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Abstract

Efficient acceleration techniques typical of explicit

steady-state solvers are extended to time-accurate
calculations. Stability restrictions are greatly reduced by

means of a fully implicit time diseretization. A four-
stage Runge-Kutta scheme with local time stepping,
residual smoothing, and multigridding is used instead of
traditional time-expensive factorizations. Some

applications to natural and forced unsteady viscous flows
show the capability of the procedure.

Introduction

Recent progress in Computational Fluid Dynamics
along with the evolution of computer performance is
encouragingscientists to look at the details of flow
physics more and more. There are a variety of practical
applications where the unsteadiness of the problem can
not be neglected (i.e. vortex shedding, natural
unsteadiness, forced unsteadiness, aeroelasticity,
turbomachinery rotor-stator interaction). Up to now, in
several branches of engineering most of the analysis and

designing tools are based on a steady or quasi-steady
assumption, even ff the flow is known to be unsteady.
Today, due to the improvement in computer resources,
there is a strong interest in developing methodologies for
efficient and reliable simulation of unsteady flow

features.
It is a common experience, while using time accurate

explicit schemes, to be forced to choose the time step on
the basis of stability restrictions. As a consequence,
unless the problem is a very high frequency one, the
number of time steps to be performed is much higher
than the one required for time accuracy.

* Assistant Professor, Department of Energy Engineering

t Senior Scientist, Internal Fluid Mechanics Division, Member AIAA

Deputy Chief, Internal Fluid Mechanics Division, Member AIAA

By means of some implicit factorization, most of the
stability restrictions can be removed, but the work
required at each time step grows rapidly with grid
dimension and complexity of the flow equations. In
addition, several boundary conditions can be difficult to

treat in a fully implicit way.
In viscous flow calculations, the grid is stretched

close to the shear layer and the characteristic time step
varies several orders of magnitude inside the

computational domain. Even if in practical applications
the characteristic time step of the core-flow region is

comparable with the one suggested by accuracy, close to
the walls the time step restrictions are very severe.
Therefore highly vectorizable schemes with less stability
restrictions on the allowable time step would be an

interesting combination.
Explicit schemes with accelerating techniques have

proven to be very effective for solving steady
problems1,2,3. Unfortunately, the computational
efficiency of those time-marching solvers is achieved by
sacrificing the accuracy in time. In this paper, we present
a procedure to show that the conventional steady-state
acceleration techniques, specifically the multigrid

techniques, can still be applied to unsteady Navier-
Stokes problems as well, while still achieving efficiency.
The basic idea is to reformulate the governing equations

so that they can be handled by an explicit accelerated
scheme 4. If the time discretization is made implicit,

stabilityrestrictionsare removed and accelerating

techniques can be used instead of traditional time-
expensive factorizations (i.e. ADI, LU).

As one of the final goals of the present research will

be the study of unsteady phenomena in turbomachinery
components, such as rotor-stator interaction and stage
analysis, we implemented the technique in the
TRAF(2D/3D) codes3,5. These two- and three-
dimensional solvers were developed during a joint

project between the University of Florence and NASA
Lewis and were designed for turbomachinery blade row

analysis.



The procedure is validated by applying it to some
examples of natural and forced unsteady two-
dimensional viscous flows.

Governin2 Equations

Let t.p, u, v, p, T, E, and H denote respectively time,
density, the absolute velocity components in the x and y
Cartesian directions, pressure, temperature, specific total
energy, and specific total enthalpy. The two-
dimensional, unsteady, Reynolds-averaged Navier-Stokes
equations can be written for a moving grid in

conservative form in a curvilinear coordinate system 4. r/
as,

r_7= r_ =jU(u. +v.) (7)

,B.=u r= +v r_ +kT.

fly=ur_ +v r,,_+kT,

and the Cartesian derivatives of (7) are expressed in

terms of _-, and r/-derivatives using the chain rule, i.e.,

The pressure is obtained from the equation of state,

where,

Q ,

[pEJ

8(:'Q) +
et e_ e,7 e_ e,7

p_

LPHU + _,pJ

pV,Lv+,,I
°:, I

(1)

(2)

p =/aRT (9)

According to the Stokes hypothesis, 2 is taken to be

-2#/3 and a power law is used to determine the

molecular coefficient of viscosity ,u as function of
temperature, The eddy-viscosity hypothesis is used to
account for the effect of turbulence. The molecular

viscosity :t and the molecular thermal conductivity k are
replaced with,

# =#t +#, (I0)

The contravariant velocity components of eqs. (2) are
written as,

U=_t+_,,u+_yv, V=rl,+rl#u+rlyv (3)

and the transformation metrics are defined by,

_7.=d..v,,rly=Jx,, e,=-x,r&-y, rl, (4)

wheretheJacobianofthetransformationJ is,

d-I =x_y__x_y_ (5)

The viscous flux terms are assembled in the form,

0

F =j-, _ t,

+6,e,J

where,

r= = 2_u. 4 2(u. +v,)

k =cw _ 4" -- (II)

where cp is the specific heat at constant pressure, Pr is
the Prandtl number, and the subscripts 1 and t refer to
laminar and turbulent quantities respectively. The

turbulent quantities /.tt and Pr t arc computed using the
two-layer mixing length model of Baldwin and Lomax 6.

Spatial Discretization and Artificial DissiD.ation

Traditionally, using a finite-volume approach, the
governing equations are discretized in space starting
from an integral formulation and without any
intermediate mapping. In the present work, due to the
large use of eigenvalues and curvilinear quantifies, we
found it more convenient to map the Cartesian space

(x,y) in a generalized curvilinear one (_,r/). In the

J 0 ) curvilinear system, the equation of motion (I) can beL easily rewritten in integral form by means of Green's

G,=J -t rl,,r= + r/, r_ theorem and the metric terms are handled following the
/r& r_ + % ryy| (6) standard finite-volume formulation. _ A cell-centered

+ ,fl, J scheme is used to store the flow variables. On each cellface the convective and diffusive fluxes are calculated

after computing the necessary flow quantities at the face
center. Those quantities are obtained by a simple
averaging of adjacent cell-center values of the dependent
variables.
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In viscouscalculations,dissipatingproperties are
present due to diffusive terms. Away from the shear
layer regions, the physical diffusion is generally not
sufficient to prevent the odd-even point decoupling of
centered schemes. Thus, to maintain stability and to
prevent oscillations near shocks or stagnation points,
artificial dissipation terms are also included in the
viscous calculations. Equation (I) is written in semi-
discrete form as,

t?O
-_ + C(Q) -D(Q) = 0 (i4)
Dt

where the discrete operator C accounts for the physical
convective and diffusive terms, while D is the operator

for the artificial dissipation. The artificial dissipation
model used in this paper is basically the one originally
introduced by Jameson, Schmidt, and Turkel7. In order
to minimize the amount of artificial diffusion inside the

shear layer, the eigenvalues sc,alings of Marfinelli and
Jameson 8, and Swanson and Turkel9 have been used to

weight these terms. The quantity D(Q) in eq. (14) is
defined as,

DCQ) + O'.)e (15)

where, for example, in the _ curvilinear coordinates we
have,

D i Q = 17¢(A,,t/,j_/,j)z1#Qu

D' Q= V A Q,j(16)

ij are indices associated with the _,r/ directions and

[7_, A_ are forward and backward difference operators

in the _ direction. The variable scaling factor A is
defined as,

and,

A# = O¢2_ (18)

(19)

where 2¢ and 2_ are the scaled spectral radii of the flux
Jacobian matrices for the convective terms,

 ,--IuI Z,,=lVl÷a_ (20)

and a is the speed of sound. Note that the effect of the
grid motion is accounted for in (20) through the
definition of the contravariant components of velocities

of (3). The exponent cr is generally defined by 0<o'__1,
and for two-dimensional applications, a value of 2/3

gives satisfactory results. The coefficients d _) and d'O
use the pressure as a sensor for shocks and stagnation
points, and are defined as follows,

_:2a = I¢ff2)MAX( v,-ta, vtj, v,÷tj, v,÷2a) (21)

IP_-Ij - 2 p_a +pt÷tjI

v,a =l P'-la +2 p,a +P'÷IJI

', -i,..,.)]_+1/2j (4) 2)

(22)

(23)

where typical values for the constants 1(,:2)and K_'Oare

1/2 and 1/64 respectively. For the other direction, r/, the
contribution of dissipation is defined in a similar way.
The computation of the dissipating terms is carried out
in each coordinate direction as the difference between

first and third difference operators. Those operators are
set to zero on solid walls in order to reduce the global
error on the conservation property and to prevent the
presence of undamped modes 9,10.

Boundary Conditions

In cascade-like configurations there are four different
types of boundaries: inlet, outlet, solid wall, and
periodicity. According to the theory of characteristics,
the flow angle, total pressure, total temperature, and
isentropic relations are used at the subsonic-axial inlet,
while the outgoing Riemann invariant is taken from the
interior. At the subsonic-axial outlet, the average value
of the static pressure is prescribed and the density and
components of velocity are extrapolated.

On the solid walls, the pressure is extrapolated from
the interior points, and the no-sfip condition and the
temperature condition are used to compute density and
total energy. For the calculations presented in this
paper, all the wails have been assumed to be at a
constant temperature equal to the total inlet one.

Cell-centered schemes are generally implemented
using phantom cells to handle the boundaries. The
periodicity is, therefore, easily overimposed by setting
periodic phantom cell values. On the boundaries where
the grid is not periodic, the phantom cells overlap the
real ones. Linear interpolations are then used to

compute the value of the dependent variables in phantom
cells.

3



Basic Time-Stepl_inl_ Scheme and Acceleration

Techniques for the Steady Problem

The system of the differential equation (14) is
advancod in time using an explicit four-stage Runge-
Kutta scheme until the steady-state solution is reached.
A hybrid scheme is implemented, where, for economy,
the viscous terms are evaluated only at the first stage and
then frozen for the remaining stages. If I is the index
associated with time we will write it in the form,

(24)

where the residual R (Q) is defined by,

R(Q)=AtJ[C(Q)-D(Q)] (25)

Good, high-frequency damping properties, important for
the multigrid process, have been obtained by performing
two evaluations of the artificial dissipating terms, at the
first and second stages.

In order to reduce the computational cost, three
techniques are employed to speed up convergence to the
steady state-solution. These techniques: 1) local time-
stepping; 2) residual smoothing; 3) multigrid; are briefly
described in the following.

Local Time-Steppine
For steady state calculations, a faster expulsion of

disturbances can be achieved by locally using the
maximum allowable time step. In the present work the

local time step limit At is computed accounting for both

the convective (At2 and diffusive (At2 contributions as

follows,

AtcAt d )dt
co[,At c+At d)

(26)

where ¢o is a constant usually taken to be the Courant-

Friedrichs-Lewy (CFL) number. Specifically, for the
inviscid and viscous time step we used,

24+I.
(27)

I
Ata=

Y_ 2 +S_)x,-yF;s
(28)

where yis the specific heat ratio and,

: : 2 _ 2 +- : (29)S¢=x¢+Y¢, 5a_-x. Y,

Kt being a constant whose value has been set equal to 2.5

based on numerical experiments.

Residual Smoothing
An implicit smoothing of residuals is used to extend

the stability limit and the robustness of the basic scheme.
This technique was first introduced by Lerat n in 1979 in

conjunction with Lax-Wen&off type schemes. Later, in
1983, Jameson t implemented it on the Runge-Kutta
stepping scheme. In two dimensions, the residual
smoothing is carried out in the form,

(30)

where the residual R includes the contribution of the

variable time step and is defined by (25) and z_ is the

residual after a sequence of smoothing in the _, and r/,

directions with coefficients fl_, and ,0.. For viscous
calculations on highly stretched meshes the variable
coefficient formulations of Martinelli and Jameson s and

Swanson and Turkel9 have proven to be robust and

reliable. In the present paper, the expression for the
variable coefficients fl of (30) has been implemented as
follows,

[ I[(CFL t_ ,)2 ]l
fie =A'L4X_[O,--l/ , Of[ -1

JJ

[ LLc,  
(31)

where the coefficients g_¢ and _, are the ones defined in
eqs. (19), and CFL, and CFL* are the Courant numbers
of the smoothed and tmsmoothed scheme respectively.
For the hybrid four-stage scheme we used CFL=5, and
CFL *=2.5.
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Multi_rid

This technique was developed in the beginning of the
1970s for the solution of elliptic problems 12 and later
was extended to time-dependent formulations 1,2. The
basic idea is to introduce a sequence of coarser grids and
to use them to speed up the propagation of the fine grid
corrections, resulting in a faster expulsion of
disturbances. In this work, the Full Approximation
Storage 0rAS) schemes of Brandt12 and Jameson I is
used.

Coarser, auxiliary meshes are obtained by doubling
the mesh spacing and the solution is defined on them
using a rule which conserves mass, momentum, and

energy,

),

where the subscripts refer to the grid spacing, and the
sum is over the eight cells which compose the 2h grid
ceil. Note that this definition coincides with the one

used by Jameson I when the reciprocal of the Jacobians

are replaced with the cell volumes. To respect the fine
grid approximation, forcing functions P are defined on
the coarser grids and added to the governing equations.
So, after the initialization of Qzh using eq.(32), forcing
functions P2hare defined as,

(33)

and added totheresidualsR:h toobtainthevalueR_h

whichisthenusedforthesteppingscheme.

R':h= R:h (Q:h) + P:h (34)

This procedure is repeated on a succession of coarser
grids and the corrections computed on each coarse grid
are transferred back to the finer one by bilinear
interpolations.

A V-type cycle with subiterations is used as a
multigrid strategy. The process is advanced from the
fine grid to the coarser one without any intermediate
interpolation, and when the coarser grid is reached,
corrections are passed back. One Runge-Kutta step is
performed on the h grid, two on the 2h grid, and three on
all the coarser grids.

For viscous flows with very low Reynolds number or
strong separation, it is important to compute the viscous
terms on the coarse grids, too. The turbulent viscosity is
evaluated only on the finest grid level and then
interpolated on coarse grids.

On each grid, the boundary conditions are treated in
the same way and updated at every Runge-Kutta stage.
For economy, the artificial dissipation model is replaced
on the coarse grids with constant coefficient second-
order differences. On coarse grids, the turbulent

viscosity is evaluated by averaging the surrounding fine
grid values.

Reformulation of the Governine Eouations

Explicit Runge-Kutta schemes in conjunction with
residual smoothing and multigrid have proven to be very
efficient for steady problems, however those time-
dependent methods are no longer time accurate. As
shown by Jameson 4 for the Euler equations, the system
of (I) can be reformulated to be handled by a time-
marching steady-state solver. The equations (I) and (14)
are rewritten in a compact form as,

_O
-'_ =- 9?(Q) (3 5)

where _i' is the residual which includes convective,

diffusive,, and artificial dissipation fluxes. By the
introduction of a fictitious time r the unsteady governing

equations can be reformulated and a new residual 9?*
defined as,

=cgQ +97(Q) = 9?, (Q) (36)
8r

now r is a fictitious time and all the accelerating
techniques developed in steady-state experiences, can be

used to efficiently reduce the new residual 97", while
marching in z Following the approach of Jameson 4,
derivatives with respect to the real time t are discretized

using a three-point backward formula which results in an
implicit scheme which is second order accurate in time,

DQ= 3Q "+'-4Q" +Q" ¢_97(Q,,+,)=9?,(Q,,+,)(37)
_r 2At

where the superscript n is associated with the real time.
Between each time step the solution is advanced in a

non-physical time r and acceleration strategies like local
time stepping, implicit residual smoothing, and

multigridding are used to speed up the residual 9?* to
zero to satisfy the time-accurate equations.

The time discretization of (37) is fully implicit,

however, when solved by marching in _: stability
problems can occur when the stepping in the fictitious

time rexceeds the physical one. This generally occurs in
viscous calculations where core-flow cells are much

bigger then those close to shear-layer. Based on a linear
stability analysis of the four-stage scheme of (24) applied
to (37), the stepping in 'c must be less then 2/3 CFL'At.

The time step Arean then be corrected as follows,

5



M_ AtA v = "4z ' Z,_13 CFL
2 CFL"

(38)

where the contribution of the multigrid speed-up is
included through 2_1, m being the total nmnber of grids

used in the multigrid process. After limiting the time

step Az with (38) the scheme becomes stable and the
physical time step At can be chosen safely only on the

basis of the accuracy requirement.
At the end of each time step in real time, the time

derivative BQ/_ is updated and a new sequence in the

fictitious time _" is started. From 10 to 20 multigrid

cycles are typically needed between time steps.
To provide a good inifiali_tion of the solution at the

new time step, a three-point backward formula is used as
a predictor,

Q" = Q0,+ 3Q ° -4Q _'1+ Q"= (39)
2

where Q* is the predicted value of Q_+t.

We stress that, using scheme (37), the modifications
to turn an existing steady-solution solver to a time

accurate one are quite simple. The time derivative o_/_
can be introduced as a source term to be includedin the

new residual 9?*, and the time step is corrected using

eq. (38) to make the scheme stable.

Results and Discussions

In this very first part of the research project the

procedure is validated in two-dimeusions. Three test
eases are presented. Firstly, a vortex shedding over a

row of circular cylinders in a laminar regime is
examined. The interest being mostly in the flow

periodicity and in the prediction of the Strouhal number.
As a second application of natural unsteadiness, a shock
buffeting over a row of bicircular airfoils will be

discussed. Finally, the last application is related to
forced unsteadiness in mfl_omachines and simulates the

effect of passing stator wakes on a rotor blade.

Row of Circular Cylinders

This test is intended to predict the natural vortex

shedding past a cylinder. A row of circular cylinders in
a laminar regime is studied for an inlet flow condition of

Mach number 0.2 and Reynolds number of 1000.
Calculations were performed on a 257x49 elliptic C-type

gricL The distance between the cylinders is five times the

cylinder diameter.
Figures l(a) and (b) report the evolution in time of

the flow angle and velocity components (phase plo0 at a

point in the wake close to the cylinder. The time history

refers to four cycles of oscillations after a periodic flow
conditionisreached.The veryperiodic behaviourofthe

flowisevidentand provestherobustnessand accuracyof

thescheme. The time stepforthosecalculationswas set

tohave 40 divisionsovera cycle.This correspondstoa

localCourantnumber betweenthree(farfield)and four

hundred(boundarylayer).

The computed Strouhalnumber based on the inlet

velocity is about 0.2 and agrees well with the
experimental value of 0.21.

Figure 2 reports the instantaneous particle traces in
nine instants over a cycle (the tenth position would be

equivalent to the first). The shedding of the vortex is
very evident as well as the mechanism of their formation

with a vortex merging between instants 1 and 2, and 5
and 6.
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a) flow angle evolution
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b) velocity component evolution

Fig. 1. Unsteady flow past a circular cylinder
(M=O.2,Re= I O0).
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Time=5 Time---6

Time=7

._. -
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Time=9

Fig. 2. Instantaneous particle traces for the circular
cylinder row test case

Shock Buffetint, Over a Bicircular Airfoil

Starting from about 1976 several experiments and
calculations were carried out on shock buffeting over a

bicircular-arc airfoil. The experiments 13A4 were carried

out at NASA Ames in a wind tunnel designed for this

purpose. At a Reynolds number of 7 million, experiments

suggest buffeting at a free stream Mach number in the

range from 0.74 to 0.76. In agreement, the present
calculations indicate natural unsteady flow at Mach 0. 75

On the contrmy, while, the flow is experimented to be

unsteady up to a Mach number of 0. 78, the calculation
still shows some unsteadiness up to a free stream Mach

number of 0.83. The nominal test Mach number for the

experiments is 0. 775 and the wind tunnel endwaUs were
designed to minimize wall effects for this flow condition.

Far away from the nominal condition, endwall effects

become important especially at high Mach numbers and

so the comparison with a row of airfoils becomes not too

meaningful.

1.5

1.0

0.5

0.0

-0.5

-I.0:

-1.5
0.0

¢ range of oscillation

I I I I I

0.2 0.4 0.6 0.8 1.0

x/c

a) pressure coefficient distn'bution

Time=3/

b) instantaneous Mach number contours

Fig. 3. Shock buffeting over a row of bicircular-arc
airfoils (3,4=0. 775, Re= 7xl O6)
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The reduced frequency of the experiment is roughly

0.5. Steger 15, with an isolated airfoil predicted .about
0.41, while the TRAF2D code suggested 0.42 for an
airfoil distance of ten times the axial cord. If the airfoils
are clustered to a distance of four times the axial cord,

the reduced frequency rises to 0.47, once again
suggesting some influence of existing walls on the
buffeting frequency.

Instantaneous Mach number contours are reported in
Fig. 3 along with the range of pressure dism'bution. For
that high Reynolds number the Courant number based on
forty divisions within a cycle was between one (far field)
and three thousand (boundary layer). The grid used is an
H-type (153x97) and a buffeting cycle requires about 8
minutes on the NASA Lewis Cray Y-MP.

Passin_ Wakes Effects on a Rotor Blade
As a preliminary application to unsteady effects in

turbomachinery, a rotor configuration with incoming
moving wakes was studied. A H-type grid (see Fig. 4(a))
was selected in order to minimize the incoming wake
smearing due to grid coarsening. The wake is simulated
with a loss in total pressure and an alteration in the
velocity direction. Figure 40)) shows the iscntropic
Mach number range on the blade surface. The wind
tunnel data16without wake effects are also reported. The

instantaneous Mach number contours are given in Fig. 4
(c) in terms of four instants over a cycle.

a) 129x65 elliptic H-type grid

1.4

1.2

1.0

0.8

) range of oscillation

0 experiment without wake

x

zD
-t-

zO0.4_

0._

0.0 '---_- " ' ' ' '
0.0 0.2 0.4 0.6 0.8 1.0

x/c

b) iscntropic Mach number distribution on the-blade
surface

Time= 1 Tim_ Time=3 Time_

c) instantaneous Mach number contours

Fi_ 4. Passing wakes effect on a rotor blade (M2_,=.81, Re2=.8x106)
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Conclusions

The use of explicit accelerated schemes has been
extended to time-accurate Navier-Stokes calculations.
Particularly the use of efficient and highly vectorizable
techniques such as multigridding is proposed in

conjunction with a fully implicit time discretization. A
preliminary validation indicates that the approach is
robust and efficient. According to the proposed method,
the modifications to be made on a time-marching
accelerated solver in order to make it time accurate are

very simple.
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