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Abstract

The complex Ginzburg-Landau equation with a thermal noise term is studied under

conditions when the system is convectively unstable. Under these conditions: the noise

is selectively and spatially amplified giving rise to a noise-sustained structure. Analytical

results, applicable to a wide range of physical systems, are derived for the variance, and

the coefficients and thermal noise term are determined for Taylor-Couette flow with an

axial through-flow. Comparison is made to recent experiments.



Consider the equilibrium state of some spatially extended system and a small spatially

localized perturbation about this state. If the perturbation grows at a fixed location

in space, the equilibrium state is absolutely unstable. However, if the perturbation is

convected with the mean flow such that it grows only in a moving frame of reference,

eventually damping at any fixed location, the equilibrium state is convectively unstable. 1-5

Although little attention has been given to this distinction until fairly recently, it is an

important distinction since these two types of instability give rise to qualitatively very

different behavior. In a convectively unstable system external noise is selectively and

spatially amplified giving rise to spatially growing waves and a noise-sustained structure, 2-4

a concept introduced with studies of the complex Ginzburg-Landan equation. In contrast,

in an absolutely unstable system structure is sustained by the internal dynamics.

Since noise - whether thermal or otherwise - is an element common to all physical

systems and since any system with nonzero group velocity will be convectively unstable

sufficiently close to and above onset of the instability, 4,e one would expect noise-sustained

structure to be very common in nature. For example, in addition to being important

in classic open-flow fluid systems such as jets, wakes, and channel flow, 1-s,7 the above

concepts are important in such diverse systems as film flow, s,9 binary fluid convection, s,l°

sidebranching in dendrites, TM'12 and traffic flow. 4 Considering the general nature of these

concepts, there are undoubtedly systems in other fields to which they would also apply.

Since the complex Ginzburg-Landau (CGL) equation is a generic equation which de-

scribes systems near onset of an instability, it has proved to be an ideal system in which

to explore these concepts. Also, since the equation is rather simple in form, there is some

hope for deriving analytic results. Considering the fact that, up to this point, no analytic

results have existed for convectively unstable systems in the presence of spatially extended

noise, analytic results should prove very useful and would provide further insight into the

interaction of noise with convectively unstable systems.



Recently, noise-sustained structure has been studied experimentally in Taylor-Couette

flow with an imposed axial through-flowJ s-is It was found that under convectively unsta-

ble conditions, noise-sustained structures of traveling vortices exist. This system is very

useful for study in that, for sufficiently small Reynolds numbers, noise-sustained structure

exists in a parameter regime where the flow is laminar and axisymmetric, thus allowing for

a great deal of experimental control. Further, the COL equation is valid for this system in

a parameter regime of experimental interest.

Since in a convectively unstable system noise is amplified exponentially in space, even

extremely low levels of noise will be sufficient to produce a noise-sustained structure,

assuming the system is sufficiently long. 2-4 A very interesting question asked in ref. 15 is

whether or not the noise-sustained structure seen in the Taylor-Couette experiments is of

thermal origin. This is an intriguing and important question since an affirmative answer

would imply that further efforts at noise reduction - short of decreasing the temperature of

the system - would have no effect on the flow. Also it could have important consequences

for related systems such as Rayleigh-Benard convection with through-flow 16'17. Based on

numerical solution of the CGL equation it was argued in ref. 15 that thermal noise may

play an important role in the Taylor-Couette experiments. However, as stressed by the

authors, their result provides only an order of magnitude estimate since the noise term

used in the CGL simulation was not derived rigorously from the Navier-Stokes equations.

We note that thermal noise is also believed to be important in recent experiments in binary

fluid convection. 1°

In this Letter we will first study, without reference to any particular physical system,

the CGL equation with a noise term that is delta-correlated in space and time. We will

present for the first time analytic resnlts for this system under conditions when the system

is convectively unstable. Since the CGL equation is a generic equation and considering the

facts that, as noted previously, noise is an element common to all physical systems and all
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systemswith nonzerogroup velocity are convectively unstable at onset of the instability,

these results will be applicable to a wide variety of physical systems.

Next we will focus attention on the particular system mentioned previously (i.e.

Taylor-Couette flow with an axial through-flow) and rigorously derive the noise term for

the CGL equation, as well as the coefficients of the CGL equation (including the nonlinear

term). Based on these results, it appears that the noise-sustained structure seen in the

experiments, although extremely small - being roughly an order of magnitude larger than

thermal noise - is not of thermal origin. However, even if the structure in these experi-

ments is not thermal in origin, it seems likely that experiments can be designed in which

structure is sustained by thermal noise (i.e. molecular motion), considering the fact that

the noise in these experiments is already so extremely small.

The complex Ginzburg-Landau equation ls-2° with a noise term is

At = eaA - vA, + bA_ - c[A[ZA + (1)

where a, b, and c are in general complex coefficients, v is the group velocity, e _ R - Rc

measures the "distance" above onset of the instability (where R and Rc are the control

parameter and critical value of that parameter, respectively), _(z, t) is a complex thermal

noise term, and A(z, t) is the slowly varying complex amplitude of a plane wave solution

at criticality. The conditions satisfied by _ are (_(z,t)_*(z',t')) = _2g(z - z')_(t -/'),

(_(z,t)_(z',t')) = 0, and (_(z,t)) = 0, where • refers to the complex conjugate, g is the

Dirac delta function, and the amplitude of the noise level is given by _r. These condi-

tions will be satisfied if (_,(z,t)_,(z',t')) = (_i(z,t)_i(z',t')) = (a2/2)6(z - z')$(t - t'),

(f_(z,t)fi(z',t')) = 0, and (f_(z,t)) = (_i(z,t)) = 0, where the subscripts r and i refer to

the real and imaginary parts, respectively. As shown by Graham, 2° the fluid equations in

the presence of thermal noise and near onset of the instability may be reduced to eq. (1).

Assuming that ]A] is sufficiently small so that the nonlinear term may be neglected,
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the covariance function K(z,z',$) = (A(z,t)A*(z',Q) (where the angled brackets signify

the expectation value) satisfies the following equation:

Kt = 2casK - v(K: + K:,) + bK:: + b'K:,:, + 0.28(z - x') (2)

(1) in space, applying the

and then returning to the

K(x,0,t) =- K(O,z',t) = 0 is

¢0 oo • " k'' {20.23"._+. _, f f , sln(k=)sln( • )
e _Z _ I dk l dk ..... _--_

g(_,z') -- 7r2 Jo Jo a2 + bk2 + b'krZ 3"2 + (k - k,)2 3"2+ (k + k,)2/
(3)

where V = vb,'/lbl 2 and a =_ _v2br/(21bl2)- 2_ar.After taking z = z', making a change

of variables, and performing one of the integrations, eq. (3) may be reduced to

0"2 [_ b, sz)
K (x , x ) = _[ b _3"e"r* 1 "a c°s(sx) - e(-_ _2V/7+-_ *)c°sh(K,0 _/_2+ ¢ (_2+ 3"2)

(4)

where 7} = (2x/_-_/Ibl)_. This equation gives the variance K(z,z) = (IA(_,e)12>at the

point z. For large z eq. (4) may be written as the asymptotic series

K(z,z) _,- °.23' 1 1 e (_'-'7)_ fltr(l + 5) (5)
2_ Ibl 3"2_ w2 3"2+ i_)2 _z_ _=0_0r(½)_

where the fie are the coefficients in the Taylor expansion

1( 23"2_(q+v)2 3"2+ s_(q)2 = fltqt
t=0

where

bl Ibl
v/q(2_/+ q)

This equation was derived by discretizing the linearized eq.

results for a set of coupled ordinary differential equation, 21

continuous spatial limit.

Assuming that the system is convectively unstable, i.e. 0 < ear < v2b_/(4lbl2), 2,3 the

stationary solution of eq. (2) for the semi-infinite interval [0, o¢) with boundary conditions



wherer(½)= andr(l+ ½)= (l- ½),r beingthe gammafunction.The

coefficientof x in the exponential, 7 - 7/,is preciselytwice the spatial growth rate of

the amplitude of the most rapidly growing mode 2,3 as one would expect. Although this

expression for the variance may look somewhat formidable, note that the leading term in

the asymptotic seriesisgiven simply by replacing the sum in eq.(5)by 1 and, as we shall

see,thismay be allthat is necessary in many cases. Another feature that should be noted

is that the variance does not increase purely exponentially in space for large z, but rather

as exp( (7 - V)x )/V_.

We now focus attention on Taylor-Couette flow with an axial through-flow. This sys-

tem consistsof two concentric cylinderswith inner and outer radiiri and to,respectively,

with the inner cylinder rotating with velocity vi, and with an imposed through-flow in

the axial direction. The radial,azimuthal, and axial coordinates are denoted by (r,0,x),

respectively. In the parameter regime of interest,the flow willbe axisymmetric and all

derivativeswith respect to 0 willvanish. To derive the CGL equation the Navier-Stokes

and continuity equations for the deviation of the velocityand pressure about the station-

ary background flow axe written in cylindricalcoordinates and the velocity,dlstancc,time,

and pressure are scaled with v/d, d, d2/u, and u2/d2, respectively,where d isthe gap dis-

tance between the cylinders and u is the kinematic viscosity.There are three independent

parameters for this system: 1) the scaled inner cylinder velocityor azimuthal Reynolds

number Re_,z - v_d/u, 2) the scaled average axial velocity of the stationary background

flow or axial Reynolds Re_z -- Wd/u, and 3) the scaled inner cylinder radius r_/d, which

may be written in terms of the radius ratio ro/ri as ri/d = 1/[(ro/ri) - 1].

As Reaz is gradually increased for a given Reaz and ri/d, at Re_,¢, the critical value

of Re_, the stationary background flow becomes unstable. We define _ that appears in

the CGL equation (1) as _ -- Reaz - Re_,_. This measures the "distance" above onset of

the instability and is used as the expansion parameter in deriving the CGL equation. The

6



linear coefficients a, v, and b are particularly easy to derive, being determined from the

linear stability problem. Assuming a solution of the linearized fluid equations of the form

exp(),(k, Re,,z)t + ikz), where t and z are the scaled time and axial position, respectively,

these coefficients are given by a = cgA/ORe=z, v = -cg)q/Ok, and b = -(1�2)02A/Ok 2,

where the derivatives are evaluated at criticality (i.e. at kc and Re,_z,c). The critical

values of k and Reaz are determined from O)_,./Ok = 0 and )_ = 0. The calculation of the

coefficient of the nonlinear term, c, is much more involved and we only give a numerical

value in this paper. For details of the derivation of coefficients of the CGL equation, the

reader is referred to, for example, ref. 18-20. In terms of the amplitude A appearing in the

CGL equation (1), the scaled radial, azimuthal, and axSal fluid velocities and pressure are

given by (u,v,w,p) = A(z,t)(U,V, W,P)exp(ik_z - iwct) + c.c., where U(r), V(r), W(r),

and P(r) are the radial eigenfunctions of the linear stability problem at criticality, k¢ and

we are the critical wavenumber and frequency, respectively, and c.c. stands for the complex

conjugate. Chebychev polynomials were used in the radial direction giving highly accurate

results.

In the presence of thermal noise, noise terms N(0 (i = r,0, x) must be added to the

Navier-Stokes equations for the radial, azimuthal, and axial velocity components u, v, and

w, respectively. From Landau and Lifshitz 22 we find that for thermal noise (writing the

noise term in cylindrical coordinates)

=1-[<:s<-.>:+s<:o+<:s<:.):+.(.>1<,: :.o.:) <+N(0
7" L .I

where B (0 -- (-S (°°), S (_°), 0), and where the correlation between the random components

of the stress tensor (in scaled units) are

o,=, o',=', t')> =

r,2 pd
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where _(ij) is the Kronecker delta function (i,j - r, 0, a:), k is Bo]tzmann's constant, T

is the absolute temperature of the fluid, p is the fluid density, and _ is the ratio of the

second (or bulk) viscosity to the usual viscosity. Expanding the velocities and random

components of the stress tensor in e ira°, where m corresponds to the azimuthal mode

number, and noting that the m---0 mode dominates, we find _(0- 0') = 1/(27r), in addition

to all the derivatives with respect to O vanishing.

To find the correlation of the noise term we followed Graham. 2° The correlation of

the noise term is found to be

21r'C'2Q _(x_z,)_(t_t,)[(43 _8 ,_2 ]{_(_,t)_*(_',e)) _ + 4)z_+ (= - _)z_+ (4 - =)z, + i, (s)

where

i== f wtl

-_r +ik*Wt + ! Ut - - ut dUt
dr

1wt dW? 2)r dr + ikcUt

c = f d,, (utu + vtv + wtw)

where Q =_ kT/(pdu 2) is a dimensionless number related to the thermal noise level and

where Ut(r), Vt(r), and Wt(r) are the radial eigenfunctions of the adjoint stability prob-

lem at criticality.

Numerically evaluating the noise term for a radius ratio of ri/ro = .7376 which cor-

responds to the experiments of Refs. 13 and 15, and for an axial Reynolds number of

Re_ = 3, gives (_*'} = .32023Q_(z- z')$(t- t'). For these experiments we also

have d = .6769cm, p = 1.04g/cm 3, r, = .0158cm2/s, and T = 293 °K which gives

8



Q = 2.30 x 10 -_°. The eigenfunctions were normalized such that [U(rh)[ = 1, where

rh = (r_ + to)/2. Specifying how the eigenfunctions are normalized is essential when evalu-

ating the noise correlation and the nonlinear coefficient, since the values of these quantities

depend on the normalization of the eigenfunctions. The numerical coefficient of the noise

correlation is rather insensitive to the value of Re,'_ for small Re_, being, for example,

.31719 for Re,',, = 0. We note that the noise correlation is independent of _, which is prob-

ably a reflection of the incompressibility of the flow. This is fortunate since the second

viscosity is unknown for liquids at low frequencies. 2s

Evaluating the linear coefficients for Re,'_ = 3 gives a = .31448 + 6.806 x 10-3i,

v = 3.69024, and b = 1.91052 + .14070i. The nonlinear coefficient is found to be c =

.45127 + 4.444 x 10-si. We also find that kc = 3.13713, Re,'.,c = 84.3035, and wc =

11.0294. The real parts of the coefficients a, b, and c, and kc and Re,'z,c, are found to be

rather insensitive to the value of Re,,, for small Re,'.., being, for example, aT = .31372,

b_ = 1.91094, c_ = .45192, kc = 3.13620, and Reaz,¢ = 84.0148 for Re,'_ = O. The

group velocity, the imaginary parts of the coefficients, and the critical frequency are 0 for

Re,_ = 0 and are approximately proportional to Re,.., for small Re,',,.

Figure 1 (solid fine) shows the root mean square (RMS) average of the radial velocity

at r = rh as a function of z from a numerical simulation of the CGL equation (1) using

the above values for the coefficients and thermal noise term and using e = 4.668. The

RMS average of the radial velocity at r = ra is related to the RMS average of IAI by

(u(rh,x,t)2)l/2 = v/2(IA(z,t)1211/_ by virtue of the normalization taken for the radial

eigenfunctions (see discussion following eq. (8)). As can be seen, the noise is spatially

amplified resulting in a noise-sustained structure. In the absence of a continuous source of

noise, the solution is zero everywhere. Figure 1 (dashed fine) shows (u2) 1/2 at r = rh as

given by the leading term in eq. (5). As can be seen the agreement is excellent between

the analytic result and the numerical solution of the CGL equation for small IAI. In order
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to see the range of x for wMch eq. (5) is vaiJd, fig. 2 shows ln(/u2/1/2) from the numerical

simulation (solid line), from the leading term in eq. (5) (dashed line), and from eq. (5)

keeping three terms in the asymptotic series (ie. n = 2) (dotted line). Although the RMS

average as given by the leading term in eq. (5) deviates somewhat from the numerical

solution for smaller x, the RMS average as given by the numerical solution and the RMS

average as given by eq. (5) with n = 2 show excellent agreement along most of the curve.

Referring back to fig. 1 we see that the value of x at half maximum is about 26.5. For

the experiments of Refs. 13 and 15, this distance is about 21. 24 Referring to eq. (5) and

noting that (7 - _7)/2 = .5625, this implies that the noise amplitude in the experiments is

about (21/26.5)l/4exp(.5625 x (26.5- 21)) _ 20 times thermal noise.

In conclusion, we have studied the complex Oinzburg-Landau equation with a thermal

noise term under conditions when the system is convectively unstable. Analytic results were

derived for the variance. Since the CGL equation is a generic equation, and considering

the facts that noise is an element common to all physical systems and all systems with

nonzero group velocity are convectively unstable at onset of the instability, these results

will be applicable to a wide variety of physical systems. The coefficients and thermal

noise term for the CGL equation were determined for Taylor-Couette flow with an axial

through-flow and comparison was made to experiment. Although the effective noise level

in the experiments of Ref. 13 and 15 appears not to be thermal in origin, the noise level

is nonetheless extremely small, being roughly an order of magnitude larger than thermal

noise. Therefore, even if the structures in the experiments are not thermally sustained, it

seems likely that an experiment can be designed in which thermally-sustained structure

does exist.

I thank Wai-Ming To for providing a code for doing the linear stability analysis and

for his reading of and helpful comments on the paper. I thank Ken Babcock for stimulating
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