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ABSTRACT

A technique based on matching the refractive index of an invading liquid to that of a fiber mat has been
used to study entrapment of air ('voids') that occurs during forced in-plane radial flow into nonwoven

multifilamer_t glass networks. The usefulness of this technique is demonstrated in quantifying and ma_l_ing the
air pockets. Experiments with a series of fluids with surface tensions varying from 28x10 "3 to 36x10" N/m,
viscosities from 45x10 "3 to 290x10 "3 Pa.s, and inlet flow rates from 0.15x10 -6 to 0.75x10 -6 m3/s, have shown

that void content is a function of the capillary number characterizing the flow process. A critical value of

capillary number, Ca = 2.5x10 "3, identifies a zone below which void content increases exponentially with
decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. Similar
experiments carried out on surface treated nonwoven mats spanning a range of equilibrium contact angles from
20 ° to 78 °, have shown that there is a critical contact angle above which negligible entrapment is observed.
Below this vaiue, there is no apparent effect of contact angle on the void fraction - capillary number
relationship described earlier. Studies on the effect of filament wettability, and fluid velocity and viscosity on
the size of the entrapment (voids) have also been carried out. These indicate that larger sized entrapments which
envelop more than one pore am favored by a low capillary number in comparison to smaller, pore level
bubbles. Experiments were carried out on deformed mats - imposing high permeability spots at regular intervals
on a background of low permeability. The effect of these spatial fluctuations in heterogeneity of the mat on
entrapment is currently being studied.

INTRODUCTION

The resin transfer molding (RTM) process for fabricating fiber reinforced composites requires that a
high viscosity liquid resin be forced to penetrate a dense fibrous network (woven or nonwoven). Incomplete
penetration of the network by resin leads to permanent entrapment of air in the cured product which has a
detrimental effect on its mechanical properties[ 1,2]. Air pockets entrapped during flow are referred m as 'voids'
in keeping with the nomenclature followed by previous researchers. Volatiles arising from the resin system may
also cause void formation, but we do not address voids of this nature. Voids of any kind are undesirable, since

they act as stress-concentration sites and promo.te premature failure of the composite. The effects of voids on
structural properties have been reported by previous researchers[2,3,4,5].

Voids have been classified as interstitial voids, planar voids (voids between layers of filaments), and
general large voids (voids crossing many filament layers)[4]. An investigation on the origin of voids, especially
interstitial voids, has been reported by Bascom and Romans[6]. Researchers have used techniques such as
density measurements, water absorption, micmgraphy, ultrasonic scan, and radiography to determine void
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content. An appraisal and detailed description of these me_ods has been documented by Judd and Wright[2].
We have previously reported an optical technique for visualization and quantification of air pockets formed
during liquid impregnation of a fiber network[7]. This technique involves using a liquid with refractive index
identical to that of the filaments composing the network. Fibers in regions saturated with liquid are "optically"
dissolved, revealing unoccupied space (voids) that can be distinguished by dark boundaries. A similar technique
has been used for investigation of leaks in fiber glass reinforcement of pressure vessels [8]. In this paper we
describe experimental work carried out on multifilament glass fiber networks using this technique to study the
effect of process variables, fluid properties, and network characteristics on the quantity and nature of air
entrapment.

NOMENCLATURE

h

m

mt

V

AX

Vg

Vt

Vh

= spacing between plates of flow-ceil [mat thickness]

= mass per unit area of mat (Kg/m 2)

= total mass of mat (Kg)

= interstitial velocity of liquid (m/s)

= fluctuation in value of x (units of x)

= Volume occupied by glass filaments (m 3)

= Total volume occupied by glass mat (m 3)

= Total volume occupied by holes or artificially created pores in the glass mat (m 3)

Greek

£

8h

ep

7

u

0

Pg

= bulk porosity (-)

= porosity due to large holes or artificially created pores(-)

= porosity due to ordinary pores(-)

= surface tension of liquid (N/m)

= viscosity of fluid (Kg/m.s)

= equilibrium advancing contact angle (radians)

= density of glass filaments (Kg/m 3)

EXPERIMENTAL METHODS

In-plane Radial Flow Experiment
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A radialin-planeflowgeometryis chosen for studying air entrapment under constant inlet flow rates.
The main advantages of this geometry are that it closely emulates a 2- dimensional flow system, and that it
provides a range of liquid velocities within the same experiment. For the flow rates used, the sample is
sufficiently thin to eliminate gravity effects on liquid flow. The experimental system is shown in Figure 1. The
system includes a syringe pump which is used to force the liquid through a center-hole into a nonwoven
network compressed to a known thickness between parallel glass plates. The refractive index of the invading
liquid is adjusted to be equal to that of the glass filaments in the network in order to reveal unoccupied space
(voids) that are distinguished by dark boundaries[7]. Motion of the invading liquid, made visible by a light
source below the flow apparatus, is captured through a microscope by a camera placed vertically on top, and
recorded in real time. The apparatus is placed on a horizontal open linear motion X-Y stage, programmed to
scan the network after complete impregnation with liquid. The experimental procedure is described in detail
below:

(i) A centerhole, 0.3 cm diameter, is punched into a 15 cmx 15 era nonwoven glass filament network (supplied
by PPG Industries, P.O.Box 2844, Pittsburgh, PA 15230) which is compressed between two clear glass plates
with clamps. Spacers of known thickness are placed on two opposing sides of the mat.

(ii) The stainless steel syringe (3.18 cm diameter, 25.4 cm stroke, Dev-Air Corp., P.O.Box 30, Paoli, PA 19301)
is filled with the refractive-index matching liquid, with care to avoid entrapment of air bubbles in the syringe

and connecting flow lines.

(iii) Setting on the syringe pump (Harvard Apparatus Co. Dover, Mass., Ser No: 6091) is adjusted to the
required flow rate.

(iv) A CCTV camera (Sanyo, VDC 3800 Video Corp. of America, P.O.Box 5480, 7 Veronica Ave., Somerset,
NJ 08873 ) is used with a television zoom lens (Tokina, 12.5-75 ram, F1.8, 6X ). Intensity of the light source
is adjusted to obtain a sharp picture of the mat on a 13 inch television monitor. Experiments are carried out in a
darkened room to avoid reflection of external light from the glass surface.

(v) Outlet of the syringe pump is connected to a pneumaticaUy operated three way valve which toggles between
the flow-cell inlet and purge. A light emitting diode (LED) is used to indicate when the the flow-cell inlet is
connected to the pump. This is placed in the field of view of the CCTV camera which records the experiment
on a VCR (Panasonic Omnivision VHS-9600).

(vi) Before beginning the experiment, all lines are completely Idled with the operating fluid up to the centerhole
of the fiber mat. The three-way valve is positioned so as to isolate the flow-cell (LED off) and the video
recorder and pump are started. The valve is then switched, turning the LED on to indicate flow of liquid into the
network. Flow is continued until the entire mat is saturated with liquid. The video recorded experiment enables
one to analyze temporal data in the form of radial position of the fluid front as a function of penetration time
which gives the interstitial velocity as a function of radial position.

The analysis of recorded experiments utilizes an image analysis system developed at TRI/Princeton,
which combines image acquisition hardware with prepackaged libraries of graphics routines and data

manipulation programs.

Void Analysis

The quantity of entrapped air at any location is expressed in the form of a void fraction, which is
defined as a ratio of the volume of air entrapped to the total volume. Volumes are calculated by multiplying the
measured area of the air pocket by the thickness of the mat. The air pockets are assumed to extend across the
thickness of the mat in this calculation. In case of small bubbles, this assumption gives an overestimate of the
actual void fraction.

Other information about voids includes their size distribution. For this purpose, three size ranges are
chosen as follows:
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Xl = [N1/Nt] - Ratio of the number of entrapments in the range of sizes less than 0.32 x 10-9 m 3 per unit area

of mat to the total number of bubbles per unit area. This is a range of sizes extending up to about ten
times the mean pore size in the mat [0.02 x 10-9 m3].

x2 = [N2/Nt] - Ratio of the number of entrapments in the range of sizes from 0.32 x 10 -9 m3 to 1.9 x 10-9 m 3
per unit area of mat to the total number of bubbles per unit area.

x3 = [N3/Nt] - Ratio of the number of entrapments in the range of sizes greater than 1.9 x 10-9 m 3 per unit area
of mat to the total number of bubbles per unit area.

The experimental procedure for void analysis is as follows:

(i) The CCTV camera with an 8X magnification lens is mounted on the eyepiece of a microscope (Olympus)
with a magnification range of 0.7 to 4.0 and is used for photographing the network at a total magnification of
645X. At this magnification, the smallest measurable air pocket is of size 0.1xl0-6m 2 within an error of 5%.
Assuming air pockets to be cylindrical, with height equal to that of the spacing between the plates of the flow
cell, the measured area of air entrapment corresponds to a void volume of 0.05x10-9m 3. Smaller air pockets can
be identified but cannot be quantified without greater experimental error.

(ii) The horizontal open frame Linear motion stage (Daedal Inc., P.O.Box G, Harrison City, PA 15636) is
programmed to scan and photograph the saturated network to provide a record of each frame for subsequent
analysis. The total domain of study is a 0.112 m x 0.121 m rectangle.

(iii) The recording of the experiment is played back and a frame is captured on the RGB monitor for study.
Each micrograph of the high magnification scan obtained in the experiment is analyzed to obtain the area
covered by voids. This is done by enclosing each void by a boundary, filling it with black pixels, and counting
the enclosed pixels. This procedure is repeated for all voids in each frame.

(iv) The radial position of each micrograph is taken as the distance of its center from the center hole. Void areas
measured at equal radial positions are arithmetically averaged to obtain the mean void area at that radial
position. This gives the void fraction as a function of radial position and liquid velocity.

(v) In the analysis of each micrograph, a classification table is maintained to record the size distribution of air
entrapments. Data from micrographs at the same radial position are averaged to obtain a relationship between
void sizes and fluid velocity.

Characterization of Fluids

Refractive index, viscosity and surface tension characterize the fluids used in the experiments.
Wertability of filaments composing the network can be quantified in terms of an equilibrium contact angle
formed by the liquid meniscus with the solid surface.

Aqueous zinc iodide solutions were found to give refractive indices in the range of that of glass,
depending upon concentration. These solutions were observed to be effective in detecting air pockets, but were
not used due to their corrosive character. A series of refractive index matching fluids (manufactured by
R.P.Cargille Labs. Inc., Cedargrove, NJ, USA) were used in the flow experiments. In order to adjust the
refractive index of the operat_ag liquid to match that of the glass fiber mat, a blend of two optical fluids was
used. The liquids used were Cargille 5040 with refractive indices of 1.475 and 1.570 (at 25oc and 5893 A). A
blending correlation was obtained for these through experiments. It is given by

)Cmix = _l(_l + )C2_02

where _:mix is the refractive index of mixture, and r i and q)i are the refractive index and volume fraction of the

ith solution, respectively. Chloroparaffins (manufactured by Dover Chemical Corp.,Dover, OH 44622) with

186



refractive indices close to those of the optical solutions were blended with the optical solutions to vary the
solution viscosities[7].

Liquid viscosity was measured using a Couette geometry on a fluids spectrometer (Rheometrics Inc.) at
four shear rates. The fluids were Newtortian; i.e., the viscosities were found to be independent of shear rate.

Wettability of the glass filaments was altered using fluorosurfactant surface treatments on the
networks. Surface tension of the liquid and wettability of the filaments were determined using a modified
Wilhelmy wetting force measurement technique that has been previously described[9].

Network Characteristics

The nonwoven muitifdament glass network is characterized in terms of the following parameters:

Average or bulk porosity (e):

where m is mass per unit mat area, pg is the density of the glass filaments, and h is the spacing between the
plates of the radial flow cell (mat thickness). Average porosity of the mats fluctuated within about 4-5%
(Appendix 1).

Average permeability:

This was determined using the TRI radial in-plane permeability measuremem technique[ 10]. The mats
used were found to be isotropic with an average permeability of about 1003 darcy.

Pore Volume Distribution:

Pore structure of the mats was characterized by the liquid extrusion method on the TRI Pore Volume

Distribution apparatus[11].

EXPERIMENTAL WORK

Radial in-plane flow experiments were carried out at constant inlet flow rates using three types of mats.
These differed in their average filament diameter, and the type of surface sizing. Refractive indices of the
filaments ranged between 1.550 and 1.552 for the three mats. Care was taken in choosing samples to minimize
variability in their average porosity. Mats of type I were compressed to a thickness of 0.05 x 10-2 m

corresponding to a porosity of 0.76, and similarly those of type II and type rrl, to a thickness of 0.08 x 10-2 m
corresponding to a porosity of 0.82 and 0.83 respectively. The experiments spanned a range of inlet volumetric
flow rates from 0.15 x 10-6 to 0.75 x 10-6 m3/s providing a range of interstitial velocities. Liquid viscosities

ranged from 45 x 10 -3 to 290 x 10-3 Pa.s and surface tensions varied from 28x10 -3 to 36x10 "3 N/re.

Studies were carried out on mats of type III, after treating these with a series of surfactants. This
changed the wettabilities of filaments composing the mats without varyin..g the fluid properties or the network
structure. The surface treatments were carried out by saturating a mat wim a surfactant solution in a bath for 10
minutes, followed by air drying. The wettability of these treated surfaces was measured in terms of an

equilibrium contact angle formed by the test fluid on the surface. Contact angle values ranged from 20 °

(wetting) to 78° (nonwetting). Table 1 summarizes the different surfactant solutions and the corresponding
equilibrium contact angles formed by the test fluids with the filament surface after treatment. Measured contact
angle values were averages taken over a random set of 5-6 filaments that were picked out of the surface treated
mats.
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An attemptwasmade to study the effect of spatial variations in permeability on air entrapments by
imposing known deformities onto the already existing mat structure. Deformation and reorientation was
imposed by impinging the mat on a regular rectangular grid of 3 mm. diameter pegs. The reoriented f'tlaments
were held in place by exposing the mat to vapors of super glue in the presence of moisture. A schematic of this
apparatus is shown in Figure 2. The resultant mat had a uniform spatial distribution of large pores at the
location of pegs imposed on the isotropic random structure.

RESULTS AND DISCUSSION

Eff¢¢_ of Capillary_ Number

Forced flow through fiber networks results from a combination of viscous and surface tension effects.
A dimensionless number quantifying the relative magnitude of viscous forces to interfacial forces is the

capillary number (Ca) which is defined as follows:

_V
Ca-

7

where Ix is viscosity, 7 is surface tension, and v is interstitial velocity of fluid.

Velocity and viscosity effects on the extent of entrapment, when combined through the capillary
number, collapse on to single master curves for mats I, II and III. These are shown as plots of void fraction as a
function of capillary number in Figures 3,4 and 5. For all three mat types there is a critical value of capillary
number which identifies a zone below which void content increases exponentially with decreasing capillary
number. Above this value, negligible entrapment is observed. The critical capillary number at the onset of void

formation is 2.5x10 -3. Although the volume fraction of trapped voids is roughly comparable for mats I, II and
III, the voids in mat II are larger than those in mats I and III. There is also more variability in the results for mat
II than for mats I and III.

Sizes of the entrapped regions spanned a wide range, from tiny spherical bubbles (completely trapped
in single pores) to larger irregular shaped zones (encompassing several pores).The number fraction of small
entrapments [x 1] increases with increasing fluid velocity. At the same time the number fraction of intermediate

sized regions [x 2] and the number fractior_ of larger sized regions [x 3] decreases with increasing fluid velocity,
as shown in Figures 6,7 and 8. ViscosZ,ty of the liquid also has a strong influence on x i as shown in Figure 9.

The data from Figure 9 collapse onto a single curve when the velocity and viscosity effects are
combined in terms of the capillary number, as shown in Figure 10. Comparable curves for x 2 and x 3 are shown

in Figures 11 and 12. Lower capillary numbers favor formation of larger sized entrapments as opposed to the
smaller sized ones. The smaller sized entrapments are of the order of the mean pore size in the mat. These
entrapments are usually located completely inside a pore and are spherical in shape. Larger sized entrapments
span more than a single pore.

Effect of Filament Wettability

It is known from previous work in fluid displacement mechanics in porous media that there is a

significant difference between wetting displacement (cos 0 = 1) and non-wetting displacement (cos 0 ----0)[12].
Studies have indicated that poor resin wettability of commercial finished filaments resulted in an increase in the
formation of voids[6]. Reducing the contact angle to zero and/or oscillating the tension in the strand as it passed
through the resin markedly reduced the number of voids.

Flow experiments carried out using surface treated mats covered a range of contact angles between 20 °

and 78 o. Figure 13 shows void fraction as a function of capillary number for different surface treatments. As
seen from these plots, no particular trend in the slope of the curve or in the critical capillary number value is
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observed with respect to the surface wettability up to an angle of 57 o. Beyond this, as the angle approaches 90 °,
air entrapment drops to zero; within the same range of capillary numbers. This suggests a critical transition
between a zone of entrapment to that of no entrapment as the surface wettability of the filaments composing the
mat structure decreases. This result along with the observations of Bascom and Romans[6] suggests that
entrapment is high under conditions of extremely low as well as extremely high wettabilities; and is minimal at

intermediate contact angles that are close to 90 °. Local nonuniformities are one cause of entrapment. The local

shape of meniscus between filaments is flatter and has less curvature at contact angles close to 90 ° , whereas it is

sharply curved for angles close to 0 ° and 180 °.

A study carried out on the effect of filament wettabilities on the size distribution of entrapped zones
indicates that size distribution data for the range of capillary numbers obtained for different surface
wettabilifies collapses onto a single curve when plotted against a modified capillary number.

The modified capillary number is expressed as given below:

_I.V
Ca-

7 cos 0

where 0 is the equilibrium contact angle made by the liquid with the filaments composing the network.
Experimental data indicating the effect of modified capillary number on void sizes are given in Figures 14, 15
and 16.

EffeCt 9f Mat Structure:

The nonwovens used here have groups of filaments bundled together. These bundles are placed
randomly to create a structure having a bimodal pore volume distribution, as shown in Figure 17. The smaller
pores are created by the spacing between filaments. The larger ones are the pores between multifdament
bundles.

In the process of deforming and reorienting the pore structure with the grid of pegs, the filaments are
relocated to create open spaces or holes. Hence the structure is modified to have three types of pores. The
original bimodal structure still exists along with a third type of pores created by the pegs. The pore volume
distribution plot for this deformed network is also shown in Figure 17. The third peak representing the newly
created pores is not observed in this measurement. Calculation using the dimensions of the grid indicates that
the total volume of large pores created in this restructuring process is 8% of the total pore volume (Appendix 2).
The deformation therefore, is insufficient to appear as an additional peak in the pore vohtme distribution
diagram. The results of flow experiments on these deformed mats is the same as those on undeformed mats.
These are shown in Figure 18; and simply reproduce results from experiments carried out on undeformed
samples that are shown in Figure 5.

CONCLUSIONS

The isorefractive index technique combined with an image analysis system was found to be an elegant
method of quantifying air entrapment in glass filament networks. When applied to radial flow geometry, this
technique was useful in mapping voids and hence relating them to interstitial velocity and viscosity of the
penetrating liquid. The technique provides data that will be useful in designing impregnation and mold filling
processes for the production of advanced composite materials. A critical capillary number for void formation
was found to be 2.5x10 -3. Below the critical capillary number the volume fraction of trapped voids increases
exponentially with capillary number. Surface wettability of filaments composing a nonwoven mat measured in
terms of an equilibrium contact angle, affects the fluid flow mechanism. Experiments indicate that there is a
critical contact angle between 57 ° and 78 ° above which air entrapment is minimal. Below this value, there is no
change in the relationship between void fraction and capillary number. A modified capillary number that
includes the equilibrium contact angle seems to control the mean size of entrapments. Definite answers are yet
to be arrived at which would quantitatively express the effect of network properties on void formation.
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APPENDIX 1

Estimation of bulk porosity variation:

Variation in bulk porosity is related to the variation in specific mass by:

[e +A_] = I- [m +Am]
pgh

Maximum variationofmass insamplesusedwithone operativeliquidwas I0 Kg/0.0225m 2 [Am] foran

averagemass of70 Kg/0.0225m 2 [m ],pg isofmagnitude2560.0Kg/m 3,and thesmallestvalueofspacing[

h ]usedwas 0.05x10"2m.

Using these values, variation in bulk porosity is given by:

xl00 = [_]x100

- 4.6%

APPENDIX 2

Estimation of porosity created by deformation:

Vg
E-I-_

• V t

V
h

eh- V
t

m t

Vg = -_g

Substitutinginabovethevaluesof:

m t= 7.4xi0"3Kg

P g =2.56xi03Kg/m 3
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V t = 225x0.08x10"6 m3

Vg = 225x0.08xl-lx(0.15) 2x10"6 m3

et= 0.84

e h = 0.06

Therefore the percentage of total porosity due to the deformation is given by:

-t xl00 = 7.1%
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TABLE 1

SURFACE TREATED SAMPLES

Viscosity = 48 cp. Surface tension = 34 dynes/cm.

cos 0 0 Surface trealments used

0.2

0.55

0.64

0.67

0.90

70

57

50

48

25

100 ppm Zonyl FSC solution.

0.05% w/w Sodium Laurel Sulfate.

0.1% w/w Sodium Laurel Sulfate.

100 ppm Zonyl FSN solution.

no treatment.

192



DIFFUSER

X-Y POSITION
CONTROLLER

IMAGE PROCESSING
SYSTEM

CCTV CAMERA

MICROSCOPE

SPECIMEN

PUMP

VARIAC

LIGHT SOURCE

EXPERIMENTAL APPARATUS

FIG 1

193



0

0

0

0
0

0
0

0

0
0

0
0

0

0
o

OO

O0

O0

OO
O0

O0
O0

O0

O0
O0

O0
OO

O0

O0
oo

000o00000000

000000000000

000000000000

oo00o00o0ooo
000000000000

000000000000
000000000000

000000000000

000000000000
000000000000

000000000000
o oooo oo o o o o o
000000000000

O0000000000C

00000 O0 O00 O0

1 CM SPACING

r PEGS
[0.3 CM DIAMETER]

N2

GRID OF PEGS

CYANOACRYLATEVAPORS +N2

DRY N 2

--1__
l

v

HEATER

CYANOACRYLATE [ SUPER GLUE] WATER

S

S

S
J

,,e
L' S

#, J'7

,s !

1
DEFORMED SAMPLE ON PEGS

THE PROCEDURE FOR REORIENTATION OF MAT STRUCTURE.

FIG 2

194



p.
O

o
2

O
>

0.20 '

0.16

0.12

0.08

0.04 1

0.00/

-4.0 -3.5

o

G

o
@

o

o°_

Mat Type I

ComDined data

o_

o_

o°

©
io

• a 0

"3.0 -2.5 -2.0 "I.5 "I .0

Log[Ca]

Void fraction vs Capillary number

FIG 3

o
"6
2

O
>

0.20

0.16

0.12

0.08

0.04

O.

-4.0

• o Mat Type II

Combined data
• •

• o o
o

• o o

o
m

0

"_°o.o
o'.o_,

_oo
;•

I
l

-3.S -3.0 -2.5 -2.0 -1.5 -1.0

Log[Ca]

Void fraction vs Capillary number

FIG 4

195



¢-
o
w
¢3

m

.'2_
O
>

0.20 '

0.15 e e,::
o

0.10

0.05

0.00 .... ,

-4.0 -3.5

Mat type III

Combined data

o

%

"g_'

-3.0 -2.5 -2.0 °1.5 -1.0

Log[Ca]

Void fraction vs Capillary number

FIG 5

1.00 1

0.80 "

0._-0

0.40

0.20

a

_=_ COS 9=0.9

viscosity. 48 cp

o

f._ Q D

D

o

/
0"000.0 0.1 0.2, 0:3 0,4

v [orals]

Fraction of total number of bubbles in the range of sizes < 0.32 mm3

FIG 6

196



¢'4
X

1,0"

0,8'

0.6

0.4'

0.2

cos g = 0.9

viscosity = 48 cp

D

o

\°
! 0.1 0.2.

0.0 013 0.4
0.0

v Ices]

Fraction of total number of bubbles in the range of 0.32 - 1.9 mm3

FIG 7

0.2 °

0.1
>¢

0.0

0.0

COS e " 0.9

/= ViSCosity = 48 cp

\
0.1 0.2"

o. 013 0.4

v [cm/s]

Fraction of total number of bubbles in the range of sizes • 1.9 ram3

FIG 8

197



1.00"

0.80'

0.60

0.40

0,20

48 cp

0.00 , , , •
0.0 0.1 0.2" 0.3 0.4

v [cnVs]

Fraction of total number of bubbles in the range of sizes < 0.32 mm3

FIG 9

1.00

0.80

0._0 -

0.40

0.20

Dm m

/
D

I°°
o

_a U

ca
a m •

°i!° °

°D D°

O II 0

0

M=III

ccmbinedCata

ccs8-0.9

0.00 .... , .... , .... , .... , .... , ....
-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0

Log[Ca]

X1 vs Capillary number

FIG 10

198



¢,I
X

0.8

0.6

0.2

0.0

-4.0

0

C3

o_

D

I:, _ D •
L

O0 =

;a
0

t o
/°

=G

°I°
(

-3.5 -3.0 -2.5.

Mat III

combined data

ccs e = 0.9

• i .... 4 ....

"2.0 -'1.5 °1 °0

Log[Ca]

X2 vs Capillary number

FIG 11

x

0.2

0.1

°°/.

0 I G

Mat Ill

combined data

ccs e = 0.9

0.0

-4.0

0

IP

°/
-3.5 *3.0 *2.5 -2.0 -1.5 °1.0

LogiCal

X3 vs Capillary number

FIG 12

199



e.
o
w

P

"O

O
_>

0.20 '

0.16

0.12

0.08 "

0.04

Mat III

combined data

ccs e = 0.9, 0.67, 0.55, 0.2

0.O0

-4.0 -3.5 -3.0 -2.5. -2.0 -1.5 -1.0

Log[Ca]

Void fraction vs Capillary number

FIG 13

1.00 -

0.80

O.CO

0.4C

0.20

0.C0

-4.0

mlX=o

=/
Q

/oo

OGO
O0

O0 Q 0

o /o=

_¢3 o D
o Oo

Mat type III

combined data

cos e = 0.55, 0.9

.... = .... = .... i;.--= .... = ....

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

Xl

Log[Ca/(cos 0)]

vs Modified Capillary number

FIG 14

2O0



¢M
X

1.0"

0.8

0,6

0,4'

0.2

0.0
-4.0

Ivlsi type III

combined data

cose = 0.55, 0.9

o 'c
8"1o

° =!

o OcO l 0
o_ _,

_f/°o°

o

o
/o

):
r.n

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

LogiCal(cos B)]

X2 vs Modified Capillary number

FIG 15

>c

0.2

0.1

o o
o

Mat type III

combined data

cose - 0.55, 0.9

O.C
-4.0

o o

oi

°
D

@

°I
.... i .... J .... . i .... , ....

"3.5 "3.0 °2.5 -2.0 "1.5 -1.0

LogiCal(cos 8)]

X3 vs Modified Capillary number

FIG 16

201



E

E
O1

E
g

E
:3

O
_>

O
O.

2°tl
15

Mat typeIII

t _EIroI_MED

°'1 '---'" \',

f
O! , , , ,

0 100 200 300 400 500

Pore

Radius [um]

Volume Distribution

FIG 17

c-
o

¢J

"o
°--
o
:>

0.20

0.16

0.04

0.00
-4.0

a

o

-3.5

Mat type Ill

Combined data

deformed mat

,o

8'
°o

-3.0 -2.5 -2.0 -1.5 -1.0

Void fraction

Log[Ca]

vs Capillary number

FIG 18

202


