1994012392

520-05 N 9 4 - 1 6 8 6 5 œ

AEROELASTIC AIRFOIL SMART SPAR

Skott Greenhalgh and Christopher Pastore Department of Textile Engineering, Chemistry & Science North Carolina State University, Raleigh, NC 27695

> Moishe Garfinkle Department of Materials Engineering Drexel University, Philadelphia, PA 19104

SUMMARY

Aircraft wings and rotor-blades are subject to undesirable bending and twisting excursions that arise from unsteady ærodynamic forces during high speed flight, abrupt maneuvers or hard landings. These bending excursions can range in amplitude from wing-tip flutter to failure. A continuous-filament construction "smart" laminated composite box-beam spar is described which corrects itself when subject to undesirable bending excursions or flutter. The load-bearing spar is constructed so that any tendency for the wing or rotor-blade to bend from its normal position is met by opposite twisting of the spar to restore the wing to its normal position. Experimental and theoretical characterization of these spars was made to evaluate the torsion-flexure coupling associated with symmetric lay-ups. The materials used in this study were uniweave AS-4 graphite and a matrix comprised of Shell 8132 resin and U-40 hardener. Experimental tests were conducted on five spars to determine spar twist and bend as a function of load for 0°, 17°, 30°, 45° and 60° fiber angle lay-ups. Symmetric fiber layups do exhibit torsion-flexure couplings. Predictions of the twist and bend versus load were made for different fiber orientations in laminated spars using a spline function structural analysis. The analytical results were compared with experimental results for validation. Excellent correlation between experimental and analytical values was found.

INTRODUCTION

Cantilevered airfoils with high aspect ratios such as wings or rotor blades are generally soft in flexure. The presence of unsteady ærodynamic forces and a lack of flexural stiffness can lead to airfoil oscillations in bending and twist. The magnitudes of such instabilities depend both on æroelastic and ærodynamic factors, and can range from the imperceptible to the destructive.

Rotor blades of helicopters in forward flight are subject to periodic ærodynamic forces that are required for lift, thrust and control. However these periodic forces can induce fluctuating bending loads and twisting moments on the blades not associated with flight requirements. If the resultant bending excursions through an angle Δ are ærodynamically imposed so that a twisting moment though an angle α results which tends to increase the magnitude of the excursion then the effect is divergence (d α /d Δ >0) with respect to such oscillations. It follows therefore that an upwards bending accompanied by a decreasing pitch angle should lead to convergence (d α /d Δ <0) and static stability, and could improve dynamic stability, depending on the frequency and amplitude of the oscillations.

PRECEDING PAGE BLANK NOT FILMED

342 March Martin

A common form of such instabilities is flutter which primarily manifests itself as rotor tip oscillations. In terms of æroelastic factors, the amplitude of such bending excursions is inversely proportional to airfoil stiffness in torsion and flexure. Considering ærodynamic factors, the amplitude is dependent on airfoil section, thickness ratio and pitch angle. Moreover, the amplitude increases with increasing helicopter flight speed, becoming pronounced as advancing and retreating blades approach the limiting extent of their normal lift behavior at the onset of compressibility and stall effects, respectively.

With conventional blade construction bending and twisting excursions are uncoupled $(da/d\Delta = 0)$. Accordingly no ærodynamic constraints are present to damp the extent of any bending excursion, although rotor blades are subject to unsteady ærodynamic loading.

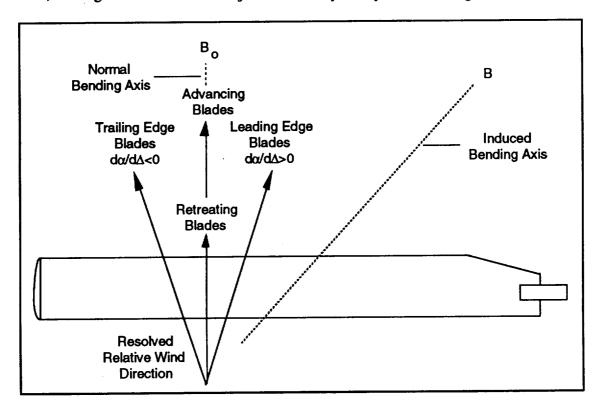


Figure 1. Rotor Blade Resolved Wind

The varying loads to which rotor blades are subject arise from unsteady air forces which have an in-plane component and a normal component relative to the rotor disc. In forward flight the rotor disc can be divided roughly into four azimuth sectors: a trailing blade sector, an advancing blade sector, a leading blade sector, and a retreating blade sector.

In all of these sectors the blades are subject to both the relative wind arising from forward flight and that from blade rotation. When resolved, the relative in-plane wind to which the blades are subject intersects the blade at various angles. In the trailing blade sector the blade is swept backward relative to the wind, and in the leading blade sector it is swept forward. The former condition is stabilizing in regard to flutter (effective da/d Δ <0) as in the case of swept-back wings, and the latter condition is destabilizing in regard to flutter (effective da/d Δ >0) as in the case of swept-back wings, in the case of swept-forward wings [1,2].

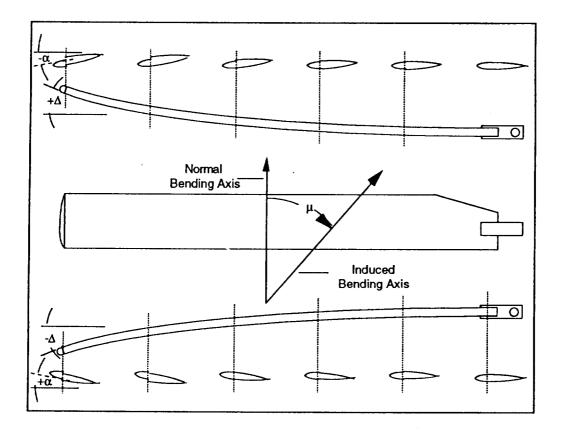


Figure 2a. Effect of Beneficial bend-twist coupling

In the advancing sector the resolved wind is essentially the sum of the rotational wind and the flight wind while in the retreating sector the resolved wind is essentially the difference between the rotational wind and the flight wind. Hence the resolved wind changes both in velocity and direction relative to the normal bending axis of the blades as the blades pass through the azimuth sectors, as shown in Figure 1. With conventional blade construction the normal bending axis B is normal to blade span so that effectively $da/d\Delta=0$, resulting in no beneficial coupling.

Further complicating the ærodynamic loading, because the blades are twisted, the outboard section of the advancing blade can be subject to an updraft while the in-board section is subject to the downwash. Moreover, compressibility in the advancing blade and stall in the retreating blade can directly lead to blade flutter.

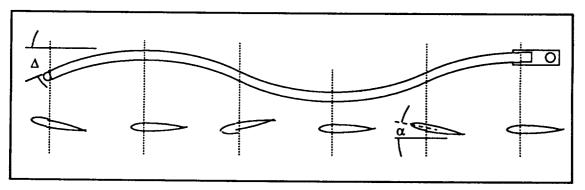


Figure 2b. Effect of Beneficial bend-twist coupling

Furthermore, rotor blades can also be subject to significant bending loads and twisting moments which do not depend on sector. Gust loading can subject rotor blades to high loads at high flight speeds which can result in significant bending excursions. Ice accumulation can so distort the airfoil section that flutter can be induced. Abrupt maneuvers can cause a rotor blade root to contact its flapping stops, as can hard landings. Resulting blade bending can bring a blade in contact with portions of the fuselage.

Essentially, the highly unsteady ærodynamic forces to which rotor blades are subject arise from these diverse sources and lead to blade flutter and even possibly dangerous blade bending excursions. Because in normal blade construction da/d Δ =0, little damping is available.

It is evident that the amelioration of the effects of these fluctuating ærodynamic forces on blade bending and twisting beyond those required for lift, thrust and control would improve helicopter safety and reliability. One means is to employ æroelastic constraint wherein the blades are made sufficiently stiff to largely resist such bending and twisting or to significantly increase blade flapping-hinge offset. However this brute strength approach results in excessive blade weight and might raise rotor hub stress levels beyond safe limits.

An alternative means is to employ ærodynamic constraint wherein convergent torsionalflexural coupling would diminish the amplitude of fluctuating blade bending and twisting, particularly at high flight speeds, and might result in a noticeable reduction in fuselage vibration.

Accordingly, if an airfoil could be so constructed that a bending excursion through section angle $d\Delta$ structurally induces a twisting moment through section angle $d\alpha$ then the airfoil exhibits torsional-flexural coupling: $d\alpha/d\Delta \neq 0$. Furthermore, if $d\alpha/d\Delta < 0$ a rotor blade would exhibit convergent behavior with upwards bending (+ $d\Delta$) accompanied by decreasing pitch angle (- $d\alpha$) and vice versa, which denotes beneficial torsional-flexural coupling. Such beneficial coupling could be induced in a rotor blade if the normal bending axis were skewed through an angle μ . Such an induced bending axis is also shown in Figure 1.

Considerable work has been done on developing spars which impose a beneficial coupling on rotor blades, thereby improving the performance of helicopter rotors under extreme flight conditions, particularly abrupt maneuvers [3,4,5,6].

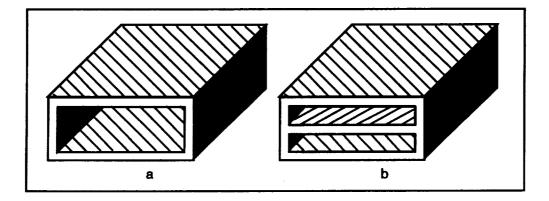


Figure 3. Alternative symmetric laminate construction

The effect of torsion-flexure convergence on a blade subject to first order bending is shown in Figure 2a for any azimuth sector. Hence a bending excursion always results in twisting so as to oppose the bending: $d\alpha/d\Delta < 0$. The possible effect of beneficial torsion-flexure coupling on higher orders of bending is shown in Figure 2b.

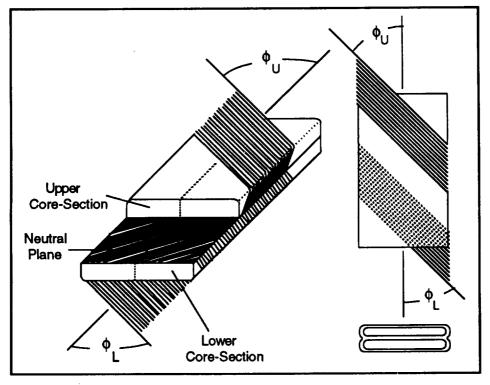


Figure 4. Sectored-core spar

EXPERIMENTAL RESULTS

To construct a rotor blade whose actual bending axis is skewed from its normal bending axis requires a spar construction in which the flexural modulus of the spar can be controlled in different directions relative to the longitudinal axis of the spar, characterized as aeroelastic tailoring [7].

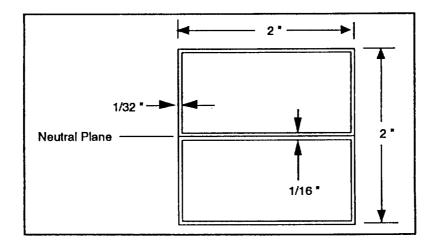


Figure 5. Box-beam cross-section

This behavior can be induced in the spar through an unbalanced symmetric sandwich laminate, such as [q/core/q] as shown in Figure 3a. However, this lay-up sequence cannot be achieved through continuous filament winding processes [8,9].

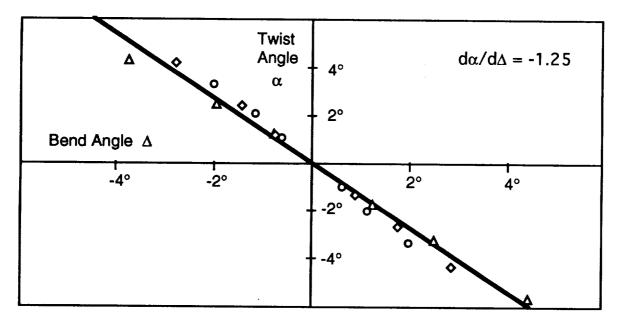


Figure 6. Coupling behavior of a $\phi = 45^{\circ}$ sectored-core symmetrical wound spar

This shortcoming is circumvented by forming the spar of two box-beams joined at the center as shown in Figure 3b. The individual box elements are wound in opposite directions and joined as shown in Figure 4. The resulting sectored-core lamination sequence formed by this process is [q/core/-q/core/q]_s. The central –q ply sequence does not detract significantly from the bending-torsion coupling [10].

A series of prototype spars were fabricated with this construction to demonstrate the behavior. The spars were fabricated using continuous uniweave carbon (<1% 90° glass) and Shell 828 Resin with V-40 curing agent. A single ply was wound about each 36 inch long core at ϕ angles of 0, 17, 30, 45, 60° and then joined to form a box-beam as shown in Figure 5.

The uni-weave material is primarily unidirectional carbon fiber with a small (<2%) amount of glass running in the 90° direction to maintain fabric stability. Winding the fabric onto the cores was a relatively simple matter.

As is evident from the twisting-bending behavior exhibited by the prototype smart spar as illustrated in Figure 6, beneficial torsional-flexural coupling can be realized using sectored-core symmetrical sequence construction and conventional continuous-filament fabrication techniques. The torsion-flexure coupling associated with spars formed from a ϕ =45° winding is illustrated.

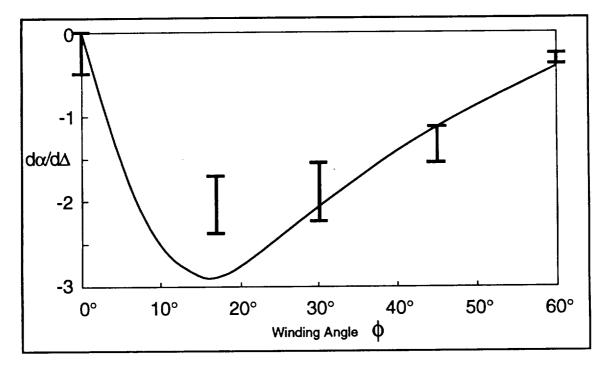


Figure 7. Coupling behavior of the sectored-core wound spars examined

A spline-function aided structural analysis has been developed expressly for the study of composite materials by accounting for the physical material inhomogeneities between plies. Initial efforts of applying this model to prototype spars with ply orientations ranging from 0° to 60° shows promising results, as illustrated in Figure 7.

The solid line in Figure 7 indicates the predicted results. Although the $\phi \approx 45^{\circ}$ winding showed the greatest twist per unit of bending load, the peak coupling $d\alpha/d\Delta \approx 2$ occurs at $\phi \approx 17^{\circ}$ for the configuration shown in Figure 5.

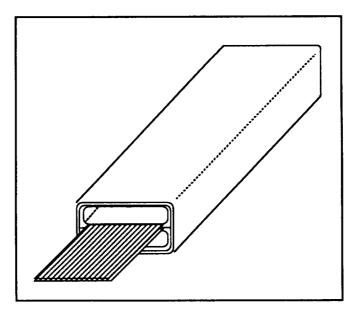


Figure 8. Placement of longitudinal yarns

In actual service rotor blade spars are subject to high centrifugal loading, a condition that must be accounted for by longitudinal yarn layups. To account for this spanwise loading on the spars longitudinal yarns can be inserted adjacent to the neutral plane, as shown in Figure 8. With longitudinal yarns it is expected that the winding angle ϕ which corresponds to the maximal torsion-flexure coupling will be displaced to higher values.

CONCLUSION

A continuous-filament construction "smart" laminated composite box-beam spar for helicopter rotor blades is described which corrects itself when subject to undesirable bending excursions or flutter. Experimental and theoretical characterization of these spars was made to evaluate the torsion-flexure coupling associated with symmetric lay-ups.

Five laminated composite box spars were constructed from a uniweave graphite fiber and epoxy matrix. The spars were made with 0° , 17° , 30° , 45° , and 60° fiber orientation angles with respect to the longitudinal axis. The analytical modeling involved spline function displacement approximations to predict the deformation properties of laminated spars.

From the results of the analytical work, stresses and relevant deflections were found and compared to the test results conducted. Correlations were determined and plotted for each case tested. The greatest twist per unit bending load was found at $\phi=45^{\circ}$ and maximum tension-flexure coupling at $\phi=17^{\circ}$.

REFERENCES

- 1. Shirk, M. H., et. al. "On the Track of Practical Forward-Swept Wings." J. Astronautics and Aeronautics, January 1982.
- Weisshaar, T. A. "Divergence of Forward Swept Composite Wings." J. Aircraft, Article No. 79-0722R, Vol. 17, No. 6, pp. 442-448, June 1980.
- Smith, E. C. and I. Chopra "Formulation and Evaluation of an Analytical. Model for Composite Box-Beams." AIAA/ASME/AHS/ASC, 28th Structures, Structural Dynamics and Materials Conference, 1989.
- 4. Chandra, C., A. D. Stemple, and I. Chopra "Thin-Walled Composite Beams Under Bending, Torsional, and Extensional Loads." J. Aircraft, AIAA, SDM Conference, 1990.
- 5. Hong, Chang-Ho and I. Chopra "Aeroelastic Stability Analysis of a Composite Rotor Blade." J. American Helicopter Society, pp. 57-67, April 1985.
- Smith, E. C. and I. Chopra "Formulation and Evaluation of an Analytical Model for Composite Box-Beams." AIAA/ASME/AHS/ASC, 28th Structures, Structural Dynamics and Materials Conference, 1989.
- 7. Shirk, M. H. and T. J. Hertz "Aeroelastic Tailoring-Theory, Practice, and Promise." J. Aircraft, Vol. 23, No. 1, pp. 6-17, 1984.

350

- Atanasoff, H. and A. J. Vizzini "A Manufacturing Process for Open Mold Mechanically Coupled Composite Box Beams With Foam Tooling." AIAA/ASME/AHS/ASC, 28th Structures, Structural Dynamics and Materials Conference, pp. 798-808,1989.
- Stemple, A. D. and S. W. Lee "Large Deflection Static and Dynamic Finite Element Analysis of Composite Beams With Arbitrary Cross-Sectional Warping." AIAA/ASME/AHS/ASC, 28th Structures, Structural Dynamics and Materials Conference, pp. 1788-1797,1989.
- Greenhalgh, S. "Mechanical Characterization of Twisting-Bending Coupling of Composite Box-Beam Structures", Masters Thesis, North Carolina State University, Raleigh, 1992.

ATTENDEES

		T
Guang-Wu Du	Hon Kay Wong	Jayakumar Radhakrishnan
Drexel University	Drexel University	Drexel University
Department of Materials Engineering	Department of Materials Engineering	Department of Materials Engineering
Fibrous Materials Research Center	Fibrous Materials Research Center	Fibrous Materials Research Center
Bldg. 29-201	Bldg. 27-439	Bldg. 27-439
Philadelphia, PA 19104	Philadelphia, PA 19104	Philadelphia, PA 19104
(215) 895-6618	(215) 895-1642	(215) 895-1642
FAX:(215) 895-6684	FAX:(215) 895-6684	FAX:(215) 895-6684
Jenny Yu	John McKelvie	M. Mitchell Marmel
Drexel University	Drexel University	Drexel University
Department of Materials Engineering	Department of Materials Engineering	Department of Materials Engineering
Fibrous Materials Research Center	Fibrous Materials Research Center	Fibrous Materials Research Center
Bldg. 27-439	Bldg. 27-439	Bldg. 27-439
Philadelphia, PA 19104	Philadelphia, PA 19104	Philadelphia, PA 19104
(215) 895-6812	(215) 895-1603	(215) 895-1642
FAX:(215) 895-6684	FAX:(215) 895-6684	FAX:(215) 895-6684
Mahmoud El-Sherif	Manal Shaker	Nahid Azab
Dréxel University	Drexel University	Drexel University
Department of Materials Engineering	Department of Materials Engineering	Department of Materials Engineering
Fibrous Materials Research Center	Fibrous Materials Research Center	Fibrous Materials Research Center
Bldg. 27-439	Bldg. 27-439	Bldg. 27-439
Philadelphia, PA 19104	Philadelphia, PA 19104	Philadelphia, PA 19104
(215) 895-2324	(215) 895-1642	(215) 895-1642
FAX:(215) 895-6684	FAX:(215) 895-6684	FAX:(215) 895-6684
Shichuang Hu	Tara Glasgow	Zhong Cai
Drexel University	Drexel University	Drexel University
Department of Materials Engineering	Department of Materials Engineering	Department of Materials Engineering
Fibrous Materials Research Center	Fibrous Materials Research Center	Fibrous Materials Research Center
Bldg. 27-439	Bldg. 27-439	Bldg. 27-439
Philadelphia, PA 19104	Philadelphia, PA 19104	Philadelphia, PA 19104
(215) 895-1642	(215) 895-1642	(215) 895-1642
FAX:(215) 895-6684	FAX:(215) 895-6684	FAX:(215) 895-6684
Alan Lawley	Albert Wang	You-Qui Wang
Drexel University	Drexel University	Drexel University
Department of Materials Engineering	Department of Mechanical Engineering	Department of Mechanical Engineering
Philadelphia, PA 19104	Phila, PA 19104	Phila, PA 19104
(215) 895-2322	(215) 895-2297	(215) 895-2297

PRECEDING PAGE BLANK NOT FILMED

353

ر بر ا

11

Keith Burgess Techniweave, Inc. P.O. Box 6314 East Rochester, NH 03687	Anant T. Mahale Textile Research Institute 601 Prospect Ave P.O. Box 625 Princeton, NJ 08542	Janice Maiden Textile Technologies, Inc 2800 Turnpike Drive Hatboro, PA 19040
(603) 335-2115 (603) 335-3200 Fax	(609) 924-3150 Fax:(609) 683-7836	(215) 443-5325 FAX: 675-4580
Hiroshi Tamaki Three-D Composites Research Corp. C-B3 TCI 2-1-6, Sengen Tukuba-shi, Ibari-ken 305 Japan	Eric Lang University of Delaware 126 Spencer Lab 4DEL Newark, DE 19701	Tim Kostar University of Delaware 126 Spencer Lab 4DEL Newark, DE 19701
0298-58-6170 0298-58-6218 (FAX)		
Tsu Wei Chou University of Delaware Department of Mechanical Engr. Newark, DE 19716	Yuris A. Dzenis University of Texas at Arlington Department of Aerospace Engineering Box 19018 Arlington, TX 76019-0018	Brian J. Hill University of Ulster at Belfast Engineering Composite Rsch. Centre Belfast BT15 1ED Northern Ireland
(302) 831-2421 (FAX) 831-8525	dzenis@stress.uta.edu Fax: (817)794-5010	(0232) 328515 FAX: (0232) 321048
John Morton Virginia Polytechnic Institute ESM Dept., VPI & SU Blacksburg, VA 24061	Alfred C. Loos Virginia Polytechnic Institute State University Blackburg, Virginia 24061	Timothy Norman West Virginia State University Department of Mechanical and Aerospace Engineering P.O. Box 6101 Morgantown, WV 26506-6101
(703) 961-6051 FAX: (703) 951-8972	(703) 231-4713 (703) 951-8972	(304) 293-3111 (304) 293-6689 FAX

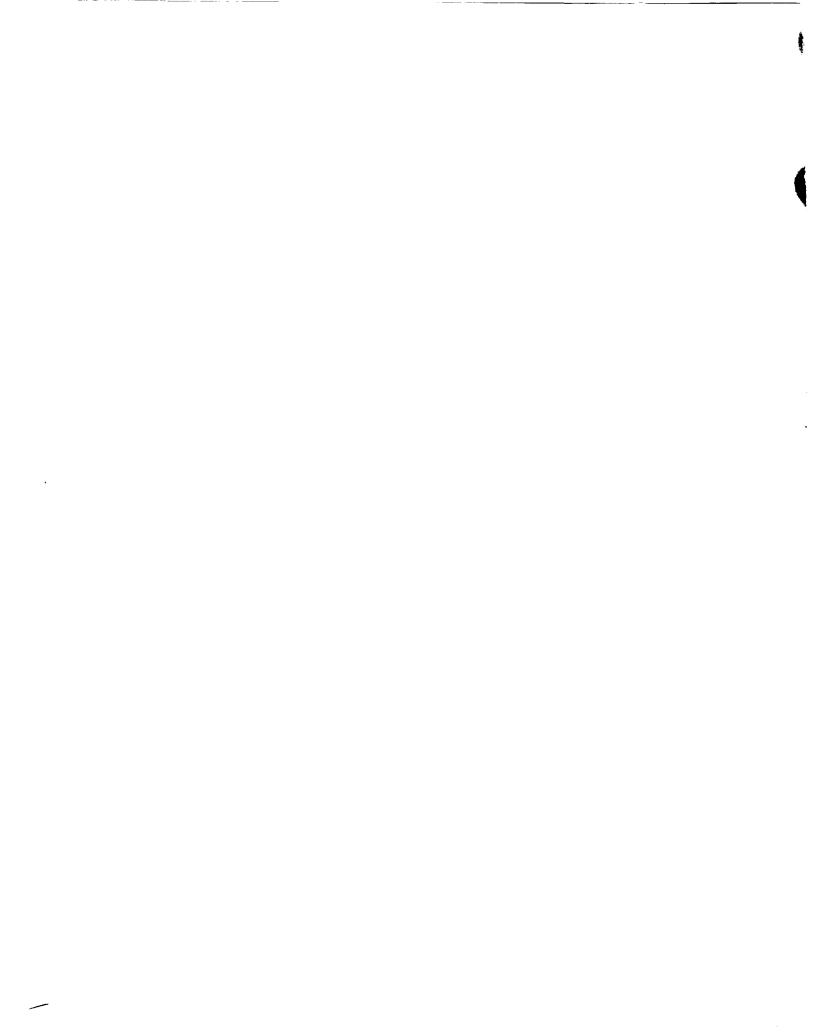
INTERNATIONAL TECHNICAL TEXTILES 2085 Harts Lane Conshohocken,PA 19428 USA Phone: (215) 825-0961 Faxi (215) 825-9262

	Daryl Chapman	John Devlin
Phila. College of Textiles and Science	Pratt & Whitney	Pressure Technology, Inc.
School Hse. La. & Henry Ave.	P.O. Box 10600	7526 Connelly Drive
Phila., Penna. 19144	W. Palm Beach, FL 33410	Hanover, MD 21076
(215) 951-2769 FAX: 951-2615	(407) 796-5970	(301) 760-9856 FAX: (301) 760-9858
Michael Higgins	Mark D. Mello	Warren La Pointe
Pressure Technology, Inc.	Quadrax Corporation	Quadrax Corporation
7526 Connelly Drive Hanover, MD 21076	300 High Point Ave. Portsmouth, RI 02871	300 High Point Ave. Portsmouth, R 02871
301) 760-9856	(401)683-6600	(401)683-6600
FAX: (301) 760-9858	Fax (401)683-6606	Fax (401)683-6606
Tim Kniveton	Martyn G. Roberts	Patrick Spriet
Rockwell International	Rolls-Royce, Inc.	SEP Division Propulsion a Poudre e
2135 W. Maple Rd.	2849 Pacesferry Rd.	Composites
M/S A-261	Atlanta, GA 30339	Le Haillan B.P. 37
Γroy, MI 48084		F 33165 St Medard en Jalles France
313) 435-5585	(404) 996-8400	56.55.30.11
313) 435-1366 FAX	FAX (404) 996-5796	Telex: SEP 560678F
Pierre Olry	Tetsuro Hirokawa	L.I. Fridman
SEP Division Propulsion a Poudre et	Shikibo, Ltd.	St. Petersburg Scientific Research
Composites	Research and Development Dept.	Institute
e Haillan B.P. 37	1500-5 Shibahraminami	of Chemical Fibers and Composite
33165 St Medard en Jalles	Yokaichi, Shiga 547	Materials, Russia
France	Japan	
ax 011-33-56-55-89-95	0748-25-1732 0748-25-1763 FAX	
P. Michaillov	R.M. Levit	Juha Sarlin
St. Petersburg Scientific Research	St. Petersburg Scientific Research	Technical Research Centre of Finlar
nstitute	Institute	Textile Laboratory
of Chemical Fibers and Composite Naterials, Russia	of Chemical Fibers and Composite Materials, Russia	P.O. Box 635 SF-33101 Tampere, Finland
		358-3116-3540
		358 31 163 498 FAX

Larry C. Dickinson Lockheed Engineering and Sciences Co. 144 Research Dr. M/S 188B Hampton, VA 23666 (804) 864-3094 (FAX) 864-7893 H. Benson Dexter NASA Langley	Klaus Drechsler MBB Deutsche Aerospace P.O. Box 801109 D-8000 Munchen 80 Germany (089) 607-229 66 FAX: (089) 607-277 96 Telex: 5287-068 mbb d John Buckley NASA/Langley Research Center	Ray Palmer McDonnell Douglas Aircraft Dept. E-84, Mail Code 36-52 3855 Lakewood Blvd. Long Beach, CA 90846 (310) 593-0439 (310) 982-0815 FAX John Master NASA/Langley Research Center
Mail Stop 188B Hampton, VA 23681 (804) 864-3094 (FAX) 864-7893	MS 387 Hampton, VA 23681 (804) 864-4561	MS 387 Hampton, VA 23681 — (804) 864-1000 (804) 864-3460 FAX
J.W. Weber NorFab Corporation	H.N. Lilani NorFab/Amatex Corporation	Alex Bogdonavich North Carolina State Univ. College of Textiles Raleigh, NC 27695-8301 (919) 515-2011 (919) 515-6532 FAX
Christopher Pastore North Carolina State Univ. College of Textiles Raleigh, NC 27695-8301 (919) 515-2011 (919) 515-6532 FAX	Joseph M. Marchello Old Dominion University Kaufman Hall Hampton Blvd. Norfolk, VA 23529 (804) 683-3759 (804) 683-5354 FAX	Maylene K. Hugh Mail Stop 226 NASA Langley Research Center Hampton, VA 23681
Ronald W. Biberstine On Site Consulting Service, Inc.	Timothy L. Collins Owens-Corning Industrial Materials Group 900 W. Valley Road, Suite 1101 Wayne, PA 19087	Frank Scardino Phila. College of Textiles and Science School Hse. La. & Henry Ave. Phila., Penna. 19144
(914) 896-4159	(215) 688-8647 (215) 688-7918 FAX (800) 733-1551 Voice Mail ID# 901.5459	(215) 951-2769 FAX: 951-2615

Maggie D'Aversa	Vish Agarwal	Garrett C. Sharpless
Ethicon, Inc.	Ethicon, Inc.	Fiber Innovations, Inc.
Rt. 22	Rt. 22	588 Pleasant St. Unit 3
Somerville, NJ 08836-0151	Somerville, NJ 08836-0151	Norwood, MA 02062
(908) 218-3059 (FAX) 218-3525	(908) 218-3059 (FAX) 218-3525	(617) 769-2400 FAX (617) 769-7547
Carl Smith	Alberto Morales	Scot Arnold
Fiberite	Fiberite	Ford Motor Company
2055 E. Technology Circle	4300 Jackson St.	PO Box 2053, Rm S-2923
Tempe, AZ 85284	Greenville, TX 75401	Dearborn, MI 48121
(602) 730-2380	(903) 455-6550 (903) 455-0315	(313) 390-3521
Dr. Virendra Kumar	Brian K. Gracias	Mike Braley
GE Corporate Research and	General Electric Aircraft Engines	General Electric Aircraft Engines
Development	M/D A375 1 Neumann Way	1 Neumann Way 8500 Governor's Hill, 3rd Floor
Bldg. K1/3A26 P.O. Box 8	Cincinatti, OH 45215	Cincinnati, OH 45215-6301
Schenectady, NY 12301		
(518) 387-5078	(513) 774-6185	(513) 774-4129
		(513) 774-4036 FAX
Patti Allison	Jack W. Baldwin	Guy Nemoz
General Electric Aircraft Engines	General Electric Aircraft Engines	Institute Textile de France
1 Neumann Way	M/D M69	Centre Technique Industriel
Cincinatti, OH 45215	1 Neumann Way	Avenue Guy de Collonque
	Cincinatti, OH 45215	B.P. 60-69132 ECULLY Cedex France
(513) 243-7281	(513) 786-1412	Flance
Ying-Jin Chen	Dr. Ignaas Verpoest	Jay Shukla
ITRI Materials Reserch Lab	Katholieke Universitiet Leuven	Lockheed Aeronautical Systems
Bldg. 77, 195 Chung Hsing Rd.,Sec.4,	Department of Mtllgy. and Mat. Eng.	Marietta, Georgia 30063-0150
Chutung,31015, Hsinchu,Taiwan	DeCroylaan 2, 3001 Leuven Belgium	
886-35-820-262 FAX	(011) 32-16-22-09-31	(404) 494-8165
	(FAX) 32-16-20-79-95	(404) 494-8345 FAX
		l

Matthias Nohr Center for Composite Materials Daimler-Benz Germany	Chien-Chieh Chao China Textile Institute Fl. 5, No. 12, Ln. 126 Sec. 3 Chun-Yang Road Tu-Chen, Taipei, TAIWAN ROC 886-2-260-5101 (phone) 886-2-260-5243 (fax)	Yu-Wei Lin China Textile Institute Fl. 5, No. 12, Ln. 126 Sec. 3 Chun-Yang Road Tu-Chen, Taipei, TAIWAN ROC 886-2-260-5101 (phone) 886-2-260-5243 (fax)
Dhuman A. A.		
Bhuvenesh C. Goswami Clemson University 161 Shrine Hall Clemson, S.C. 29634-1307	S. Rose Matic-Leigh Clemson University 161 Shrine Hall Clemson, S.C. 29634-1307	Mark Condon Draper Labs MS 6D 555 Technology Square Cambridge, MA 02140
OFFICE:(803) 656-5957 FAX: (803) 656-5973	OFFICE:(803) 656-3176 FAX: (803) 656-5973	617-258-4284
Thomas Lee Draper Labs MS 6D 555 Technology Square Cambridge, MA 02140	Moishe Garfinkle Drexel University 1733 Wallace Street Philadelphia, PA 19130	Amotz Geshury Drexel University Department of Materials Engineering Fibrous Materials Research Center Bldg. 27-439 Philadelphia, PA 19104
617-258-4284	(215) 895-1974	(215) 895-6618 FAX:(215) 895-6684
Anisur Rahman Drexel University Department of Materials Engineering Fibrous Materials Research Center Bldg. 27-439 Philadelphia, PA 19104	Charles Lei Drexel University Department of Materials Engineering Fibrous Materials Research Center Bldg. 27-439 Philadelphia, PA 19104	Dominique Ponsolle Drexel University Department of Materials Engineering Fibrous Materials Research Center Bidg. 27-439 Philadelphia, PA 19104
(215) 895-2382 FAX:(215) 895-6684	(215) 895-2382 FAX:(215) 895-6684	(215) 895-6812 FAX:(215) 895-6684
Eric Staudt Drexel University Department of Materials Engineering Fibrous Materials Research Center Bldg. 27-439 Philadelphia, PA 19104 (215) 895-1642 FAX:(215) 895-6684	Erin Ross Drexel University Department of Materials Engineering Fibrous Materials Research Center Bldg. 27-439 Philadelphia, PA 19104 (215) 895-1642 FAX:(215) 895-6684	Frank Ko Drexel University Department of Materials Engineering Fibrous Materials Research Center Bldg. 27-439 Philadelphia, PA 19104 (215) 895-1640 FAX:(215) 895-6684


Tracy Anderson 3M Industrial and Electronic Sector	Cam T. Hua Advanced Product Development	David Brookstein Albany International Research Co.
2465 Lexington Avenue South, M/S 60-N-01	2500 Pearl Buck Rd Bristol, PA 19007	777 West St. P.O. Box 9114
Mendota Heights, MN 55120		Mansfield, MA 02048-9114
(612) 736-1842 (612) 736-0431 FAX tlanderson@mmc.mmmg.com	(215) 785-3230 (215) 785-3123 FAX	(508)339-7300 FAX: (508) 339-4996
R. C. Howard Amatex Corporation	Doug Jacques Atkins & Pearce 3865 Madison Pike Covington, Kentucky 41017	Mark Derstine Atlantic Research Corp. 5945 Wellington Road Gainesville, VA 22065
	(606) 356-2001 (606) 356-2395 FAX	(703)754-5777,5743 FAX (703) 642-4021,4507
Stephen A. Cauffman Atlantic Research Corp. Bldg 300, Room 128 5945 Wellington Road Gainesville, VA 22065	Richard Brown Atlantic Research Corp. Bldg 300, Room 165 5945 Wellington Road Gainesville, VA 22065	Sabit Adanur Auburn University Textile Engineering Department Auburn University Auburn, AL 36849
(703)754-5777,5743 FAX (703) 642-4021;4507	(703)754-5777,5743 (703) 368-1553(h) FAX (703) 754-5281	(205) 844-5497 (205) 844-4068
Yasser Gowayed Auburn University Textile Engineering Department Auburn University Auburn, AL 36849	Robert S. Taylor Bentley-Harris Mfg. Co. 241 Welsh Pool Road Lionville, Pennsylvania 19353	Sharad R. Moghe BF Goodrich Aerospace 9921 Brecksville Rd. M/S D/8528 Brecksville, OH 44141
(205) 844-5497 (205) 844-4068	(215) 363-2600 (215) 524-9086 FAX	(216) 447-5384 (216) 887-5860 FAX
Pierre Minguet Boeing	Dan Kovach Boeing Aerospace P.O. Box 3707 Seattle, WA 98124-2207	Dr. Christian Gunther Boeing Helicopter Company Rt. 291 Stewart Ave. Eddystone, PA 19013
	(206) 393-7058 FAX	(215) 499-9526 FAX (215) 499-9568

.

·

REPORT DOCUMENTATION PAGE		Form Approved		
Public reporting builds for this collection of information is estimated to			OMB No. 0704-0188 reviewing instructions, searching existing data source	
collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 22	is for reducing this burden, to Washington He 202-4302, and to the Office of Management (information Send comments rep adquarters Services, Directorate and Budget, Paperwork Reduction	reviewing instructions, searching misting data sourc garding this burden estimate or any other aspect of U for Information Operations and Reports, 1215 Jeffers on Project (0704-0188). Washington, DC 20503.	
1. AGENCY USE ONLY(Leave blank,) 2. REPORT DATE August 1993	3. REPORT TYPE AN Conference Publ	D DATES COVERED	
4. TITLE AND SUBTITLE FIBER-TEX 1992			5. FUNDING NUMBERS	
	dvanced Engineering Fibers a	nd Textile	505-63-50-05	
6. AUTHOR(S)				
John D. Buckley, Editor				
7. PERFORMING ORGANIZATION NASA Langley Research C			8. PERFORMING ORGANIZATION REPORT NUMBER	
Hampton, VA 23681-0001	enter			
			L-17266	
9. SPONSORING/MONITORING A	GENCY NAME(S) AND ADDRESS	(ES)	10. SPONSORING/MONITORING	
National Aeronautics and S Washington, DC 20546-000	Space Administration	. ,	AGENCY REPORT NUMBER	
Wainington, DC 20340-000)1		NASA CP-3211	
11. SUPPLEMENTARY NOTES				
Co-sponsors: Department Clemson University, Clems	of Defense, Washington, DC; ion. South Carolina: North C	Drexel University, F arolina State Univer	Philadelphia, Pennsylvania; sity, Raleigh, North Carolina.	
12a. DISTRIBUTION/AVAILABILIT	Y STATEMENT		26. DISTRIBUTION CODE	
Unclassified-Unlimited				
Subject Category 24				
13. ABSTRACT (Maximum 200 words, This document is a second				
North Carolina State Univ	ersity/DOD conference on F	ihers Textile Techn/	l University/Clemson University/ ology, and Composites Structures	
27-29, 1992. Conference p	eese Student Center at Drexe apers presented information	on advanced engine	delphia, Pennsylvania on October	
structures, structural labr	IC DIODUCTION. Mechanics and	d characteristics of a	woven composites and the latest	
activities focused on textile	e structural composites.	composite materials	and structures as related to global	
14. SUBJECT TERMS				
	ers; Fiber testing; 3-D braidi	ing; Stitching; Auton	15. NUMBER OF PAGES	
Towpreg, Inermoplasues;	AIRCEAL		16. PRICE CODE A 16	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF OF ABSTRACT	ICATION 20. LIMITATION	
Unclassified	Unclassified	Unclassified	OF ABSTRACT	
NSN 7540-01-280-5500	· · · · · · · · · · · · · · · · · · ·		Standard Form 298(Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102	

