the user along

with easy interactive input-output capability. It has 'message'

capability also, which can be used to guide or advise the user

through the steps necessary to execute the model. The Basic

compiler does not have easy on-screen help capability. This

capability may be created in Basic but only after extensive

programming. Another problem the Basic compiler has is that it

cannot use the 'mouse' to point and shoot when the program is in

execution mode. The mouse is used extensively in Excel and can also

be used for the input-output processing during interactive

procedures.

Since Excel is a spreadsheet, it is well suited for the plotting

with minimum efforts on the user's part. With the Basic compiler,

on the other hand, as though it has the plotting commands in it, it

is rather difficult to use these commands to produce a quality

plot. Excel's internal software produces excellent plots and also

allows the users to manipulate the plots after they are produced to

fit their requirements. The plot produced by the compiler cannot be

manipulated by the users and thus may fall short of what the users

desire in that plot in terms of the plot's presentability. A

similar situation is present as far as the database facility is

concerned. Excel, being a spreadsheet, is naturally suitable for

the database processing, with input-output in columns. The Basic

compiler does have the database capability but it falls short of

many desirable qualities the spreadsheet database has. It will take

a considerable amount of programming in Basic to make it equivalent

to the spreadsheet in terms of ease of use for the user.

The above discussion seems to be tilting towards selection of the

Excel spreadsheet for the database. However, one should be aware of

some disadvantages of the spreadsheet. As the programs become

larger in size, the database program is expected to become larger,

and the execution of the spreadsheet becomes slower than that of

the compiler program. Another disadvantage the spreadsheet has is

that the user needs the spreadsheet program as well as the

spreadsheet software to run it, whereas with the compiler the user

needs the executable file of the program only and does not need the

Basic software itself. This situation may change in the future.

Also, the spreadsheet macros are rather difficult to program as

compared to the Basic compiler programming, and their files input-

output processing is slow.
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The following table shows the advantages and disadvantages of the
Basic compiler and the spreadsheet.

MICROSOFT EXCEL SPREADSHEET

On-screen help is easy

Plots are easy to create

and manipulate

Database facility is
excellent

Tabular form of input and

output are natural

Plots and outputs are very
impressive

Execution is rather slow

when program size becomes

large

User needs the program as

well as the spreadsheet

It is difficult to program

and file input-output
is slow

i

MICROSOFT PROFESSIONAL BASIC

On-screen help is difficult

Plots are difficult to

create and manipulate

Database facility is present

but not easy to operate

Tabular form is not easy

to obtain for input or

output

Plots and outputs are not

impressive in general

Execution is fast

User needs only the
executable file and not

the compiler

It is easy to program and

file input-output is fast

The following figures show a sample of a working database. This is

only a sample; the actual database will have many other options.

Figure 1 shows the first window with all the options the database
may have; this is the main menu of the database. The window also

includes the instructions needed to select the desired option of

the options available to be executed. For this example the Land-

Mobile system propagation models option was selected. Figure 2

shows the sub-options available in the option selected in Figure I.
For this example, the probability distribution models were selected

from Figure 2. Figure 3 shows all available options under the sub-

option selected in Figure 2. Here, the simplified lognormal
shadowing model was selected. The result of that selection is shown

in Figure 4. This figure shows the model itself and the parameters

associated with it. Figure 5 shows the default parameter values and

the place for user inputs. In the same window, the possibilities of

plotting the default curve with the user's own curve and supplying
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the user's own data are provided. Once this step is completed, the

model is computed using the data selected and the graph is plotted

(Figure 6). Note that at this time, the user can use Excel's

graphics capabilities to manipulate the graph until it satisfies

any requirement the user may have. After completion of the

plotting, the next window (Figure 7) has the print and store

options for the plot as well as the database. Also in the same

window, the user may select to run the model again with a different

database or different parameters, go back to the main menu, or exit
the database.

4.0 Conclusionsz

After understanding the limitations of the spreadsheet and the

compiler, it seems imperative that the spreadsheet should be
selected as the software for the database. This conclusion is not

surprising because spreadsheets are naturally more suitable for the

database-type operations than the compiler-based software. If

desired, both database software may be produced, allowing the user
to select the software he desires.
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N94_ -O

A CCIR-BASED PREDICTION MODEL FOR EARTH-SPACE

PROPAGATION

Zengjun Zhang and Ernest K. Smith

University of Colorado at Boulder

1. BACKGROUND

At present there is no single "best way" to predict propagation

impairments to an Earth-Space path. However there is an internationally

accepted way i namely that given in the most recent version of CCIR

Report 564 of Study Group 5. This paper treats a computer code

conforming as far as possible to Report 564. It was prepared for an IBM

PS/2 using a 386 chip and for Macintosh SE or Mac II. It is designed to be

easy to write and read, easy to modify, fast, have strong graphic

capability, contain adequate functions, have dialog capability and windows

capability.

Computer languages considered included the following

• Turbo BASIC

• Turbo PASCAL

.FORTRAN

• SMALL TALK

,0-+

• MS SPREADSHEET

• MS Excel-Macro

• SIMSCRIPT II.5

.WINGZ

Microsoft Excel-Macro was chosen as the first phase simulation language

for the following Characteristics

• strong graphic capability

• about 400 math or control functions

• sophisticated coordinate systems

• window and dialog capability

• easy to customize

• enough resolution and colors for our use

• not too fast at the beginning, because of on-screen processing
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2. PROGRAM STRUCTURE

Shown in Figure 1 are the dialog boxes illustrating how the first part of

the program would be run. The second part consists of consolidating

gaseous attenuation and rain attenuation with the free-space value of the

carrier C; and brightness temperature with the noise temperature of the

receiving system, to obtain the overall system noise density X0 or N0 to

yield C/X0.

start

I
)

Enter the number you want

1. gaseous attenuation model
2. precipitation attenuation
3. noise temperature model
4. rain rate distribution model

I

I dialog boxes

Enter parameters (or default)

1. frequency
2. water vapor density
3. polarization type
4. elevation angle

Want to make any change ?
1. modify the chart ?
2. modify the model ?
3. print ?

, ,o,,,,

P

repeat

Figure ! Program Diagram
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3. METHOD AND RESULTS

(A) Rain Rate as a Function of percentage of year: CCIR Report

563 (1990) is used as the authority for rain rate. The formula used is
-ur

P(R>r) - a e r>2 mm/h (1)
b

r

where R is rain rate, r is a given rain-rate threshold, u is a parameter

depending on climate and geographical features, and

U RO.01
a = 10 -4 Rb.01 e

b = 8.22 (R0.01) -°'548

Figure 2 illustrates this relation applied to 4 CCIR regions (found in Report

563), and Figure 3 illustrates the goodness of fit of equation (1) with the

CCIR data in Report 563. As can be seen, beyond 2 mm/h the fit appears

very good.

(B) Attenuation due to Rain." CCIR Report 564 (1990) is used to

obtain rain attenuation. The specific attenuation Tr is obtained from

7r = _ (R0.01) dB/km (2)

where _ and a are tabulated values and are a function of frequency and drop

size distribution. The path attenuation A is then given by

A=TrLsr0.01 dB (3)

where Ls is the adjusted path length through rain, R0.01 is the rain rate in

mm/h for 0.01% of the time. Figure 4 illustrates these relations in a plot of

attenuation vs frequency for four different rain rates.

(C) Gaseous Attenuation. According to the CCIR Report 719

(1990) version, specific attenuation due to oxygen and water vapor are

determined as

4.81
T0= [7.19×10-3 6.09 -_ I fe×10-3 dB/km f<57 GHz

f2+0.227 (f-57)2+ 1.5 (4)

-7 0.265
T0= [3.79x10 f+

(f-63)2+ 1.59

0.028
+ ] (f+198)2x10 -3 dB/km 63_<f<350 GHz

(f-118)2+ 1.47 (5)
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_'w-- [0.05+0.0021 pw4
3.6

+ 10.6 + 8.9 .] fZpw 10-4
(f-22.2)2+8.5 (f-183.3)Z+ 9.0 (f-325.4)2+ 26.3

dB/km f<350 GHz (6)

where _'o and 7w represent specific attenuation by oxygen and water

vapor, f is frequency in GHz, and Pw is water vapor density. Total

attenuation Ag due to gaseous then is determined as

h|

 ,ohoe-7oo+  ,whw
Ag = dB

sin0
h,

 ,ohoe  ,whw
Ag- _-

g(ho) g(hw)

0

0>10

0

dB 0_10

(7)

(6)

Figure 5 illustrates attenuation due to the gaseous atmosphere at four

different elevation angles, and Figure 6 shows attenuation due to the

gaseous atmosphere at four different station heights.

D: Brightness Temperature (upward looking antenna)." The

general formula used for brightness temperature was based on the model

developed by Waters in 1976. Because it is quite complicated, we used a

simplified formula which was the combination of two models developed by

E. K. Smith (1982) and Waters (1974)

f0-A = . 'Yi d r --- 17o+7wl d r

_0

T b = T(r) _r) e-XCr)d r + T

fS r , ,
where q_(r) = _r)dr

urf

-'[,,o
e

(7)

(8)
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If T(r) is replaced by a mean path temperature Tm,

simplified as

Tb=Tm(1-e )

or Tb=Tm(1-10 [A(dB)/lOsinO]) 0>10 °

it can be

(9)

where A is the attenuation at zenith direction, Tb is brightness

temperature, 0 represents elevation angle, L is the loss factor, and

the optical depth.

"t is

Figure 7 illustrates the brightness temperature at four different

elevation angles, and Figure 8 is a comparison of computed results and

CCIR data at the conditions of water vapor density 7.5 mm/h and elevation

angle 30 degrees. As we can see, the fit is very good in lower frequency

range.
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The program takes about 2-5 minutes to run for each application,

depending on the parameters given. The program can be totally

customized or manually controlled. In the former case, the program can

open, run, and close automatically; the only thing needed to do is to input

your options and answer questions asked.

References:

I1] CCIR [1990] Recommendations and Reports of the 1990 Plenary

Assembly, Dusseldorf (taken from pink documents), Reports 563, 564,

719, 720, 721.

[2] Smith, E.K. [1982] "Centimeter and Millimeter Wave Attenuation and

Brightness Temperature due to Atmospheric Oxygen and Water

Vapor", Radio Science, vol.17, No.6, pp 1455-1464.

[3] Waters, J.W. [1976] "Absorption and Emission by Atmospheric Gases", in

Methods of Experimental Physics, vol. 12B, edited by M.L. Meeks,

Chapter 2.3, Academic Press, N.Y.

[41 Moupfouma F. [1985] "Model of Rainfall Rate Distribution for Radio

System Design", IEE Proceedings, Vo1.132, Pt. H, No 1.

[5] Moupfouma F. ]1987] "More about Rainfall Rates and Their Prediction

for Radio System Engineering", IEE Proceedings, Vo1.134, Pt. H, No 6.

172



Software for Propagation

by W. Vogel, U. of Texas, Austin

1. Choice of Hardware and Software Platform

2. Selection of Problems To Be Coded

3. Coding & Solicitation of Contributions

4. Testing & Documentation

5. Dissemination to Users

6. Technical Support

7. Revisions/Expansion

1. Hardware and $gftware Platform

• IBM/PC + Macintosh

• Spreadsheet:

• Math:

• Special Purpose:

• Language:

• Survey Users

• User Modifiable

1-2-3, EXCEL, QUATI'RO...

MATHCAD

EE-PAC

Quick, FORTRAN
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2. Problem Selection

• CCIR Greenbook

• NASA Handbook

• Books:

• Models

• Orbits

• Footprints

• Propagation Database

• Call for Contributions

P+B, Ippolito...

3. Coding & Solicitation of Contributions Standards

4, Testin_ & Documentation

Operation, Logical Errors, B-Testing

Easy To Use, Built-In Help, Example

User Knowledgeable

To Anybody

Mail, BBS
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6. Technical Support

BBS, FAX

o Revisions/Expansion

Useful Lifetime...

Enhance Functionality

Include New Developments

Advisory Panel
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N94-1

A Study of

Land Mobile Satellite Service Multipath Effects

Using SATLAB Software*

Richard L. Campbell

Department of Electrical Engineering

Michigan Technological University

Houghton, MI 49916

A software package is proposed that uses the known

properties of signals received in multipath environments

along with the mathematical relationships between signal

characteristics to explore the effects of antenna pattern,

vehicle velocity, shadowing of the direct wave, distributions

of scatterers around the moving vehicle and levels of

scattered signals on the received complex envelope, fade

rates and fade duration, Doppler spectrum, signal arrival

angle spectrum and spatial correlation. The data base may be
either actual measured received signals entered as ASCII flat

files, or data synthesized using a built in model. An

example illustrates the effect of using different antennas to

receive signals in the same environment.

INTRODUCTION

If an elevated CW transmitter illuminates a typical mobile

radio environment, with a vehicle moving past roadside trees

and other scatterers, the received signal will have fast

(multipath) and slow (shadow) fading, a Doppler spectrum

related to the vehicle velocity and the distribution of

signal arrival angles, and a spatial correlation. Each of

these signal characteristics is important to a different set

of engineers: the envelope fade rates are needed by system

engineers to determine reliability and fade margins; the fade
rates and Doppler spectrum are needed by the engineers who

design robust modulation and coding; the angular spectrum is

needed by the antenna engineers; and the spatial correlation

is needed to evaluate the effectiveness of space diversity

and adaptive arrays. All of these signal characteristics can
be determined from a record of the received complex envelope

as a function of time, as the receiver moves through the

multipath environment. Since each characteristic is obtained
from the same time record, all of the signal characteristics

are related. The Doppler spectrum is the Fourier transform

of the complex time record, the signal arrival angle spectrum

(obtained from the Doppler spectrum) is the Fourier transform

of the spatial correlation and the fast and slow fading

envelope is the envelope of the complex time record. If any

*Reprinted without oral presentation.
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characteristic of the receiver is changed, it will affect all
of the signal characteristics. For example: if the antenna
is changed from an omni directional to a gain antenna, the
distribution of signal arrival angles will change. This will
change the Doppler spectrum, which is the Fourier transform
of the received complex envelope. We can see that adding a
gain antenna to a system not only increases the signal level;
it also changes the fade statistics, the Doppler spread and
the spatial correlation.

The proposed software package uses the known characteristics
of received signals in multipath environments along with the
mathematical relationships between the signal characteristics
to allow the engineer to explore the effects of antenna
pattern, vehicle velocity, various amounts of shadowing of
the direct wave, distributions of scatterers around the
vehicle and levels of scattered signals on each of the
received signal characteristics. The actual time record of
the received signal may be either real data, as collected by
Vogel and Goldhirsh or Campbell, or synthesized data with the
same properties as the real data.

RECEIVED SIGNAL COMPLEXTIME RECORD

The received signal is the sum of the direct wave and all of
the scattered waves. The direct wave is attenuated by
shadowing on the direct path, and is received at a frequency
equal to the transmitted frequency plus or minus a Doppler
shift obtained from the vehicle speed and the angle between
vehicle velocity and the direct signal arrival angle. The
scattered signals arrive from angles all around the receiver
(Campbell 1989), so they are received at a spread of
frequencies between a maximum (vehicle moving directly toward
a scatterer) and minimum (vehicle moving directly away from a
scatterer). The total power in the scattered waves is about
17 dB below the unattenuated direct wave (Stutzman and Barts
1988, Campbell 1989).

One application of this program is to explore the effects of
different antennas and vehicle velocities on existing data
bases. For example, the Vogel and Goldhirsh data were
collected using crossed drooping dipole antennas. The fade
statistics would be different if other antennas had been
used. This program allows post processing of the Vogel and
Goldhirsh data to see what they would have obtained with a
different antenna, for example a 13 dB patch array.

Another application of this program is to explore the
characteristics of received signals in environments that have
not been measured. For example, in dense foliage, the direct
wave might be attenuated by an average of 17 dB. Then the
total signal is made up of equal parts, direct and scattered
waves. The fade statistics will be dominated by multipath
effects, and the signal arrival angle will be uniformly
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distributed around the vehicle. A feedback type antenna

aiming system would be lost in such an environment. The

benefit obtainable from various antenna systems, such as

gain, space diversity, and adaptive array, in this

environment would depend on the modulation and coding used in
the system.

To study signal environments that have not been measured, it
is necessary to synthesize data having the correct

properties. If the engineer specifies a carrier frequency,

vehicle speed and direction relative to the direct wave and

ratio of direct to total scattered wave power, the program

can generate an appropriate complex time record with the

properties of a signal received on an omni directional

antenna. Shadowing effects may be included by making the

ratio of direct to scattered wave power a function of time.

The data may be generated using either the simple model

developed by Campbell or a more correct scattering theory

model (Wang, 1991). Once the basic time record is generated,
it may be modified with different antenna patterns.

ANTENNA EFFECTS

The antenna system operates on the distribution of signal

arrival angles. Antenna effects may be studied by

multiplying the Doppler spectrum by the antenna pattern.

This is equivalent to a convolution of the complex time

record with the Fourier transform of the antenna pattern.

For example, the Fourier transform of an omni directional

antenna pattern is a delta function. Convolving a delta

function with the complex time record leaves it unchanged.

The Fourier transform of a narrow Gaussian beam antenna is a

wide Gaussian. Convolving a wide Gaussian with the complex

time record will tend to remove rapid fluctuations in the

complex time record. This agrees with our intuition that

narrow beam antennas may be used to reduce multipath effects.

To study the benefit of a narrow beam antenna, the antenna

must be aimed in the direction of the direct signal arrival.

Conversely, the effects of antenna aiming errors may be

studied by purposely introducing an offset in the antenna

pattern. The effect of an antenna aiming error is not only

to reduce the received signal strength, but also to decrease

the ratio of direct to scattered signal power available to

the receiver. When an antenna aiming error is present, the

signal strength goes down and the multipath effects go up.

The antenna patterns may be entered either as analytical

functions or as ASCII flat files. A catalog of useful

antenna patterns will be included in the software.

MODULATION AND CODING

In order to design robust modulation and coding for the
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transmitted signals, the fade rates, fade durations and

Doppler spectrum must be known. Each of these depends on the

ratio of direct to scattered signal level, the antenna

pattern, the vehicle velocity and direction and any antenna

aiming errors. If feedback is used to aim the antenna, it

may be useful to use different modulation on the antenna

aiming pilot than for error free speech and data. Entirely
different antenna systems may be optimum for intelligible
real time speech and maximum data transfer.

The input and output files of SATLAB will be ASCII flat files

and MATLAB .MAT files, allowing data transfer to and from

other programs and industry standard signal analyzers (the

latest Tektronix models communicate with MATLAB). This will

permit simulating the entire signal environment, including
the source, modulation and coding, multipath channel,

antennas and demodulation and decoding in the laboratory.

EXAMPLE

Figure 1 shows a typical Doppler spectrum that might have

been received by a 1.5 GHz receiver with an omni directional

antenna moving at highway speeds with roadside trees. The

vertical scale is in dB, with the receiver noise at -20 dB

and the direct signal received at + 40 dB. The direct signal
to noise ratio is about 60 dB, so receiver noise is not

significant in this example. The horizontal axis is the

frequency of the downconverted received signal in Hz. The

scattered signals are displayed as a uniform spectrum between
the minimum and maximum Doppler shifts.

Figure 2 shows the effect of receiving this same signal with
a dipole antenna. The nulls of the dipole are toward the

front and rear of the moving vehicle, so the minimum and

maximum Doppler shifted scattered signals are attenuated.

The dipole received spectrum is the solid line and the

original omni spectrum is the dotted line. Note that the
antenna has no effect on the receiver noise.

Figure 3 shows the effect of receiving this same signal on a

I0 dB gain array. Once again the original omni signal is

shown as a dotted line. The direct signal is now i0 dB

stronger than for the omni case, and the scattered signals at

arrival angles near the direct signal are also stronger,

but by less than I0 dB. The scattered signals at angles far
from the direct signal are greatly attenuated. Since the

receiver noise is not affected by the antenna, the direct
signal to noise ratio is now 70 dB.

Figure 4 shows the IF voltage as a function of time for each

of these three cases. The signal from the dipole is offset

by +2 and the signal from the omni is offset by -2. Note

that the signal from the l0 dB gain array is not only

stronger, it has smaller fluctuations than the signals from
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the other two antennas.

Figure 5 is the received signal envelope as a function of

time. Note the characteristic multipath rapid fading in the

signals received on the omni and dipole antennas. The signal

received on the I0 dB gain antenna is not only stronger than

the other signals, it also has much less fading.

This example clearly illustrates the effect of different

antenna patterns on the fade statistics of strong signals in

a multipath environment. By modifying the signal parameters

(signal to noise ratio, ratio of direct to scattered signals

etc.) other signal environments may be studied.

CONCLUSIONS

The proposed software package will be a useful tool for

studying mobile radio signals in environments with direct and

scattered waves. The interrelated effects of carrier

frequency, vehicle speed, antenna gain and antenna pattern,

antenna aiming errors, direct to scattered signal ratio,

shadowing and receiver noise are all included. By modifying

one parameter, the engineer may observe the effect on all the

other signal characteristics.

This program will either generate synthetic data using one of

several available models, or use actual received data files.

The engineer may modify measured data to see the effect of

different antennas.
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CLOSING REMARKS ON THE NASA PROPAGATION PROGRAM

David V. Rogers

Propagation Advisory Committee Representative
Communications Research Centre

Department of Communications, Ottawa, Canada

ABSTRACT--Several remarks on the current state of the NASA

Propagation Program are offered.

I. INTRODUCTION

The Science Review of the NASA Radio Propagation Program that

was held in September 1986 yielded 14 principal recommendations.

It is perhaps worthwhile to reflect on those recommendations now

in light of the current evolution of the program.

2. REMARKS

Almost five years have elapsed since the Science Review of

the NASA Propagation Program (Booker et al., 1987). In reviewing

the 14 Principal Recommendations of the report, one observes that

some of the recommendations have become obsolete and some have

been most successfully implemented; they seem to have been

accorded the respect that they deserved. The recommendations were

applied to focus the program, not hinder its flexible evolution.

This latter aspect appears to be quite important considering

the current broadbased coverage of propagation topics within the

program. While much of NASA's early propagation work concerned

higher frequencies, at the time of the science review the emphasis

was on low-frequency mobile-satellite effects related to the MSAT-

X program.

It is gratifying to observe that the current program covers a

variety of topics. K-band slant-path propagation with the Olympus

and ACTS satellites emphasizing requirements of emerging systems

(e.g., low-availability applications); EHF radiometry, including

cloud attenuation; continuing development of the NASA handbooks

based on theoretical and empirical inputs; and a look ahead to K-

band mobile propagation are being addressed. The attendance at

NAPEX XV is proof of the recommended national and international

cooperation. I am impressed with the current program.

i .
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INTRODUCTORY REMARKS FOR ACTS MINIWORKSHOP

JOHN W. KIEBLER

PROGRESS SINCE LASI WORKSHOP

- GRANT AWARDED TO VPI FOR DEVELOPMENT OF ACTS PROPAGATION TERMINAL IN

JANUARY

- PRELIMINARY DESIGN REVIEW CONDUCTED IN MAY

- NASA RESEARCH ANNOUNCEMENT IN NEAR FINAL FORM

- INVITES PROPOSALS TO INSTALL, OPERATE TERMINALS, PREPROCESS

DATA, PERFORM RESEARCH

- INVITES PROPOSALS FOR OTHER PROPAGATION RESEARCH

- DECISION SCHEDULED FOR SEPTEMBER ON WHETHER TO RELEASE

AS STAND ALONE NRA OR COMBINED WITH COMMUNICATIONS
EXPERIMENTS

ACTS CONFERENCE '91 AUGUST 29-30, 1991

- PROPAGATION SESSION

- BRING ACTS PROPAGAIION EXPERIMENTS PROGRAM INTO MAINLINE
ACTS ACTIVITIES

- EXPECT THAT ACTS PROPAGATION WORKSHOPS WLLL BE MERGED WITH
ACTS ANNUAL MEETING STARTING IN 1992

- STRONGLY ENCOURAGE.ALL OF OUR EXPERIMENTERS WHO ARE INTER-
ESTED IN ACTS PROPAGATION sTUDIES TO ATTEND

ISSUES TO BE RESOLVED WHICH NEED THE BENEFIT OF ADVICE FROM IHI5 GROUP

- WOULD LIKE TO SEE ACTS WORKSHOPS FOCUS ON PROBLEM SOLVING

AND PLANNING-GOOD OPPORTUNITY TO MAKE PROGRESS ON SOME
ISSUES TODAY

- NEED FOR WEATHER INSTRUMENTATION AND ITS AVAILABILITY

- RECOMMENDATIONS FOR DATA ACQUISITION DISPLAYS

- REQUIREMENTS FOR DATA PREPROCESSING
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20-GHs ACTS BEACON 8PECTRAL ANALYBZ8

D. Chakraborty and J. Gevargtz

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

_bstract

Beat-tone components which are expected to be generated in the 20-GHz

Advanced Communications Technology Satellite (ACTS) beacon transmitter when

modulated by a Phase Shift Keying (PSK) telemetry channel and a ranging tone

simultaneously have been analyzed using a computer simulation via a signal

processing work system. Baseband signal spectra have been plotted for all
combinations of telemetry and ranging formats. Locations and powers of the

unwanted components have been tabulated within ±100 kHz relative to the beacon

frequency location and the spectral component power recorded down to about 20

dB relative to the beacon power.

1. Xntroduction

The Advanced Communications Technology Satellite (ACTS) will have two

noncoherent beacons: one in the upllnk frequency (27.5-GHz) bands and the

other in the downlink frequency (20-GHz) bands. These two beacons will be

used for signal fade and radiometrlc measurements. The salient

characteristics of these two beacons are shown in Table I [i], where most of

these characteristics have been verified experimentally [2].

The 20-GHz beacon will be derived from a phase modulator where the

residual carrier power will act as the beacon source, and the sideband power

will carry telemetry data and ranging information. The telemetry and ranging

signal multiplexing process is shown in Figure I. The two 20-GHz beacons can

be transmitted simultaneously or in the vertical (V) or horizontal (H)

polarization modes; normally the V-Pol mode will be used but provisions are

made to transmit in both polarizations. The 20-GHz beacon transmitter block

diagram is shown in Figure 2 [2]. The input to the phase modulator is

composed of multiplexed Phase Shift Keying (PSK) telemetry data and a square-

wave ranging signal; the output will contain sidebands as well as beat tones

[3]. These beat frequencies will appear close to the beacon.

In a recent simulation study [4], significant spectral products close to

the ACTS downllnk beacon frequency were observed. These unwanted products may

give rise to false lock scenario in ACTS propagation receivers during wldeband

initial search mode or after a prolonged deep fade, unless an appropriate

software control algorithm is provided for the selection of the maximum signal

component in the presence of adjacent, unwanted spikes.

The purpose of this paper is to analyze and calculate the locations and

magnitudes of these unwanted products so that an appropriate software control

algorithm can be developed for incorporation with the ACTS propagation receive
terminals to avoid false locks.
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There are five cases of multiplexed modulating signals, as shown in

Table 2, where PSK telemetry (TIM) data are assumed to be present

(1024 blts/sec (bps) max).

We will first discuss the basic theory of beat-frequency generation,

manually solve a simple case to demonstrate the presence of these beat-

frequency spikes, and compare the results when using a computer simulation

model before simulating the cases described in Table 2.

•

or phase-modulated by two tones not harmonically related [3]. The

instantaneous angular frequency of a modulated carrier can be written as

where

Basic Theory

To illustrate the case, let us first consider a carrier being frequency-

where

wi(t) - wc + awi cos(wlt)+ m_,2 cos(wzt)

w c - 2.f c - carrier angular frequency

_01 - maximum frequency deviation due to first modulating tone

_I - 2zfl - angular frequency of first modulating signal

_2 - maximum frequency deviation due to second modulating tone

_2 " 2zf2 - angular frequency of the second modulating tone

81 - (_I/_i) - modulation index due to first modulating signal

82 - (Aw2/_2) - modulation index due to second modulating signal

From quasl-statlonary approximation, we know that instantaneous angular
frequency

_i - --dr(phase) or phase - _i dt

and hence phase and frequency modulation analysis differs only by a
mathematical transformation.

The generalized slngle-tone-modulated FM signal can be written as

e(t) - A c _ Jk(8) sin (_c+ k_l)t (2)

k_-_

A - unmodulated carrier amplitude
c

(i)



ak(#) - Bessel function of first kind, order k, and argument #

(modulation index)

k - 0, ±I, ±2, ±3,...

Therefore,

Modulated carrier power - AcJ (#)] 2

Carrier power relative to unmodulated carrier power

Similarly,

Relative power due to first sideband

Relative power due to second sideband

and so on.

Jl #)]

I

J2 (#)]

Jo(#)]

The two-tone, non-harmonlcally related, modulated signal becomes

e(t) - A exp j(Wct + E1 sin _i t + #2 sin _2 t)C

-Ac Z Jn(#l ) exp(jn_It) x Jm(#2 ) exp(jmm2t

n=.oo m---_

exp(j_ t) (3)

In a similar way, it can be shown that when the carrier is modulated by non-

harmonically related N-tone, i, 2 ..... N, with angular frequencies _i, _2 .....

and modulation indices #I, #2 ..... #N, the instantaneous angular frequency
becomes

where

_i (t) = _c + A_ic°s _i t + A_2c°s _2 t + "''+ A_NC°S _Nt

E1 " (A_I/_I)' #2 -(A_2/_2) ..... #N - (A_N/_N)"

(4)
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The modulated signal becomes

[

e(t) - A ]_ Jn 81) exp(Jnl_it)

c
nl--_

[:
x |2:

nN__®L
exp(_ct) (5)

As an illustration, we will use Equation (3) to manually calculate the

beacon spectral components as applicable to Case 2 discussed in Table 2,

assuming a cw tone containing the PSK telemetry channel power and a ranging cw

tone at 27.7 kHz. Table 3 presents the components that are produced at the

output of the phase modulator for this special case.

It should be noted that with two-tone modulation, power of the spectral

components is reduced when compared to a slngle-tone modulation case with the

same modulation index. This is due to the fact that the power of each

component is determined by the product of two Bessel functions. For example,

with a single-tone modulation index of i.i, Jo(l.l) - 0.7196, resulting in a

modulated carrier power of -2.8 dB relative to the unmodulated carrier power.

With two-tone modulation, the modulation index should be chosen such that the

modulated carrier power (beacon power) is the same as in the case of single-

tone modulation. This can be achieved by choosing 81 - 8z - 0.79 and hence

Jo(81) - Jo(Sz) " 0.85, resulting in a carrier (beacon power) -2.8 dB below

unmodulated carrier power, and the first sldeband becomes [Ji(81) Jo(82)] 2 -

[0.3650 x 0.8500] 2 - -10.2 dB relative to the unmodulated carrier power.

We will now calculate the beacon spectra for the simplified Case 2 with

the following assumptions:

Beacon center frequency reference 0

Relative location (fl) of ranging tone

with respect to the beacon

27.7 kHz

Relative location (f2) of PSK telemetry

channel center frequency with respect
to the beacon 64 kHz

Equal modulation indices (81 - 82) 0.79

Analysis bandwidth ±I00 kHz

PSK subcarrier simulated by a cw tone

The calculated spectral components for the above parameters are shown in

Table 4. Furthermore, Table 4 also illustrates the results obtained using the

communication system simulator [5], for validating the simulator model.
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The last two columns in Table 4 show the comparison of the exact calculations

and computer simulation results of the trial solution under consideration.

The Fast Fourier Transform (FFT) process is used in the simulation with finite

sampling for the spectral analysis. As a result, FFT points do not always

fall on the spectral peaks, and from Table 4, it is also noted that the exact

values and the computer simulation results are very close.

In summary, the simulation method yields satisfactory results. All the
cases mentioned in Table 2 will now be examined using the computer simulation

via a Signal Processing Worksystem (SPW) [5].

3. Computer Simulation Method and Results

The spectral analysis for the ACTS signal formats of Table 2 is

performed using the SPW. The SPW is used to model a signal synthesizer that

generates signals with specified parameters and modulation formats. Without

any loss of generality, the simulation and modeling of the signal synthesizer

is performed at baseband since this requires a lower sampling frequency

compared to the simulation at the beacon center frequency. Figure 3

illustrates the block diagram of the implemented signal synthesizer. It

consists of two major blocks for generating ranging tone and a data component.

In Figure 3, the ranging or the placeholder tone is generated using two

function generators that synthesize the ranging center frequency and the

ranging subcarrler frequency. The data component is synthesized using a

function generator for the data center frequency and a random data generator

for synthesizing the NRZ data. The parameters for the function and data

generators are summarized in the parameter table provided in Figure 3. The

ranging and the data signal components are then combined to yield

81R(t) sin (%t) + _z Sd(t) sin (_2t)

whe re

R(t) m ranging signal

Sd(t ) m NRZ random data sequence

_i m ranging signal center frequency

_2 m data component center frequency

81 m ranging modulation index

82 m data component modulation index

The combined signal is then followed by the phase modulator, resulting in a

complex baseband signal.

Figure 4 illustrates the functional block diagram of the system. The

parameters presented in this figure correspond to Case 2 of Table 2. The

implemented models using SPW are digital; therefore, the sampling frequency

for the system is selected to meet the Nyqulst criterion [6] for the highest

frequency component in the analysis bandwidth (i00 kHz). Furthermore, the

simulation period is chosen so that a minimum of I00 data symbols is

simulated.
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The synthesizer described above is used for analyzing the spectral

properties of the ACTS signal formats at a sampling frequency of 200 kHz with

a simulation period of 20,000 points and an FFT length of 32,768 points. The

results of the FFT analysis are presented in Figures 5, 6, 7, 8, and 9 for

Cases I, 2, 3a, 3b, and 3c, respectively. Each figure also illustrates a

summary of the signal parameters and the signal characteristics. Presented in

these figures also are the relative frequency and the peak power ratio of the

spectral components down to about 20 dB with respect to the beacon power.

The results of the spectral analysis are directly dependent on the

modulation index. In this article, a modulation index of 0.79 was used for

both the ranging and the data components. The results presented here were

compared to the experimental results shown in [7], for Cases I and 2. The

comparison demonstrated a good match between the predicted simulation results

and the measured experimental results.

4. Conclusions

The ACTS's downlink beacon frequency (20-GHz) spectral analysis has been

carried out, and the baseband spectra have been plotted to identify locations

and powers of the unwanted components relative to the location and power of

the beacon.

Results obtained will help ACTS propagation receive terminal designers

and experimenters know a priori the locations of these unwanted spikes so that

appropriate measures can be taken to avoid a false lock while trying to track

the beacon during initial search or acquisition after a prolonged deep fade.
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Table I. ACTS Beacon Characteristics

Parameters 27.5-GHz Beacon 20-OHz Beacon

No. of beacons

Frequency/polarizatlon

Function

Modulation

Nominal RF output (dBm)

Operating temperature

(°C)

Frequency stability

Output power stability

Phase noise

1

27.505 GHz

±0.5 MHz (V)

Fade measurement

None

20.0

-i0 to 55

±I0 PPM over 2 years at

constant temperature

±1.5 PPM over 24 hours for

-10"C to 55°C

±I.0 dB over 24 hours

±2.09 dB over full mission

-49 dBC/Hz @ 50 Hz

-80 dBC @ 3000 Hz

2

20.185 GHz

±0.5 MHz (V)
20.195 GHz

±0.5 MHz (H)

Telemetry/fade
measurements

Yes (FM & PCM)

23

-i0 to +55

-51 dBC/Hz @ 50 Hz

-92 dBC/Hz @ 19 kHz
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Case

Table 2. Multiplexed Modulatin_ Signal Confi_uration

Rel Frequencies* Ranging Tone

Combination (kHz) Modulation

i

2

3a

3b

3c

PSK TLM/placeholder

PSK TLM/ranging

PSK TLM/ranging

PSK TIM/ranging

PSK TIM/ranging

64/32

64/27.777

64/19

64/19

64/19

Square wave

35.4 Hz (sq. wave)

283.4 Hz (sq. wave)

3968.2 Hz (sq. wave)

*Relative to beacon frequency.

Table 3. Spectral Components With Two-Tone

Component Spectral Power Relative Power*

2 I

Carrier [Jo(_l ) Jo(_2 ) A c] [Jo(_l ) jo(_2)]2

Sidebands due to Wl [Jn(_l ) Jo(_2 ) A c]

2 I

[Jn(_l ) Jo(_2 )]

Sidebands due to _2 [Jm(_2 ) Jo(_l ) A c]

2 i

[Jm(_2 ) Jo(_l )]

Beat frequencies at

± n_ I ± m_ 2c

[Jn(_l ) Jm(_2 ) A c]

2 I

[Jn(_l ) Jm(_2 )]

2

*Relative to unmodulated carrier power [Ac]
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Table 4. 20-GHz Beacon Spectral Power (Trial Solution)

Coe13onents

Carrier (unmodutated)

Beacon (modutated)

1st S/B due u1

2nd S/B due _1

3rd S/B due _1

1st S/B due "2

Beat Frequencies

OZnulzmu 2

n=l, me1

n=-l, m=-I

n=l, me-1

n=-l, me1

n=2, me-1

n=2, me-2

n=-2, me-1

n=3o me-1

n=3o m=-2

n=-3, m=l

n=-3, me2

Location

(kHz)

±27.7

±55.4

±83.1

,(>4

±91.7

T36.3

[A¢] 2

Ao2[Jo(B1 )

A¢2[JI(B1 )

A¢2[J2(B1 )

Ac2[J3(B1 )

Ac2[JI(B2 )

Ac2[Jl(81 )

Ac2[JI(BI )

Ao2[J2(B1 )

Ac2 [J2 ( 82 )

Ac2[J(_2)(61

Ac2[J3(B1 )

Ac2[J3(B1 )

A¢2 [J(.3) (Sl

At2 [J(.3)(B1

Spectrat Power (dB)

ReLative to [Ac] 2

jo (82)] 2

Jo(S2)] 2

Jo(S2)] 2

Jo(82)] 2

jo(S 1 )]2

J1(62)] 2

0

-2.8

-10.2

-24

-41.5

-10.2

-17.5

-17.5

-31.4

-45.2

-31.4

-48.9

-62.7

-68.9

-62.7

Power Retetive

to the Beacon (dS)

Nanuat

CaLcuLations

0

-7.4

-21.2

-38.7

-7.4

-14.7

-14.7

-8.6

-72.6

8.6

19.1

-44.9

-19.1

44.9

J(.1)(S2)] 2

J(.1)CB2)] 2

2
J(.2)(B2 )]

2
) JI(B2)]

J(.1)(82)] 2

J(.2)(B2)] 2

) Jl(S2)] 2

) J2(S2)] 2

-28.6

-42.4

-28.6

-46.1

-59.9

46.1

-59.9

S|mutation

0

-7.3

-21.2

-38.8

-7.6

-15.0

-14.9

-28.0

-42.2

-28.9

-46.7

-59.7

-46.6

- 59.1
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RANGING
TONE

INPUT
FILTER

&
LIMITER

_FL_
RANGING

---_R TONE
ANGING

RELAY

10K 20K I

BI-PHA,C ;E
DATA

VCO

UNMODULATED,
32 kHz

(PLACEHOLDER)

64-
kHz
PCM

ANALOG _ MULTIPLEXED

MUX _ SIGNAL

Figure 1. ACTS Telemetry Subcarrier Generation
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ACTS SIGNAL

SYNTHESIZER

SIGNAL
SPECIFICATION

OOT OTII--.;STORAGE

FAST FOURIER
TRANSFORM

ANALYSIS

Parameters for Case 2

Sampling frequency = 200 kHz

f l = 27.777 kHz (square wave, no subcarrier)

Data Specification

Fsub 2 = 64.0 kHz (subcarrier frequency)

Rd = 1024 bps (data rate)

131 = 132= 0.79 (modulation index)

Simulation length = 20,000 points

FFT length = 32,768 points
J

Figure 4. Simulation Block Diagram
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BEACON PLACEHOLDER (cw)

II III
32 64

RELATIVE FREQUENCY (kHz)

Siqnal ChpractQristics. Case I of Table 2

f l = 32 kHz (cw placeholder)

f2 = 64 kHz (PSK carrier)

Rd = 1024 bps (PSK data rate)

131 = 132= 0.79

PSK-TLM (1024 bps)

Relative Frequency

With Respect to the Beacon (kHz)

32.00073

64.00146

0.0 (beacon)
-64.08691

-32.00073

Attenuation

With Respect to the Beacon (dB)

-7.49

-19.9

0.0 (beacon)
-20.3

-7.38

LLrn
LL'I_

ND
--JI-
<--
_z

z _

t iiiiii!iiiiiiiiiiiiiiilJiiiiiiiillIiiiiiiiiiiil/ill

-50 0 50

RELATIVE FREQUENCY (kHz)

100

Figure 5. Baseband Spectral Characteristics of Case 1
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BEACON RANGING TONE (SQUARE WAVE)

I II
27.777 64

RELATIVE FREQUENCY (kHz)

PSK-TLM (1024 bps)

Sianal Characteristics, Case 2 of Table 2

f l = 27.777 kHz (square wave)

f2 = 64 kHz (PSK carrier)

Rd = 1024 bps (PSK data rate)

91 = _2 = 0.79

Relative Frequency

With Respect to the Beacon (kHz)

± 27.777

±36.13281

+64.08691

"91.86401

0.0 (beacon)

Attenuation

With Respect to the Beacon (dB)

-10.0
-25.0

-15.7

-24.7

0.0 (beacon)

0

-10 : ..........................................................................'

- -20

-30
N

--?0

-100 -50 0 50 100

RELATIVE FREQUENCY (kHz)

Figure 6. Baseband Spectral Characteristics of Case 2
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BEACON

I
RANGING TONE

19 64

RELATIVE FREQUENCY (kHz)

Signal Characteristics. Case 3a of Table 2

PSK-TLM (1024 bps)

f l = 19.0 kHz (ranging subcarrier modulated by 35.4-Hz square wave)

f2 = 64 kHz (PSK carrier)

Rd = 1024 bps (PSK data rate)

131 = [32 = 0.79

Relative Frequency

With Respect to the Beacon (kHz)

±19.03687

±38.00049

±64.08691

0.0 (beacon)

Attenuation

With Respect to the Beacon (dB)

-8.33

-25.5

-15.73

0.0 (beacon)

............................ i ........................................................ : ............................

0

-1o...............................................................................!............................:-20 .......................... !, ................................................. _......................... ".

W_ -30 ......................,....................................................................
N

- 7 0

-100 -50 0 50 100

RELATIVE FREQUENCY (kHz)

Figure 7. Baseband Spectral Characteristics of Case 3a
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BEACON RANGING TONE

I I II1
19 64

RELATIVE FREQUENCY (kHz)

_;i_onal Characteristics. C_se 3b of Table 2

PSK-TLM (1024 bps)

fl = 19.0 kHz (ranging subcarrier modulated by 283.4-Hz square wave)

f2 = 64 kHz (PSK carrier)

Rd = 1024 bps (PSK data rate)

91 = 92 = 0.79

Relative Frequency

With Respect to the Beacon (kHz)

±18.71948
±19.28101

±38.00049

±64.08691

0.0 (beacon)

Attenuation

With Respect to the Beacon (dB)

-7.39

-8.90

-15.9

-17.9

0.0 (beacon)

0

_" --- -10

u.."_D
--- -20

DW
uJa -30
N_m
"_ _- -'10

_z
rr(.9 -50
O <
Z _ -GO

-?0

-100 -50 0 50

RELATIVE FREQUENCY (kHz)

100

Figure 8. Baseband Spectral Characteristics of Case 3b
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BEACON PSK-TLM (1024 bps)RANGING TONE

I I
19 64

RELATIVE FREQUENCY (kHz)

Signal Characteristics. Case 3c of Table 2

f l = 19.0 kHz (ranging subcarrier modulated by 3968-Hz square wave)

f2 = 64 kHz (PSK carrier)

R d = 1024 bps (PSK data rate)

131 = 132= 0.79

Relative Frequency

With Respect to the Beacon (kHz)

+ 7.09229

± 15.03296

±64.0869

0.0 (beacon)

Attenuation

With Respect to the Beacon (dB)

-18.6

-7.6

-15.8

0.0 (beacon)

-10 ............ _..................................................... i ............................i

u_ -20

N

-/0

-100 -50 0 50 100

RELATIVE FREQUENCY (kHz)

Figure 9. Baseband Spectral Characteristics of Case 3c
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GEAstroSpace

ACTS

One of the most significant communi-
cations satellite programs for the future
of the industry is the Advanced Com-
munications Technology Satellite
(ACTS).

For up to four years, beginning in
1992, ACTS will operate as an orbiting
testbed of future communications

technologies. ACTS is pioneering
such technologies as multiple, hopping
spot beams; high-speed, digital on-
board baseband processing and
switching; and adaptive rain-fade
compensation techniques. ACTS will
also open up a new portion of the RF

spectrum for U.S. communications
satellite use, since its uplink and

downlink frequencies are at Ka-band.
GE ._tro Space, under contract to

NASA Lewis Resarch Center, is provid-

ing the ACTS satellite. An extension of
our well-proven Satcom bus, the ACTS
design incorporates the reliability, and
performance necessary for such an
experimental mission. Development
of the ACTS payload has been tailored
to the mission objective of creating a
mature, space-qualified base of tech-
nology from which industry, can draw
new communications capability. The
antenna, switching, and other tech-
nologies incorporated in ACTS have
been selected to support the product
and technology development activi-
ties of a broad consortium of private

industr}', government agencies and
university users.

The 1992 launch and subsequent

operation of ACTS will provide the
United States with the protowpe for

the next generation of commercial
communications satellites.

Demonstrated Excellence in Space
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ACTS
Specifications

Customer ............ NASA Lewis Research Center

Type ................ 3-Axis Stabilized Communications

Technology Satellite

Application ........... Testbed of New Technology

Applications Available to U.S.

Experimenters Free of Charge
Launch Vehicle ........ STS/TOS

Orbit Position ......... Geosynchronous, Equatorial,
100 ° West

Design Life ........... 4 Years

Communications Payload

Frequency ............ 3 Ka-Band Channels

Bandwidth ............ 900 MHz Each Channel, 2.7 GHz
Total

RF Power ............ 46 Watts/Channel

Redundancy .......... I Standby Channel (4 For 3

Redundancy)

Coverage ............. Two Contiguous Sectors in North-
eastern U.S. Plus Sixteen Isolated

Spot Beams Covering Selected U.S.
Locations. Also Full Visible Earth

Coverage Via Mechanically-Steerable

Spot Beam
Receive Antenna ....... 2.2m Dish and lm Steerable

Transmit Antenna ...... 3.3m Dish and lm Steerable

EIRP ................ Isolated Spot Beams: 60 dBW

Con tiguous Sectors: 59 dBW
Steerable Beam: 53 dBW

Receiver Noise Figure .. 3.4 dB (HEMT Front-End)

On-Board Switching .... High Speed Programmable 3 x 3

Switch Matrix to Provide Three Input
and Three Output High Burst Rate
(HBR) Channels with 900 MHz

Bandwidth. Baseband Processor

Provides Demodulation, Storage and
Remodulation of Low Burst Rate

(LBR) Data. Two 110 Mbps TDMA/

DAMA Data Streams Assignable in
Increments of 64 Kbits.

Fade Beacons ......... Stable Signals Radiated from Satellite

in the Uplink (30 GHz) and

Downlink (20 GHt) Frequency Bands
to Permit l.ink Fade Measurements

Fade Compensation,

HBR ................. Power Control on Uplink as

Indicated by Monitoring Fade

Beacon at Uplink Frequency. Ig dB

Design Margin on t!plink arid 8 dB
Margin on Downlink

Fade Compensation,
LBR ................. Combination of Convolutional

Coding. Data Rate Reduction and

Transmitter Margin. 15 dB Design

Margin on Uplink and 6 dB Margin
on Downlink

Electrical Power Distribution

Solar Array Output ..... 1418 Watts (4 Years)

Battery System ........ 2 NiCd Batteries of 19 AH Each. No

Payload Operation During Eclipse

Power Bus ............ 35.5 (-+0.5) Volts with Full Array
Illumination

Propulsion and Orbit Control

Design ............... Blowdown Hydrazine System with
Redundant Thrusters and Four Tanks

Propellant ............ 550 lbs

Thrusters ............ 16 (0.2.0.5, and 1.0 lbf)

Stationkeeping ........ _+0.05 °

Structure and Thermal

Structure ............. Length: 80"; Width: 84": Depth: 75"

Solar Array ........... With Yoke, 46.9' Tip-to-Tip

Antenna Assembly ...... Height: 116" Above Antenna Panel;

Width: 29.9' Deployed
Thermal Control ....... Passive Temperature Control: Blankets

and OSR; Active Temperature
Con trol: Solid State Con trollers and

Heaters

Attitude Control

Transfer Orbit Control .. Autonomous Nutation Control During

Spin. Initial Pointing Provided by TOS

stage
On-Orbit Control ...... 3-Axis Stabili_ed via Earth and Sun

Sensor and Momentum Wheel.

Autotrack Ref. Used During Commu-

nications Experiment Periods

Pointing Accuracy ...... 0.025 ° Pitch and Roll, 0.15 ° '_hw Using
Autotrack. 0.1 o Pitch and Roll, 0.25 °

Yaw Using Earth Sensor.
Offset Pointing Control . _+rio Pitch, _+2° Roll

Command, Ranging and Telemetry

Command Frequency ... Ka-Band: C-Band Backup and Transfer
Orbit

Command Rate ........ 100 pps FSK fi)r Bus Functions 5000

pps SGI.S for Payload

Command Capacity .... 379 l.ow Rate Discretes; 3 Serial l+ow

Rate Data Streams: 256 High Rate

Discretes: 3 Serial High Rate Data
Streams

Telemetry Frequency ... Ka-Band; ()-Band Backup and Transfer
Orbit

Telemetry Format ...... 8 Bits/Word; 2.56 Words/Minor

Frame; 25 Minor Frames/Major

Frame; 1024 bps

Telemetry Capacity ..... 312 Bilevel Words; 364 Analog Words:

6 Serial Words; Dwell Capabili_ oil
Any Analog, Bilevel or Serial Word

Tracking Frequency .... Ka-Band: C-Ba,ld Backup and Transfer
Orbit

Tracking Tones ........ 4, from 35.4 H_' to 27.777 kHz

GEAstro Space

P O Box SO0
Pt_ncRtonNJ 085430800 USA

.........................................................262



ACTS PROTOTYPE PROPAGATION TERMINAL UPDATE

Warren Stutzman

Virginia Polytechnic Institute & State University
Satellite Communications Group

Bradley Department of Electrical Engineering

Blacksburg, Virginia 24061-0111

Abstract - Virginia Tech is designing and constructing a prototype

ACTS propagation terminal. The design phase is complete and

construction will begin soon. This paper reports on the specifics

of the terminal design.

The terminals will use a single antenna with frequency

separation followed by separate 20 GHz and 27.5 GHz receivers. Co-

polarized attenuation and scintillations at these frequencies are
to be measured. There are provisions for a field change from 20V

to 20H reception if the spacecraft transmission frequency changes

in the 20 GHz band. Radiometers are included to remove baseline

fluctuations.

1. Introduction

The 20/30 GHz satellite communications band offers the

possibility of very small aperture terminal (VSAT) use. However,

systems must be designed carefully to mitigate the impact of rain

and scintillation effects on communications. The Advanced

Communication Technology Satellite (ACTS) offers a platform to

perform experimental studies for accurate investigation of

propagation effects on 20/30 GHz satellite communications. The

ACTS systems has, in addition to sophisticated 20/30 GHz

communications packages, 20/30 GHz propagation signals.

NASA intends to support eight propagation experiments across

the U.S. A common hardware and software set that is properly

designed and constructed will increase performance and reduce cost.

Virginia Tech is charged with the development of the prototype of

the ACTS Propagation Terminals (APT). This paper reports on the

prototype APT development program.

The OLYMPUS experiment at Virginia Tech offered an excellent

test bed for many of the systems to be used in the APT. The

OLYMPUS experiment program has receivers at all three beacon

frequencies (12.5, 20, and 30 GHz) and a second 20 GHz diversity

terminal spaced from 25 to 50 m away from the fixed 20 GHz

receiver. Each receiving terminal has a radiometer used to set the

absolute beacon level which is subject to spacecraft-induced

fluctuations. The total power type radiometer shares the antenna

and RF section with the beacon channel.
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2. Terminal Overview

The simple combined total power radiometer and beacon receiver

proved to be extremely accurate in the OLYMPUS program. The ACTS

RF system differs from that used in OLYMPUS. A complete RF

downconverter block replaces discrete components. This should

shorten the development phase and greatly reduce time of

construction of subsequent production terminals. The IF

(Intermediate Frequency) and DACS (Data Acquisition and Control

System) subsystems are very similar to those used in the OLYMPUS

project. The ACTS digital receiver is totally different from the

analog FLL receiver used in OLYMPUS, which required a long time to

develop and is rather complex.

The features of the APT are summarized in Table i. The

prototype design was guided by the subsequent production phase.

Cost and reliability considerations for future production terminals

weighed heavily on many decisions.

The APT consists of several systems for beacon and radiometric

measurements at 20 GHz and 27.5 GHz. The block diagram of the

receive terminal is shown in Figure i.

A single conversion RF system was selected giving direct

downconversion from the beacon frequencies to the 70 MHz IF. A

second conversion at IF to 10.7 MHz follows which is the input

frequency to the digital receiver. This design avoids an RF filter

(with its loss and cost). This is the case because radiometer

images are only 140 MHz apart (at RF) so they are seeing about the

same scene (water vapor effects are not much different 140 MHz

apart). If a double conversion receiver with about a 1 GHz IF were

used, there would be 2 GHz separation at RF for the radiometer and

its image. Also, the proposed design has the benefit of doubling

the noise in the radiometer. The power budgets for both systems are

summarized in Table 2. The operation of each system and its role

in the measurements are briefly described in the next section.

3. APT SUBSYSTEMS

3.1 The RF System

The RF system is shown in Figure 2. The signals at both

frequencies are received by an offset parabolic reflector antenna

equipped with a dual polarized feed. The primary spacecraft

operating mode is 20.195 and 27.505 GHz, both vertically polarized.

As a secondary mode 20.185 GHz would be the 20 GHz signal. This is

horizontally polarized. To change the receiver over to operate in

this mode two pieces of waveguide hardware would be added as

indicated schematically in Figure 2. Vertically polarized signals

are separated in the diplexer. Each signal (20 and 27.5) then

passes through a waveguide switch, a directional coupler, and a

downconverter block. The waveguide switch allows for the injection

of a calibration signal in the beacon path, the directional coupler

facilitates the injection of excess noise for the purpose of
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Table i. Prototype Terminal Features

RF

1.2 meter offset reflector

LNAs - included

Calibration methods:

Port available for direct RF injection

Remotely controllable IF attenuator

Radiometer

Type: Total power
Bandwidth: 30 MHz (image adds another 30 MHz)

Detectable temperature: ± IK

Calibration methods: noise diode and ambient load

LOs

IF

First LO type: Crystal controlled multiplier chain

Provisions for changing between 20V and 20H frequencies:

second LO crystal

Input frequency: 70 MHz (beacon and radiometer)

Output frequency: 10.7 MHz (beacon)

Digital Receiver

Input: 10.7 MHz

A/D precision: I0 bit

Output: Beacon power in dB/100s

Occasional spectra

Frequency drift tracking: ± 140 kHz
Bandwidth: 15 Hz or narrower pending S/C information

Resolution: 0.i dB, 0.5 Hz

Accuracy: 0.i dB, 0.25 Hz

Range of C/N in 15 Hz for satisfactory operation:

38 dB to 3 dB

Reacquire time from deep (short) fades: under 5 s

Acquisition time from cold start in clear air: under 1 s

Data Collection

PC/AT based

Sample rate: 2 Hz

Data storage: 150 Mb tape (2.6 Mb/day of data)

Weather ports: pressure, humidity, wind speed, wind

direction, two rain gauges

Modem: 2400 baud

No downtime to store data to tape

WWV-based clock system

System monitors: power failure, receiver lock, PLO, outside

temperature, RF encl. temperature, IF encl. temperature,

spare
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Table 2. Power Budget Summary

Frequency

EIRP toward Blacksburg

(* including modulation loss)

Path loss

Clear sky loss

Antenna gain (1.22 m)

Losses

Converter gain

Converter NF

C/N in 15 Hz

20.2 GHz

17.5 dBW*

27.5 GHz

16.5 dBW

212.1 dB 214.7 dB

0.9 dB 0.7 dB

46.4 dB 49.0 dB

1.6 dB 1.9 dB

21.0 dB 21.0 dB

7.0 dB 7.0 dB

34.5 dB 33.5 dB

radiometric calibration, and the downconverter block changes the RF

signal to an IF frequency of 70 MHz. The signals are passed to the

IF system for further processing.

Analysis of spurious frequencies was performed and no problems

were revealed.

Note that an RF Downconverter Block is used. Although

slightly more expensive in terms of parts cost over the original

discrete component unit, this approach offers several advantages.

The block contains low-noise amplification, thus reducing the noise

temperature. The unit is very compact, reducing space problems.

The RF enclosure should house all temperature critical

components, thus necessitating only one closely temperature

controlled box. The configuration is such that the RF box output

is a coax cable carrying 10.7 MHz and rear entry waveguide pads for

RF injection calibration. This permits rotation of the entire RF

box in the feed yoke to polarization align the feed. The diplexer

is being constructed in-house.

3.2 The IF System

In the IF enclosure the 70 MHz IF signal from the output of

the RF system is first amplified and then split into two portions,

one portion going to the radiometer and the other to a mixer. The

mixer downconverts the 70 MHz to a 10.7 MHz signal which is

subsequently filtered, amplified and sent to the digital receiver.
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3.3 The Radiometers

The radiometers are of total power type. They monitor the sky

noise in a 30 MHz bandwidth. The radiometer consists of an

attenuator for level adjustment, a bandpass filter to limit the

noise bandwidth, a two-stage amplifier, a square-law detector to

convert the noise into a DC signal, a DC amplifier, and a voltage

to frequency converter. Automatic calibration of radiometer is

achieved by injection of excess noise by means of noise diode which

is housed in the RF enclosure.

3.4 The Digital Receiver

Final processing occurs in the digital receiver. A digital

receiver was chosen for several reasons. First, the ACTS signal

spectrum at 20 GHz contains many unwanted components. Analog

receiver design and operation to ensure no false signal lockups

would be complicated. A "smart" digital receiver is better suited

for this environment. Replication of the receiver for production

units will be easier with a board and plug-in processing chip

design approach. Recent chip developments make a digital receiver

within reach. Finally, this development program is appropriate to

the university research environment and adds to the technology

development theme.

3.5 Data Acquisition and Control System

The Data Acquisition and Control System (DACS) shown in Figure

3 consists of three major components: the data acquisition and

control hardware, the personal computer (PC) hardware and the PC

software. The data acquisition and control hardware is located in

the IF chassis and is used to collect data from the beacon

receivers (2), the radiometers (2), environmental instruments and

system temperature sensors. This hardware also controls the

calibration of the radiometer channels and is responsible for

transmitting all collected data to the PC via a fiber-optic service

link.

The PC hardware receives all data transmitted from the DACS

through a serial port and logs the data to the disk. The data are

collected and displayed using a modified version of the software

developed under the OLYMPUS effort.
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