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Abstract

The complex Ginzburg-Landau equation with a thermal noise term is studied under
conditions when the system is convectively unstable. Under these conditions, the noise
is selectively and spatially amplified giving rise to a noise-sustained structure. Analytical
results, applicable to a wide range of physical systems, are derived for the variance, and
the coefficients and thermal noise term are determined for Taylor-Couette flow with an

axial through-flow. Comparison is made to recent experiments.



Consider the equilibrium state of some spatially extended system and a small spatially
localized perturbation about this state. If the perturbation grows at a fixed location
in space, the equilibrium state is absolutely unstable. However, if the perturbation is
convected with the mean flow such that it grows only in a moving frame of reference,
eventually damping at any fixed location, the equilibrium state is convectively unstable.? =5
Although little attention has been given to this distinction until fairly recently, it is an
important distinction since these two types of instability give rise to qualitatively very
different behavior. In a convectively unstable system external noise is selectively and
spatially amplified giving rise to spatially growing waves and a noise-sustained structure,2—4
a concept introduced with studies of the complex Ginzburg-Landau equation. In contrast,
in an absolutely unstable system structure is sustained by the internal dynamics.

Since noise — whether thermal or otherwise - is an element common to all physical
systems and since any system with nonzero group velocity will be convectively unstable
sufficiently close to and above onset of the instability,® one would expect noise-sustained
structure to be very common in nature. For example, in addition to being important
in classic open-flow fluid systems such as jets, wakes, and channel flow,!=%" the above
concepts are important in such diverse systems as film flow,®° binary fluid convection,®:1
sidebranching in dendrites,*111? and traffic flow.* Considering the general nature of these
concepts, there are undoubtedly systems in other fields to which they would also apply.

Since the complex Ginzburg-Landau (CGL) equation is a generic equation which de-
scribes systems near onset of an instability, it has proved to be an ideal system in which
to explore these concepts. Also, since the equation is rather simple in form, there is some
hope for deriving analytic results. Considering the fact that, up to this point, no analytic
results have existed for convectively unstable systems in the presence of spatially extended
noise, analytic results should prove very useful and would provide further insight into the

interaction of noise with convectively unstable systems.
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Recently, noise-sustained structure has been studied experimentally in Taylor-Couette
flow with an imposed axial through-flow.13~1% It was found that under convectively unsta-
ble conditions, noise-sustained structures of traveling vortices exist. This system is very
useful for study in that, for sufficiently small Reynolds numbers, noise-sustained structure
exists in a parameter regime where the flow is laminar and axisymmetric, thus allowing for
a great deal of experimental control. Further, the CGL equation is valid for this system in

a parameter regime of experimental interest.

Since in a convectively unstable system noise is amplified exponentially in space, even
extremely low levels of noise will be sufficient to produce a noise-sustained structure,
assuming the system is sufficiently long.?=* A very interesting question asked in ref. 15 is
whether or not the noise-sustained structure seen in the Taylor-Couette experiments is of
thermal origin. This is an intriguing and important question since an affirmative answer
would imply that further efforts at noise reduction - short of decreasing the temperature of
the system — would have no effect on the flow. Also it could have important consequences

16,17 Based on

for related systems such as Rayleigh-Benard convection with through-flow
numerical solution of the CGL equation it was argued in ref. 15 that thermal noise may
play an important role in the Taylor-Couette expériments. However, as stressed by the
authors, their result provides only an order of magnitude estimate since the noise term
used in the CGL simulation was not derived rigorously from the Navier-Stokes equations.
We note that thermal noise is also believed to be important in recent experiments in binary

fluid convection.1?

In this Letter we will first study, without reference to any particular physical system,
the CGL equation with a noise term that is delta-correlated in space and time. We will
present for the first time analytic results for this system under conditions when the system
is convectively unstable. Since the CGL equation is a generic equation and considering the

facts that, as noted previously, noise is an element common to all physical systems and all
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systems with nonzero group velocity are convectively unstable at onset of the instability,
these results will be applicable to a wide variety of physical systems.

Next we will focus attention on the particular system mentioned previously (i.e.
Taylor-Couette flow with an axial through-flow) and rigorously derive the noise term for
the CGL equation, as well as the coeflicients of the CGL equation (including the nonlinear
term). Based on these results, it appears that the noise-sustained structure seen in the
experiments, although extremely small ~ being roughly an order of magnitude larger than
thermal noise — is not of thermal origin. However, even if the structure in these experi-
ments is not thermal in origin, it seems likely that experiments can be designed in which
structure is sustained by thermal noise (i.e. molecular motion), considering the fact that
the noise in these experiments is already so extremely small.

18—-20

The complex Ginzburg-Landau equation with a noise term is

Ay = e€ad —vA, +bA,, —c|A|PA+ ¢ (1)

where a, b, and c are in general complex coeflicients, v is the group velocity, e = R — R,
measures the “distance” above onset of the instability (where R and R. are the control
parameter and critical value of that parameter, respectively), £(z,t) is a complex thermal
noise term, and A(z,t) is the slowly varying complex amplitude of a plane wave solution
at criticality. The conditions satisfied by { are ({(z,t)£*(z',t')) = o28(z — 2')6(t — t'),
(&(z,t)&(2',t')) = 0, and (€(z,t)) = 0, where * refers to the complex conjugate, § is the
Dirac delta function, and the amplitude of the noise level is given by o. These condi-
tions will be satisfied if (¢-(z,t) &-(2',1')) = (Ei(=,t) &i(2', 1)) = (62/2)6(z — =')6(t — 1'),
(é-(z, ) €i(2",t')) = 0, and (&-(z,t)) = (éi(=z,t)) = 0, where the subscripts r and i refer to
the real and imaginary parts, respectively. As shown by Graham,?? the fluid equations in
the presence of thermal noise and near onset of the instability may be reduced to eq. (1).

Assuming that |A| is sufficiently small so that the nonlinear term may be neglected,
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the covariance function K(z,z',t) = (A(z,t)A*(z',t)) (where the angled brackets signify

the expectation value) satisfies the following equation:
K, =2ea, K —v(K,+ Kz)+ bKzz + 0" Koo + o28(z — z') (2)

This equation was derived by discretizing the linearized eq. (1) in space, applying the
results for a set of coupled ordinary differential equation,?! and then returning to the
continuous spatial limit.

Assuming that the system is convectively unstable, i.e. 0 < ea, < v?b./(4/b|?),>* the
stationary solution of eq. (2) for the semi-infinite interval [0, c0) with boundary conditions
K(z,0,t) = K(0,z',t) =0is

20’2

T2

o-l‘

K(z,z') =

dk

k'z') 1 _ 1
a? + bk? + b* k"2 72 + (k — kI)Z ,),2 + (k + kl)2
(3)
where v = vb,/|b|? and a = 1/v2b./(2|b|?) — 2¢a,. After taking z = z', making a change

of variables, and performing one of the integrations, eq. (3) may be reduced to

K(z,z) =

o . /"Z cos(sz) — e~ 3 Vo472 =)cosh( 3 sz) @)
——Ye 3 =

alld Vst + 12 (82 +77)

where 7 = (+/2b, /|b))a. This equation gives the variance K(z,z) = (|A(z,t)|?) at the

point z. For large z eq. (4) may be written as the asymptotic series

o2 1 1 elry—m= B2+ 3)
K(z,z) ~ 7 -
@2~ T (‘72—7)2 72+(%‘n)2) 2 aree O
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where the G are the coefficients in the Taylor expansion

1 ( 2 B 1 ) Z p
VZn+g\v?—(¢g+n)? 1+ s+(q)? 7 + 5= (q)2 tq
where

s+(q) = :—i(n +4q) £ L—l:'«/q(Zn + q)



where (1) = /m and T'(£ + 1) = (£ — )I'(¢£ — ), T being the gamma function. The
coefficient of z in the exponential, v — 7, is precisely twice the spatial growth rate of
the amplitude of the most rapidly growing mode?: as one would expect. Although this
expression for the variance may look somewhat formidable, note that the leading term in
the asymptotic series is given simply by replacing the sum in eq.(5) by 1 and, as we shall
see, this may be all that is necessary in many cases. Another feature that should be noted
is that the variance does not increase purely exponentially in space for large =, but rather
as exp((y — 1)2)/ V.

We now focus attention on Taylor-Couette flow with an axial through-flow. This sys-
tem consists of two concentric cylinders with inner and outer radii »; and r,, respectively,
with the inner cylinder rotating with velocity v;, and with an imposed through-flow in
the axial direction. The radial, azimuthal, and axial coordinates are denoted by (r,0, z),
respectively. In the parameter regime of interest, the flow will be axisymmetric and all
derivatives with respect to # will vanish. To derive the CGL equation the Navier-Stokes
and continuity equations for the deviation of the velocity and pressure about the station-
ary background flow are written in cylindrical coordinates and the velocity, distance, time,
and pressure are scaled with v/d, d, d®/v, and v?/d?, respectively, where d is the gap dis-
tance between the cylinders and v is the kinematic viscosity. There are three independent
parameters for this system: 1) the scaled inner cylinder velocity or azimuthal Reynolds
number Re,, = v;d/v, 2) the scaled average axial velocity of the stationary background
flow or axial Reynolds Re,, = Wd/v, and 3) the scaled inner cylinder radius r;/d, which
may be written in terms of the radius ratio v, /r; as r;/d = 1/[(r,/7;) — 1].

As Re,, is gradually increased for a given Re,, and r;/d, at Re,, ., the critical value
of Re,., the stationary background flow becomes unstable. We define ¢ that appears in
the CGL equation (1) as € = Re,, — Regz,c. This measures the “distance” above onset of

the instability and is used as the expansion parameter in deriving the CGL equation. The
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linear coefficients a, v, and b are particularly easy to derive, being determined from the
linear stability problem. Assuming a solution of the linearized fluid equations of the form
exp(A(k, Rey; )t + ikz), where t and z are the scaled time and axial position, respectively,
these coefficients are given by a = OA/O0Re,., v = —8X;/3k, and b = —(1/2)3%)/0k?,
where the derivatives are evaluated at criticality (i.e. at k. and Re,; ). The critical
values of k and Re,, are determined from 8A,/8k = 0 and A, = 0. The calculation of the
coefficient of the nonlinear term, ¢, is much more involved and we only give a numerical
value in this paper. For details of the derivation of coefficients of the CGL equation, the
reader is referred to, for example, ref. 18-20. In terms of the amplitude A appearing in the
CGL equation (1), the scaled radial, azimuthal, and axial fluid velocities and pressure are
given by (u,v,w,p) = A(z,t)(U,V,W, P)exp(itkcz — iw.t) + c.c., where U(r), V(r), W(r),
and P(r) are the radial eigenfunctions of the linear stability problem at criticality, k. and
w, are the critical wavenumber and frequency, respectively, and c.c. stands for the complex
conjugate. Chebychev polynomials were used in the radial direction giving highly accurate
results.

In the presence of thermal noise, noise terms N(}) (i = r,6,z) must be added to the
Navier-Stokes equations for the radial, azimuthal, and axial velocity components u, v, and
w, respectively. From Landau and Lifshitz?? we find that for thermal noise (writing the

noise term in cylindrical coordinates)

NO = 2 [(rSC9), + 58 4 (r§¢0), + BO] (i =1,0,2) (6)

T

where B() = (—5(99) §(m9) (), and where the correlation between the random components

of the stress tensor (in scaled units) are

(SC)(r,0,2,8)S™)(+' 0,2’ 1)) =

2kT ) . 2 . 1
ons (i) g(km) (im) g (ki) _c (ik) ¢(Im) A _p ! Ry
T | B8 + st ¢ (4 3)5 5 ]6(1‘ r)-6(0-8)8(z—2")8(t— ) ()
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where §(t9) is the Kronecker delta function (3,5 = r,8,z), k is Boltzmann’s constant, T
is the absolute temperature of the fluid, p is the fluid density, and ( is the ratio of the
second (or bulk) viscosity to the usual viscosity. Expanding the velocities and random
components of the stress tensor in e¢™®, where m corresponds to the azimuthal mode
number, and noting that the m=0 mode dominates, we find §(¢ — ') = 1/(27), in addition
to all the derivatives with respect to § vanishing.

To find the correlation of the noise term we followed Graham.2® The correlation of

. the noise term is found to be

(ot Q 4 8 2
{£(=,8)¢" (=", 1)) = 2W|C|25(”“zl)5(t—t') (g +{Oh +(§ -+ (¢ - 5)-’3 + 14 (8)
where
t12 2
I1=/dr1(1Uf—£]—— + |t )
r\|r dr T
1 2 1.2
L= [ dr=k2|W1|
r
t 2 2 1 2
I; = /drl }UT — ﬂ + kW + EU*—ichf — —2—UT - ﬂ
r\|r dr r r dr
+12 + 2
I4=/d1'-1- kzth|2+ gvT_iV_ + lwt_fil_{_ikcg’r
r T dr r dr

C= / dr (U'U + VIV + W'W)

where Q@ = kT/(pdv?) is a dimensionless number related to the thermal noise level and
where Ut(r), V1(r), and W1(r) are the radial eigenfunctions of the adjoint stability prob-
lem at criticality.

Numerically evaluating the noise term for a radius ratio of r;/r, = .7376 which cor-
responds to the experiments of Refs. 13 and 15, and for an axial Reynolds number of
Re.. = 3, gives (£€*') = .32023Q6(z — 2')8(t — t'). For these experiments we also
have d = .6769cm, p = 1.04g/cm’®, v = .0158cm?/s, and T = 293°K which gives
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Q = 2.30 x 1071°. The eigenfunctions were normalized such that |U(ra)| = 1, where
7h = (ri +75)/2. Specifying how the eigenfunctions are normalized is essential when evalu-
ating the noise correlation and the nonlinear coefficient, since the values of these quantities
depend on the normalization of the eigenfunctions. The numerical coefficient of the noise
correlation is rather insensitive to the value of Re,. for small Re,., being, for example,
.31719 for Re,, = 0. We note that the noise correlation is independent of ¢, which is prob-
ably a reflection of the incompressibility of the flow. This is fortunate since the second

viscosity is unknown for liquids at low frequencies.??

Evaluating the linear coefficients for Re,. = 3 gives a = .31448 + 6.806 X 10732,
v = 3.69024, and b = 1.91052 + .14070:. The nonlinear coefficient is found to be ¢ =
45127 + 4.444 x 10~3;. We also find that k. = 3.13713, Re,.. = 84.3035, and w. =
11.0294. The real parts of the coefficients a, b, and c, and k. and Re, ., are found to be
rather insensitive to the value of Rey. for small Re,., being, for example, a, = .31372,
b, = 1.91094, ¢, = .45192, k. = 3.13620, and Re,; . = 84.0148 for Resz = 0. The
group velocity, the imaginary parts of the coefficients, and the critical frequency are 0 for
Re,. = 0 and are approxin;ately proportional to Re,, for small Regyz.

Figure 1 (solid line) shows the root mean square (RMS) average of the radial velocity
at 7 = 7, as a function of z from a numerical simulation of the CGL equation (1) using
the above values for the coeficients and thermal noise term and using € = 4.668. The
RMS average of the radial velocity at r = 73 is related to the RMS average of |4| by
(u(ry,z,1)?)1/? = 2(|A(z,t)|?)}/? by virtue of the normalization taken for the radial
eigenfunctions (see discussion following eq. (8)). As can be seen, the noise is spatially
amplified resulting in a noise-sustained structure. In the absence of a continuous source of
noise, the solution is zero everywhere. Figure 1 (dashed line) shows (u?)1/? at r = rj as
given by the leading term in eq. (5). As can be seen the agreement is excellent between

the analytic result and the numerical solution of the CGL equation for small |A|. In order
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to see the range of = for which eq. (5) is valid, fig. 2 shows In((22)!/2) from the numerical
simulation (solid line), from the leading term in eq. (5) (dashed line), and from eq. (5)
keeping three terms in the asymptotic series (ie. n = 2) (dotted line). Although the RMS
average as given by the leading term in eq. (5) deviates somewhat from the numerical
solution for smaller z, the RMS average as given by the numerical solution and the RMS
average as given by eq. (5) with n = 2 show excellent agreement along most of the curve.
Referring back to fig. 1 we see that the value of z at half maximum is about 26.5. For
the experiments of Refs. 13 and 15, this distance is about 21.%4 Referring to eq. (5) and
noting that (v —)/2 = .5625, this implies that the noise amplitude in the experiments is
about (21/26.5)!/4exp(.5625 x (26.5 — 21)) ~ 20 times thermal noise.

In conclusion, we have studied the complex Ginzburg-Landau equation with a thermal
noise term under conditions when the system is convectively unstable. Analytic results were
derived for the variance. Since the CGL equation is a generic equation, and considering
the facts that noise is an element common to all physical systems and all systems with
nonzero group velocity are convectively unstable at onset of the instability, these results
will be applicable to a wide variety of physical systems. The coefficients and thermal
noise term for the CGL equation were determined for Taylor-Couette flow with an axial
through-flow and comparison was made to experiment. Although the effective noise level
in the experiments of Ref. 13 and 15 appears not to be thermal in origin, the noise level
is nonetheless extremely small, being roughly an order of magnitude larger than thermal
noise. Therefore, even if the structures in the experiments are not thermally sustained, it
seems likely that an experiment can be designed in which thermally-sustained structure

does exist.
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