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The study on the permeability of an aligned fiber bundle is the key building block in
modeling the permeability of advanced woven and braided preforms. Available results on

the permeability of fiber bundles in the literature show that substantial difference exists
between numerical and analytical calculations on idealized fiber packing structures, such as

square and hexagonal packing, and experimental measurements on practical fiber bundles.
The present study focuses on the variation of the permeability of a fiber bundle under

practical process conditions. Fiber bundles are considered as containing openings and fiber
clusters within the bundle. Numerical simulations on the influence of various openings on

the permeability have been conducted. Idealized packi_ng.s.trucm.ms.are used, but with
introduced openings distributed in different patterns, tlotn long_tumnat ana transverse flow
are considered. The results show that openings within the fiber bundle have substantial

effect on the permeability. In the longitudinal flow case, the openings become the
dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes

among fibers. Therefore the permeability is greatly influenced by these openings and
clusters respectively. In addition to the porosity or fiber volume fraction, which is
commonly used in the permeability expression, another fiber bundle status parameter, the
ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber

bundle.

INTRODUCTION

The permeability of an aligned fiber bundle has been studied extensively since it is an
important parameter in the composite manufacturing, processes. Different proposed
formulas have been suggested and verified by experiments for both longitudinal and

transverse permeabilities [ 1-6]. It was found that the permeability is closely related to the
fiber volume fraction or porosity. However, experimental measurements showed large

scattering of data. Numerical calculations of the permeability of idealized square and

hexagonal packing structures are also reported [7, 8].

The permeability is def'med as [9]

K=Q_. u
A (Ap/L) (1)
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whereQ is the volume flow rate, A is the total cross-section area, and la is the viscosity.
The pressure difference ap is across the distance L. Here the positive values of Q and Ap
are used although their directions are opposite. In order to use the dimensionless
parameter, the permeability K is normalized by using the fiber radius rf. The normalized

permeability K* is def'med as

K* =K

(2)

When permeability in different directions is discussed, subscript x is used for the fiber
direction, and y and z refer to transverse directions. Since a fiber bundle is assumed to be
transversely isotropic, only subscript z is used to express the transverse permeability.

The comparison of the permeability of these idealized packing structures and other
proposed formulas is summarized in Fig. 1 for both longitudinal and transverse cases. In
the longitudinal direction, there is a substantial difference between the model predictions,
which are backed by experimental data, and numerical solutions. The disturbance in the
fiber bundle under the processing conditions contributes to the discrepancy. In the
transverse direction, two models are used in the comparison. Kardos' model [3, 4] only
contains fiber volume fraction Vf, while Gutowski's model [2] introduced an additional
variable, the ultimate fiber volume fraction Va. There are some differences between
Kardos' model and square packing results, and between Gutowski's model and hexagonal

packing results respectively. The difference between these two groups becomes substantial
when Vf becomes high.

As a fiber bundle usually contains thousands of filaments, the random distribution of these
filaments, and any disturbance within a bundle, can result in the change of permeability of
the fiber assembly. In this study, micro-level cell models with introduced disturbance are
built to investigate these disturbances using numerical simulations. The variation of the
permeability due to these disturbances is then assessed and analyzed.

NUMERICAL SIMULATION

The numerical simulation work was done by using the available finite element packages
ANSYS [10] and FIDAP [11]. The automatic meshing capability and the easiness of the

re-processing and post-processing of these FE packages especially with ANSYS greatly
elp build up various mesh models.

a) Longitudinal Permeability

For the longitudinal permeability, we assume the flow is parallel to the fiber axis, or x
direction, and only the velocity component Vx exists. Also we assume the Reynolds
number is very small and the gravity can be neglected so that this becomes the so-called
Stokes flow. The flow equation can be written as

b__p1 _)2Vx b2V x
- +

bx la Oy2 Oz2 (3)

where the terms at the left side are constant over the whole y-z plane. This is equivalent to
a 2-D thermal equation with a uniform heat generation over the whole region which can be

expressed as
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w_b r bZr
k by2 bz 2 (4)

When this heat transfer equation is solved, the temperature distribution obtained is
equivalent to the velocity field for the flow equation. The longitudinal permeability can be
solved accordingly.

2-D thermal elements are used in the calculation. This is a four-node plane element with a

single degree of freedom, temperature, at each node. The reference temperature is set as
zero at the fiber surface. Therefore the values of the temperature are directly used as the
relative magnitude of the temperature rise.

The computational cell is set as a rectangle of Ly by Lz m y and z directions respectively.

Symmetry boundary conditions are set at four/:ell boundaries, y--0, y=Ly, z=0, and z=Lz.

b) Transverse Permeability

For the transverse flow with small Reynolds number, the Stokes equation becomes

1 _ = V2Vz
I.t bz

V 2 b 2 b 2--_+_

by 2 bz 2 (5)

The permeabilityK iscalculateddirectly from theaveraged flow rateaccordingto the
definition.

The 2-D 4-node fluid element is used in the simulation. In the calculation the option is set
as steady state flow, and the constants for the body force are set to be zero. Also the local
Reynolds number for the elements is set to be much smaller than 1. The boundary

conditions set on the representative cell _(Ly by Lz) are: 1) at the surfaces of z=0 and z=Lz,
Vz=0 and _V_--0; 2) at the surfaces of y=0 and y=Ly, Vz=0 and _V_/i_,---0; and 3) the
pressure difference (P)y=0 - (P)y=L = Ap. Along the surfaces of y=O and y_Ly, the
pressure is also constant.

DENSELY PACKED HOLLOW STRUCTURES

Numerical simulationson hollow hexagonal packing and hollow squarepacking am

reportedin [8].These hollow packing structurespossessrelativelylow ultimatefiber
volume fraction,0.589 for hollow squarepacking and 0.605 forhollow hexagonal

packing. The experimentaldataoftheultimatefibervolume fractionforan alignedfiber
bundle was inthe range of 0.78to 0.85 [2].In thispartof the numerical simulation,

hexagonal and squarepacking structuresarestillused,with a portionof the fibersremoved

ina certainpattern.They become denselypacked hollow structures.In otherwords, the
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denselypacked fibers are assumed to have sparsely distributed voids in the bundle.
However, since they are densely packed, there are always "good" lock mechanisms. In
other words, these voids are not connected to each other and there is no direct flow path
within the bundle.

Since there are different amounts of the fibers removed in different mesh models, the
ultimate fiber volume fraction Va will be different for each of the options. Therefore this
simulation reveals more the effect of Va on the permeability variations.

The computation cells are chosen to be rectangular, so that mirror symmetric boundary
conditions can be set at each side. The hollow packing settings are also constructed such

that the isotropic behavior of the permeability is always preserved.

Different computational cells are shown in Figs. 2 and 3. Finite element meshes of these
computational cells are also shown in these figures. The convergence of the calculations is
checked by comparing the results with available "exact" solutions for hexagonal and square
packing, and by varying mesh size and increasing element and node numbers. The
convergence of the calculation for other structures is also checked on selected samples.
Fig. 4 shows the convergence of the calculation versus element number for the mixed
packing structure. When determining the mesh size, a compromise is reached by
considering both the accuracy and the computational time.

QUASI-RANDOM PACKING MODEL

In studying the transverse stiffness of the unidirectional composites, Adams and Tsai [12]
proposed a numerical method which used a random array of cells to represent the micro-
level composite structure. We adopt the same approach and build a random set of cells to
represent the micro-level fiber assembly with some random disturbance. In other words,
the fiber assembly contains closely packed fibers and some open spaces among fibers,
which are randomly placed into cells.

The representative volume contains twenty-five unit cells (5 by 5). It is a quarter of the
representative volume of 10 by 10, as shown in Fig. 5. Mirror symmetry boundary
conditions are imposed on the 5 by 5 cell to reduce the amount of the calculation. It is also
assumed that the cell retains the isotropic permeability, which means the permeabilities in

the y and z directions are the same. This is realized by the symmetry condition imposed on
the +45 degree diagonal.

Two random effects are investigated. One is the random packing pattern, which means
some of the cells are filled with fibers while others are empty. The other is the random

positioning of fibers within the cell "box", which means fibers are placed at the off-center
locations in cells.

The random function in the FORTRAN program language is used to generate the random

cell packing and the random center positions. The random function generator in the
program is controlled by the seed number. In order to obtain the randomness of the seed
number, the time function was used which was related to the time to the one hundredth of a
second. The random number obtained from the time function was then transformed into a

series of random seed numbers. For each random fiber packing, 15 random numbers were
assigned to 25 cells under the rule of symmetry to the diagonal. These cells were ranked
according to the magnitude of the random number. Then the lowest N cells were chosen as
filled with fibers, where N was determined according to the fiber volume fraction and fiber
radius. This program was named as RAND-F. For the random center positions, 15
random numbers were transformed to a value between -8 and +_i respectively, where _iwas
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the maximum offset of the fiber center position determined by the cell mesh condition and
the fiber radius. This program was named as RAND-D.

Automatic meshing was used to generate different random packing models. As mentioned
earlier, three sets of random packings were tried. The first was the random occupancy of
fiber cells, the second was the fully occupied fiber ceils with random offset fiber center
positions, and the third was the combination of these two, which meant only some cells
were randomly f'dled with fibers which were located at random off-center positions.

For the random occupancy of fiber cells, two basic unit ceils were setup to represent the
cells with and without fibers, as shown in Fig. 5. The packing pattern generated from the

RAND-F program was used as the input, and indices 1 and 0 were assigned to
corresponding ceils. 25 local coordinate systems were used for these cells and they were
located at the center of these cells. Meshing was done for each cell according to the given
index (1: with fiber; 0: without fiber). Finally these meshed ceils were combined together,
repeated nodes were merged, and boundary conditions were set accordingly.

For the random offset position of fiber centers, the fiber center positions were first
determined by the RAND-D program. These positions were used to generate the fiber
boundaries within the cell. The original cell center positions were used to generate cell
boundaries. Then the meshes were automatically generated. Because the offset of the fiber
centers sometimes introduced difficulty in automatic meshing, errors did occur and the pre-

processing was aborted. Due to the limitation of the automatic meshing used, fibers were
always contained in the original cells, which greatly limited the extent of the variation on
the permeability.

For the third situation of random fiber cells and random fiber center positions, both

programs (RAND-F and RAND-D) were used and automatic meshing was applied
accordingly.

The computational error is directly related to the mesh size. This was checked for a
particular case by varying the mesh size. As a compromise of the accuracy and the
computational time, the mesh model chosen contained 144 elements (12 by 12) for cells
without fibers, and 240 or 288 elements (48 in the circumferential direction and 5 or 6 in

the radial direction) for cells with fibers. The estimated error in the worst case was less
than 1 percent, and in most other cases, the error was around 0.2 to 0.5 percent.

RESULTS AND DISCUSSIONS

The permeability results of the densely packed fibers with introduced openings are shown
in Fig. 6 and 7 for longitudinal and transverse directions respectively. These structures
have definite packing patterns. All the gaps among fibers are with the same width. All the
openings introduced are isolated. Therefore, if we keep squeezing these fiber bundles, the
values of Va will be different in each case. It is shown in the figures that with relatively
high fiber volume fraction, the effect of Va on the permeability increases.

As we mentioned earlier, the effect of the openings on the permeability is different in
different flow directions. In the longitudinal flow case, the openings provide the flow path
to the fluid. In the transverse flow case, the openings reduce the gap width among fibers,
resulting in higher flow resistance. In Fig. 6, the three cases without introduced openings,
hexagonal, square, and mixed packings, show relatively low longitudinal permeability.

The variation of the permeability due to different packing is substantial. In the longitudinal

direction, at the Vf=0.5, the permeability can be about 2.7 times of difference, while in the
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transversedirection,thedifferencecanbeabout10times. Therefore,with only one
variable, usually the fiber volume fraction Vf, the permeability status of the fiber bundle is
possibly still very uncertain.

Fig. 8 shows the permeability variation of random packing structures. As shown in Fig. 5,
there are three groups of packing situations with the randomly placed fiber cells. We define
them as with fiber locking, without fiber locking, and with direct flow path. In the case of
with fiber locking, there exists a row of fibers or a combination of rows of fibers to lock
the flow if the maximum packing efficiency of that particular packing is reached. In other
words, fluid has to pass through small gaps within the fiber row. In the case of without
fiber locking, which means that even at the maximum packing efficiency flow is still
possible, the relatively large gaps in the diagonal direction of the cell provide easier flow
path for the fluid. In other words, flow paths are mainly in the diagonal directions. In the
case of with direct flow path, there exists a row or a combination of rows of open spaces as
the flow path.

For each of the selected fiber volume fractions, there are options of number of fiber cells.
The percentage of the occurrence of each of these three cases depends on the fiber cell
numbers. With 14 fiber cells out of the 25 total cells, there were a few cases of direct flow

path, and the rest were with fiber locking or without fiber locking. With 16 fiber
cells, the occurrence of direct flow path diminished so that there were mainly cases of with
fiber locking and without fiber locking. With 18 or more fiber cells, most of the cases
were with the locking of fibers.

The number of cells with fibers is also limited by the fiber volume fraction. With relatively
low fiber volume fraction, less fiber cell numbers are possible. For example, for Vt=0.4,
we tried fiber cell numbers of 14, 16, 18, and 20. For Vt=0.45, fiber cell numbers were
16, 18, and 20. For Vf=0.5, fiber cell numbers were 17 and 19.

The simulation of the randomly packed fibers was done on these three groups. With 14 to
20 fiber cells, the simulation covers Vf range of 0.2 to 0.5. With 25 fiber cells but random
center positions, the range of Vf was from 0.2 to 0.7. With 18 to 20 fiber cells and offset
fiber center positions, the range of Vf was 0.4 to 0.55. For each selected case, 25
simulations were performed with different random settings. However, because of the
automatic mesh limitation, only meshes with "good" shape were accepted for the finite

element calculation. Therefore the successful simulations for each case were usually less
than 25. The total simulation cases were over 700 for longitudinal and transverse flow
respectively.

Fig. 8a shows the data variation of the permeability when different numbers of the fiber
cells are used in the simulation. With each selected fiber cell number, there are about 20

data points. The variations are very substantial. In the longitudinal case, the difference is
as high as more than five times. In the transverse direction, the difference can be as high as
over a hundred times.

Hexagonal packing is used as a reference in Fig. 8a. In the longitudinal flow case, it is a
low limit of the permeability, since it possesses the most uniformly distributed flow
channels. In the transverse flow case, however, there were cases that the permeability is
higher or lower than that of the hexagonal packing. In the extreme cases, fibers may fully
lock the flow path when they contact with each other, or they may be far away from each
other so that a large flow path with minimum flow resistance may form within the bundle.

In Fig. 8a about the transverse permeability, three groups of data can be distinguished. In
the 14 fiber cell case, the group with locked fibers shows the normalized permeability of
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about 0.001, the group without fiber locking shows the normalized permeability of about
0.04, and the group with direct flow path shows the normalized permeability of about 0.2.
With 16 fiber cells, only two groups appear, with fiber locking and without fiber locking.

The permeability values are about 0.08 and 0.04 respectively. With 18 or more fiber cells,
only locked fiber cells exist. Also with the increase of the fiber cells, the permeability data
of locked fibers gradually gets close to that of the hexagonal packing.

Fig. 8b shows the variation of the permeability when all 25 cells are filled with fibers, but the
fiber center positions are randomly determined. The variation of the permeability in both

longitudinal and transverse cases is substantially smaller than that in Fig. 8a. It is also
interesting to see that in the longitudinal case, the permeability of these random fiber sets is

always higher than that of the original square packing. In the transverse case, however, the
variation appears in both directions, resulting in either higher or lower permeability values.
This agrees with the results shown in Fig. 1, where the longitudinal permeability data from
experiments is substantially higher than that of the idealized packing, and the .transverse
permeability data from experiments is more close to that of the idealized packing.

For a real fiber bundle under the processing conditions, the macro-level status of the fiber
bundle is already determined. In other words, the relative positions of the fibers within the
bundle are somewhat settled. Gently squeezing the fiber bundle will not change the
macro-level status of the bundle. With this relatively determined fiber bundle status, the

variation of the permeability for a certain fiber bundle is limited. However, different fiber
bundles may have substantially different status, such as opening size within the bundle.
Therefore the permeability from bundle to bundle may be very different. To capture this
macro-level fiber bundle status, additional status variables are needed. In [2] and [7], the
ultimate fiber volume fraction is introduced in addition to the average fiber volume fraction.

More discussions and proposed models on selecting the ultimate fiber volume fraction as

the additional permeability parameter are presented in [13].

SUMMARY

Finite element simulations on the variation of the permeability of an aligned fiber bundle
have been carried out. These simulations are based on the idealized packing with

introduced openings, and based on the quasi-random fiber cell models. The results show
that even with the same fiber volume fraction, the permeability variation can vary

substantially. The disturbance within a fiber bundle has to be considered in order to reduce
the uncertainty in the estimation about the permeability.

The numerical simulation results also suggest that in addition to the average fiber volume
fraction, other parameters describing the macro-level status of a fiber bundle are needed.
The effect of the ultimate fiber volume fraction on the permeability is investigated through
the simulation.
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