1. ABSTRACT

In this paper, we describe the theory, fabrication and test of a binary optics "echelon." The echelon is a grating structure which separates electromagnetic radiation of different wavelengths, but it does so according to diffraction order rather than by dispersion within one diffracting order, as is the case with conventional gratings. A prototype echelon, designed for the visible spectrum, is fabricated using the binary optics process. Tests of the prototype show good agreement with theoretical predictions.

2. INTRODUCTION

Color discrimination, or the separation of electromagnetic radiation by wavelength, is a basic building block for many applications, both military and commercial. In general, the task of discriminating between objects based on their spectrum can be broadly divided into two classes, based on the fineness of the discrimination. In one class, the unknown spectrum is sampled at very fine intervals, essentially reconstructing the spectrum. Discrimination techniques based on spectroscopy fall in this class. Although this class is quite important, it is not the topic of this paper and will not be discussed further.

In the other class of color discrimination, the unknown spectrum is divided into a small number of bands (typically three or four), which are used to characterize the unknown spectrum. For strategic defense, the majority of applications are in the infrared portion of the spectrum. Separation of the infrared band into several sub-bands can be used to better discriminate between objects (e.g., space debris, decoys and re-entry vehicles) and to more accurately estimate temperatures of objects.

In the visible portion of the spectrum, the earliest example is the human visual system, which perceives color based upon a separation of the spectrum into three bands (the three types of cones in the retina). Partly because the human visual system operates in this fashion, there are a large number of applications which also use this type of color discrimination. Common examples are color printing (separation into cyan, magenta, yellow and black dyes), color photography and motion pictures (separation into red, green and blue-sensitive emulsions), and color television and monitors (separation into red, green and blue sources).

The echelon described in this paper is one device which can be used to achieve the separation of a spectrum into bands. Other devices which can also achieve this separation without loss of energy are gratings, prisms and dichroic beam-splitters [1]. If significant loss of energy is tolerable, then color filters are another device which can be used.
The remainder of this paper describes the echelon in more detail. Section 3 describes the principle of operation of the echelon and the types of color separation it is capable of. Section 4 describes the fabrication of a prototype echelon using the binary optics process and section 5 describes the test of the prototype. Section 6 summarizes the paper.

3. THEORY

3.1. Conventional Grating

In order to better understand the operation of the echelon, it is instructive to examine the conventional method of separating colors via a grating. In binary optics, we approximate a blazed grating by a staircase profile with N steps [2], as shown in figure 1. In the figure, the η vs λ curves depict the spectral content of each order. Each step has a physical depth of

$$d = \frac{\lambda_0}{[N(n_0 - 1)]}$$

where n_0 is the index of the material at the design wavelength λ_0. Each step introduces a $2\pi/N$ phase shift for a total phase shift of 2π across one grating period. Therefore, at λ_0, the grating is blazed for the -1 order. For different wavelengths, the total phase shift introduced across one grating period (neglecting material dispersion) is $2\pi\lambda_0/\lambda$. For wavelengths close to λ_0 (e.g., $0.8 < \lambda/\lambda_0 < 1.3$), the total phase shift is still approximately 2π and the -1 order will contain the majority of energy at that wavelength, as shown by the efficiency curves in figure 1. Specifically, the efficiency of the ith order of an N-step conventional grating is [3]

$$\eta(i, \lambda) = \text{sinc}^2\left(\frac{i}{N}\right) \sin^2\left[\frac{\lambda_0}{(N\lambda) + i/N, N}\right]$$

Figure 1: Conventional Binary Optics Grating.
Figure 2: Binary Optics Echelon.

\[
\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}
\]

and

\[
\sinm(x, N) = \frac{\sin(N \pi x)}{N \sin(\pi x)}
\]

The sinc term is the efficiency due to the stepped nature of the structure; while the sinm term is a result of the interference between the \(N \) phased steps.

In the conventional scheme, all wavelengths are diffracted primarily into the -1 order. However, the dispersion of the grating separates the wavelengths within the -1 order. As depicted by the shaded area in figure 1, the grating diffracts different wavelengths in different directions. Specifically, light of wavelength \(\lambda \) is diffracted at the angle

\[
\sin \theta = i \lambda / T
\]

where \(i \) is the diffraction order and \(T \) is the period of the grating.

3.2. Echelon

Now consider the "echelon" of figure 2. Strictly speaking, the structure is not an echelon [4], but we use the term to distinguish it from the conventional binary optics grating. This element also consists of \(N \) steps, but each step has a physical depth of

\[
d = \lambda_0 / (n_0 - 1)
\]

Compared to the conventional grating (see equation 1), each step is \(N \) times deeper and therefore introduces \(N \) times the phase shift, which is exactly a phase shift of \(2\pi \) at wavelength \(\lambda_0 \). However,
for thin gratings, a phase shift of 2π is equivalent to a phase shift of 0. Therefore, at wavelength λ_0, the echelon behaves like a flat plate and is most efficient in the 0 order, as depicted by the peak in the 0 order efficiency curve in figure 2. Now consider the wavelength $\lambda_{-1} = \lambda_0 N/(N + 1)$. At this wavelength, each step introduces a phase shift of $2\pi \lambda_0 / \lambda_{-1} = 2\pi + 2\pi / N$, which is equivalent to a phase shift of $2\pi / N$. Therefore, at the wavelength λ_{-1}, the echelon is effectively blazed for the -1 order, as shown by the -1 order efficiency curve. For wavelengths between λ_{-1} and λ_0, the echelon will primarily split energy between the -1 and 0 orders. In a similar fashion, the echelon will be most efficient in the +1 order for wavelength $\lambda_{+1} = \lambda_0 N/(N - 1)$. Since the spectrum around λ_{-1} is diffracted mainly into the -1 order, the spectrum around λ_0 mainly into the 0 order, and the spectrum around λ_{+1} mainly into the +1 order, the echelon can be used to separate colors into wavelength bands, as originally proposed by Dammann [5].

In a previous paper [6], Dammann has analyzed stepped-phase structures using scalar diffraction theory. Based on these results and neglecting material dispersion, the efficiency of the ith diffracted order of the N-step echelon is given by

$$\eta(i, \lambda) = \text{sinc}^2(i/N) \sin^2(\lambda_0 / \lambda + i / N, N)$$

Figure 3 plots the efficiencies for different orders of a 4-step echelon. As with all the previous expressions, the efficiency $\eta(i, \lambda)$ is the fraction of light at wavelength λ which is diffracted into order i. Accordingly, $\sum_i \eta(i, \lambda) = 1$ for all wavelengths and $\int \eta(\lambda) \text{d} \lambda$, where $E(\lambda)$ is the incident spectrum, is the total power in order i. For the echelon shown in the figure, we can use
the +1, 0 and -1 orders to separate colors in the .7\(\lambda_0\) to 2.0\(\lambda_0\) region. Also note that the -2 and +2 orders have the same efficiency curves. If we include material dispersion, then equation 5 becomes

\[
\eta(i, \lambda) = \text{sinc}^2\left(\frac{i}{N}\right) \sin^2\left(\phi_0 + \frac{i}{N}, N\right)
\]

where \(\phi_0 = \frac{\lambda_0[n(\lambda) - 1]}{\lambda[n(\lambda_0) - 1]}\)

and \(n(\lambda)\) is the index of the grating material.

Examination of equation 5 reveals that the efficiency of order \(i\) will reach a peak when the \(\sin^m\) term is maximized. It can be shown that \(\sin^m(z, N)\) reaches its maximum value of 1 at integer values of \(z\). Therefore, the efficiency peaks of order \(i\) can be calculated by setting the argument of the \(\sin^m\) term equal to an integer and then solving for \(\lambda\). The resulting peaks occur at

\[
\lambda = \frac{N\lambda_0}{(mN - i)}, \text{ where } m \text{ is an integer}
\]

The width of each diffracted order (as defined by its half power points) can also be calculated (although requiring numerical methods) by use of equation 5. Table 1 tabulates these peak wavelengths and half power points and their corresponding efficiencies for designs with up to 8 steps. As an example, consider the +1 order of a 4-step echelon \((i = +1, N = 4)\). From the table, the diffraction efficiency has a peak of 81\% at a wavelength of 1.33\(\lambda_0\). The efficiency falls to half of this, or 40\%, at 1.16\(\lambda_0\) on the short wavelength side and at 1.57\(\lambda_0\) on the long wavelength side. Note that the response is not symmetric with respect to \(\lambda\). Instead, it is symmetric with respect to \(1/\lambda\).

In table 1, we have set \(m = 1\) in order to keep the grating thin. Also, we only consider orders \(i < N/2\) for two reasons. First, orders higher than this have efficiencies below 50\% as a result of the \(\text{sinc}\) term. Second, inclusion of these higher orders may result in spectral overlap. That is, two different orders may have relative peaks at the same wavelength (e.g., orders +2 and -2 in figure 3).

The following points summarize the design process for the echelon:

1. Choose the central wavelength \(\lambda_0\) to determine the wavelength peak of the zero order.
2. Choose the number of steps \(N\) to determine the peak wavelengths, peak efficiencies and widths of the other diffracted orders (see table 1).
3. Choose the period \(T\) to determine the direction of the diffracted orders (\(\theta\) in the following section).
4. The grating material determines the step depth \(d\) (equation 4).

3.3. Separation of Wavelengths

The purpose of the echelon is to separate wavelengths. As an example, consider the following case. Suppose that we require the wavelengths \(\lambda_0\) and \(\lambda_{-1}\) to be laterally separated by \(\Delta x\) over a distance \(z\) (see figure 4). Then, by trigonometry and the grating equation:
Table 1: Wavelength Bands for an N-Step Echelon

<table>
<thead>
<tr>
<th>i</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3</td>
<td>1.96</td>
<td>1.69</td>
<td>1.54</td>
<td>1.50</td>
<td>1.40</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>1.67</td>
<td>1.50</td>
<td>1.40</td>
<td>1.35</td>
<td>1.29</td>
<td>1.24</td>
</tr>
<tr>
<td>+2</td>
<td>1.96</td>
<td>1.57</td>
<td>1.41</td>
<td>1.25</td>
<td>1.20</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>1.50</td>
<td>1.33</td>
<td>1.25</td>
<td>1.12</td>
<td>1.10</td>
<td>1.09</td>
</tr>
<tr>
<td>+1</td>
<td>1.50</td>
<td>1.33</td>
<td>1.25</td>
<td>1.12</td>
<td>1.10</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>1.18</td>
<td>1.16</td>
<td>1.12</td>
<td>1.10</td>
<td>1.08</td>
<td>1.06</td>
</tr>
<tr>
<td>0</td>
<td>1.87</td>
<td>.90</td>
<td>.92</td>
<td>.92</td>
<td>.93</td>
<td>.94</td>
</tr>
<tr>
<td></td>
<td>.85</td>
<td>.80</td>
<td>.83</td>
<td>.86</td>
<td>.88</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>.75</td>
<td>.73</td>
<td>.78</td>
<td>.81</td>
<td>.83</td>
<td>.85</td>
</tr>
<tr>
<td>-1</td>
<td>.67</td>
<td>.73</td>
<td>.76</td>
<td>.79</td>
<td>.82</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>.71</td>
<td>.75</td>
<td>.71</td>
<td>.71</td>
<td>.74</td>
<td>.77</td>
</tr>
<tr>
<td>-2</td>
<td>.67</td>
<td>.75</td>
<td>.71</td>
<td>.71</td>
<td>.74</td>
<td>.77</td>
</tr>
<tr>
<td>-3</td>
<td>.73</td>
<td>.70</td>
<td>.70</td>
<td>.70</td>
<td>.70</td>
<td>.70</td>
</tr>
</tbody>
</table>

Figure 4: Separation of Wavelengths in an Echelon.
Figure 5: Period Required to Separate Wavelengths.

\[\tan \theta_{-1} = \Delta z / z \]
\[\sin \theta_{-1} = \lambda_{-1} / T \]

For an echelon, \(\lambda_{-1} \) varies with \(N \) (see table 1). If we fix \(N \), then \(\lambda_{-1} \) is also fixed (relative to \(\lambda_0 \)) and the above equations give the period \(T \) required to produce a given offset \(\Delta z / z \). The solid curves of figure 5 plot this relationship for different numbers of steps.

Now compare this to the situation in a conventional grating (see figure 6). Again, by trigonometry and the grating equation, we have

\[\tan \theta_0 - \tan \theta_{-1} = \Delta z / z \]
\[\sin \theta_{-1} = \lambda_{-1} / T \]
\[\sin \theta_0 = \lambda_0 / T \]

Again, we can plot \(T \) vs \(\Delta z / z \) (dashed lines in figure 5). The figure shows that a much smaller grating period is required for a conventional grating to achieve the same lateral separation as the echelon. In addition, the conventional grating also laterally offsets the central wavelength by

\[z_0 / z = \tan \theta_0 \]

as shown in figure 7. The dashed lines are used to show the correspondance with the dashed curves of figure 5.
Figure 6: Separation of Wavelengths in a Conventional Grating.

Figure 7: Offset Produced by Conventional Grating.
Table 2: Measured Etch Depths (\(\mu m\)).

<table>
<thead>
<tr>
<th>Location</th>
<th>First etch</th>
<th>Second etch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>1.06</td>
<td>2.23</td>
</tr>
<tr>
<td>Edge</td>
<td>1.11</td>
<td>2.36</td>
</tr>
<tr>
<td>Corner</td>
<td>1.17</td>
<td>2.44</td>
</tr>
<tr>
<td>Target</td>
<td>1.14</td>
<td>2.28</td>
</tr>
</tbody>
</table>

4. FABRICATION

Using binary optics technology [2], we fabricated a 4-step echelon for use in the visible \((N = 4, \lambda_0 = 525\text{nm}, T = 16\mu m)\). The process begins by transforming the optical design of the echelon into a set of amplitude photomasks; in this case, we use two Cr-photomasks with 50% duty cycle gratings of periods 8 and 16 \(\mu m\), respectively, to produce the final \(16\mu m\) period echelon. These patterns are first replicated into a thin photoresist film (Shipley 1800 positive photoresist) by vacuum-contact photolithography, using a Karl Suss MA6 contact mask aligner operating at 365 nm. The resultant photoresist mask is then transferred into the substrate material to a precise depth by RIE. For substrates, we use 2" diameter, 6 mm thick Suprasil fused silica discs (\(n_0 = 1.46\)) polished on both sides, with a top surface flatness of \(\lambda/10\). The step depth for this echelon is 1.14 \(\mu m\), as given by equation 4, and the total depth of the echelon is 3.42 \(\mu m\), three times the step depth.

The mask with the smaller features (the 8 \(\mu m\) period mask) is printed first to maintain linewidth fidelity. The substrate is loaded onto a 6" diameter quartz plate covering the RF powered cathode and then etched in a Perkin Elmer sputter-etch system operated in the RIE mode to the target depth of 1.14 \(\mu m\). CHF₃ is introduced into the system via a feedback-controlled mass flow controller to a pressure of 10 mTorr. Typical quartz etching rates are 16.5 nm/min at 180 watts RF power and 220 volts bias voltage. Etch depths are controlled by etch time. Selectivity between the photoresist mask and the quartz substrate is approximately two to one.

Next, the coarser mask is aligned to the pattern previously etched into the substrate surface. A Cr film evaporated through a stencil mask onto the pattern edges enhances visibility during alignment. The second application of photoresist must be sufficiently thick to maintain photoresist linewidth across the previously etched 1 \(\mu m\) feature. That is, the photoresist must somewhat planarize the existing topography. Here, we are aided by the large and regular features of the grating. By using a single layer of 2.3 \(\mu m\) thick photoresist, we could preserve the pattern integrity without resorting to more complex multilayer resist techniques. The second mask is then etched to a target depth of 2.28 \(\mu m\). The use of two masks results in a 4-step echelon, due to the binary coding scheme used to define the masks. The completed echelon covers an area of approximately 25 cm x 35 cm.

The actual etch depths are measured at different locations with a Tencor alpha-step 200 stylus profilometer and the results are tabulated in table 2. A sample measurement is shown in figure 8. The etch depth variation of approximately \(\pm 5\%\) is mainly due to a radially non-uniform etch rate across the substrate.
5. TEST

The fabricated echelon is tested using the experimental set-up of figure 9. We use a 12 W tungsten-halogen bulb with a diffuser as the source, with the aperture used to control the size of the source. The lens images the source onto the entrance slit of the spectrometer and the echelon splits the single image of the source into multiple images as shown by the dashed lines, each image corresponding to a diffracted order of the echelon. For the 4-step echelon, we are interested only in the -1, 0 and +1 orders. The multiple images still fall on the entrance slit of the spectrometer. The aperture in the echelon plane is used to block off stray light and the spatial filter is used to block unwanted orders from entering the spectrometer. The photomultiplier produces a current proportional to the incident light. The load resistor converts this current to an output voltage, which is measured by the lock-in analyzer. The chopper is used in conjunction with the lock-in to increase the SNR of the system.

Initially, all orders are allowed to enter the spectrometer and this measurement is used as the reference. This reference measurement is shown in figure 10. Note that the spectrum is very weak at the shorter wavelengths ($\lambda < 400\text{nm}$).

Next, all orders except one are blocked and the spectral content of the unblocked order is measured. This is repeated for orders -1, 0 and +1. The results are shown in figure 11. The solid curves are the theoretical predictions based on equation 6, including the effects of the material dispersion. The connected crosses are the experimental measurements. The theory and experiment agree quite well, except at the shorter wavelengths. We believe this discrepancy is due to the weak reference at these wavelengths and the difficulty of making accurate measurements with respect to this reference.
Figure 9: Experimental Set-up.

Figure 10: Reference Power.
Figure 11: Spectral Composition of Orders (a) -1 Order (b) 0 Order (c) +1 Order
6. SUMMARY

The "echelon" is one device capable of separating a spectrum into several bands. We have analyzed the performance of the echelon, calculating the possible bands and the corresponding efficiencies for echelons of different numbers of steps (see table 1). We have also experimentally demonstrated the feasibility of using the "echelon" design for color discrimination. Using the binary optics process, we fabricated a 4-step echelon with center wavelength of $\lambda_0 = 525\text{nm}$. Measurements show that the echelon's spectral response agrees with the theoretical predictions.

7. REFERENCES

1. R. E. Knowlden, private communication.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRASAD AKKAPEDDI</td>
<td>HUGHES DANBURY OPT. SYS.</td>
<td>100 WOOSTER HEIGHTS RD.</td>
</tr>
<tr>
<td>AHMED AL-MANASREH</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE</td>
<td>ECE DEPT.</td>
</tr>
<tr>
<td>MUSTAFA ABUSHAGUR</td>
<td>ELECT. & COMP. ENGR. DEPT.</td>
<td>HUNTSVILLE AL 35899</td>
</tr>
<tr>
<td>MAX AMON</td>
<td>MARTIN MARIETTA</td>
<td>P.O. BOX 55837, MS 1040</td>
</tr>
<tr>
<td>V. BANERJEE</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE</td>
<td>DEPT. OF ECE</td>
</tr>
<tr>
<td>ASHOK BATRA</td>
<td>ALABAMA ARM UNIV.</td>
<td>1304 E. WINNER AVE.</td>
</tr>
<tr>
<td>JAMES BILBRO</td>
<td>NASA OPTICS & RF DIV.</td>
<td>EBS1</td>
</tr>
<tr>
<td>JOHN BRETNEY</td>
<td>LORAL AEROSPACE</td>
<td>FORD RD.</td>
</tr>
<tr>
<td>JAMES CARTER</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE</td>
<td>700 ERSKINE STREET</td>
</tr>
<tr>
<td>RAYMOND CHUVALA</td>
<td>ARMY MISSILE COMMAND</td>
<td>ACMPC-CF-E</td>
</tr>
<tr>
<td>HELEN COLE</td>
<td>NASA OPTICS & RF DIV.</td>
<td>EB52</td>
</tr>
<tr>
<td>LESLEY CONIFF</td>
<td>NIGHT VISION ELECTR. SENSOR DIR</td>
<td>AMSL-RO-NV-LPS, MS 677</td>
</tr>
</tbody>
</table>

423

PRECEDING PAGE BLANK NOT FILMED
HAROLD CRAIGHEAD
CORNELL UNIVERSITY
CLARK HALL, MS AEP
ITHACA NY 14853

WILLIAM DELANEY
TELEDYNE BROWN ENGR.
300 SPARKMAN DR., MS/60
HUNTSVILLE AL 35807

KATHRYN DIETZ
SVERDRUP TECHNOLOGY/AEDC
9013 AVENUE C, MS9013
ARNOLD AFB TN 37389-9013

DONALD DUNSTONE
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898-5270

CLINTON EVANS
HUGHES-LEITZ OPT.TECH.
328 ELLEN ST., MIDLAND
ONTARIO, CANADA L4R 2H2

RICHARD FEINLEIB
ESSEX CORPORATION
9170 RUMSEY RD.
HUNTSVILLE AL 31045

PAUL FILEGER
TELEDYNE BROWN ENGR.
300 SPARKMAN DR.
HUNTSVILLE AL 35807

RUSSELL FREEMAN
ARMY SPACE & STRATEGIC DEF.CMD.
105 WYNN, CSSD-SL-S
HUNTSVILLE AL 35807

STEPHEN GENTRY
SANDIA NATIONAL LABORATORY
PO BOX 5800, D 9222
ALBUQUERQUE NM 87185

EDWARD GRATRAX
HUGHES DANBURY OPT.SYS.
100 WOOSTER HEIGHTS RD.
DANBURY CT 06810

JANET TARANTO
RESEARCH FROM THE PAST
P.O. BOX 12211
HUNTSVILLE AL 35807

JEFFREY GIERLOFF
LOCKHEED
4800 BRADFORD BLVD.
HUNTSVILLE AL 35807

B. D. GUENTHER
ARMY RESEARCH OFFICE
P.O. BOX 12211
RESERACH TRIANGLE NC 27709

JOHN DAVIS
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898

KEVIN DENNEN
NICHOLS RES.CORP.
4040 S.MEMORIAL PKWY.
HUNTSVILLE AL 35815-1502

JAMES DAWSON
DIYNETICS, INC.
P.O.DRAWER B
HUNTSVILLE AL 34814-5050

RUSS DEWITT
TELEDYNE BROWN ENGINEERING
300 SPARKMAN DR., MS/60
HUNTSVILLE AL 35807

DONALD DUNSTONE
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898-5270

WILLIAM DELANEY
TELEDYNE BROWN ENGR.
300 SPARKMAN DR., MS/60
HUNTSVILLE AL 35807

KATHRYN DIETZ
SVERDRUP TECHNOLOGY/AEDC
9013 AVENUE C, MS9013
ARNOLD AFB TN 37389-9013

DONALD DUNSTONE
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898-5270

CLINTON EVANS
HUGHES-LEITZ OPT.TECH.
328 ELLEN ST., MIDLAND
ONTARIO, CANADA L4R 2H2

RICHARD FEINLEIB
ESSEX CORPORATION
9170 RUMSEY RD.
HUNTSVILLE AL 31045

PAUL FILEGER
TELEDYNE BROWN ENGR.
300 SPARKMAN DR.
HUNTSVILLE AL 35807

RUSSELL FREEMAN
ARMY SPACE & STRATEGIC DEF.CMD.
105 WYNN, CSSD-SL-S
HUNTSVILLE AL 35807

STEPHEN GENTRY
SANDIA NATIONAL LABORATORY
PO BOX 5800, D 9222
ALBUQUERQUE NM 87185

EDWARD GRATRAX
HUGHES DANBURY OPT.SYS.
100 WOOSTER HEIGHTS RD.
DANBURY CT 06810

JANET TARANTO
RESEARCH FROM THE PAST
P.O. BOX 12211
HUNTSVILLE AL 35807

JEFFREY GIERLOFF
LOCKHEED
4800 BRADFORD BLVD.
HUNTSVILLE AL 35807

B. D. GUENTHER
ARMY RESEARCH OFFICE
P.O. BOX 12211
RESERACH TRIANGLE NC 27709

JOHN DAVIS
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898

KEVIN DENNEN
NICHOLS RES.CORP.
4040 S.MEMORIAL PKWY.
HUNTSVILLE AL 35815-1502

JAMES DAWSON
DIYNETICS, INC.
P.O.DRAWER B
HUNTSVILLE AL 34814-5050

RUSS DEWITT
TELEDYNE BROWN ENGINEERING
300 SPARKMAN DR., MS/60
HUNTSVILLE AL 35807

DONALD DUNSTONE
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898-5270

WILLIAM DELANEY
TELEDYNE BROWN ENGR.
300 SPARKMAN DR., MS/60
HUNTSVILLE AL 35807

KATHRYN DIETZ
SVERDRUP TECHNOLOGY/AEDC
9013 AVENUE C, MS9013
ARNOLD AFB TN 37389-9013

DONALD DUNSTONE
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898-5270

CLINTON EVANS
HUGHES-LEITZ OPT.TECH.
328 ELLEN ST., MIDLAND
ONTARIO, CANADA L4R 2H2

RICHARD FEINLEIB
ESSEX CORPORATION
9170 RUMSEY RD.
HUNTSVILLE AL 31045

PAUL FILEGER
TELEDYNE BROWN ENGR.
300 SPARKMAN DR.
HUNTSVILLE AL 35807

RUSSELL FREEMAN
ARMY SPACE & STRATEGIC DEF.CMD.
105 WYNN, CSSD-SL-S
HUNTSVILLE AL 35807

STEPHEN GENTRY
SANDIA NATIONAL LABORATORY
PO BOX 5800, D 9222
ALBUQUERQUE NM 87185

EDWARD GRATRAX
HUGHES DANBURY OPT.SYS.
100 WOOSTER HEIGHTS RD.
DANBURY CT 06810

JANET TARANTO
RESEARCH FROM THE PAST
P.O. BOX 12211
HUNTSVILLE AL 35807

JEFFREY GIERLOFF
LOCKHEED
4800 BRADFORD BLVD.
HUNTSVILLE AL 35807

B. D. GUENTHER
ARMY RESEARCH OFFICE
P.O. BOX 12211
RESERACH TRIANGLE NC 27709

JOHN DAVIS
ARMY MISSILE COMMAND
AMSMI-ORD-SE-MT
REDSTONE ARSENAL AL 35898

KEVIN DENNEN
NICHOLS RES.CORP.
4040 S.MEMORIAL PKWY.
HUNTSVILLE AL 35815-1502

JAMES DAWSON
DIYNETICS, INC.
P.O.DRAWER B
HUNTSVILLE AL 34814-5050

RUSS DEWITT
TELEDYNE BROWN ENGINEERING
300 SPARKMAN DR., MS/60
HUNTSVILLE AL 35807
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENNIS HALL</td>
<td>UNIVERSITY OF ROCHESTER</td>
<td>ROCHESTER NY 14627</td>
</tr>
<tr>
<td>BART HENSEN</td>
<td>BIOTICS CORPORATION</td>
<td>7608 TEAL DRIVE SW, HUNTSVILLE AL 35802</td>
</tr>
<tr>
<td>FORNEY HOKE</td>
<td>NICHOLS RESEARCH CORP.</td>
<td>4040 S. MEMORIAL PKWY., HUNTSVILLE AL 35815-1502</td>
</tr>
<tr>
<td>JEFF HOFFORD</td>
<td>TELEDYNE BROWN ENGR.</td>
<td>300 SPARKMAN DR., HUNTSVILLE AL 35807</td>
</tr>
<tr>
<td>JURGEN JAHNS</td>
<td>AT&T BELL LABORATORY</td>
<td>101 CRAWFORDS CORNER RD 4G-524, HOLMDEL NJ 07733</td>
</tr>
<tr>
<td>GORDON JOHNSTON</td>
<td>NASA HQ, OACT</td>
<td>WASHINGTON DC 20546</td>
</tr>
<tr>
<td>FRANCIS KAILSER</td>
<td>WESTINGHOUSE ELECTRIC CORP.</td>
<td>P.O. BOX 1693, BALTIMORE MD 21203</td>
</tr>
<tr>
<td>MICHAEL KAVAYA</td>
<td>NASA/MARSHALL SPACE FLIGHT CRT.</td>
<td>MAIL CODE EB23, HUNTSVILLE AL 35812</td>
</tr>
<tr>
<td>PAMELA KNIGHT</td>
<td>ARMY STRATEGIC DEFENSE CMD.</td>
<td>CSSD-SO-S., PO BOX 1500, HUNTSVILLE AL 35807</td>
</tr>
<tr>
<td>DONALD LACEY</td>
<td>AF WRGHT LAB.</td>
<td>WLM/NGS, 101 W. EGLIN BLVD. EGLIN AFB FL 32542-6810</td>
</tr>
<tr>
<td>JOHN HARCHANKO</td>
<td>SAIC</td>
<td>6725 ODYSSEY, HUNTSVILLE AL 35806</td>
</tr>
<tr>
<td>JOHN HIRS</td>
<td>LORAL INFRARED & IMAGING SYSTEMS</td>
<td>2 FORBES RD., LEXINGTON MA 02173-7393</td>
</tr>
<tr>
<td>DAVE HOLDER</td>
<td>ELECTRONICS & SPACE CORP.</td>
<td>8100 W. FLORISSANT AVE., ST. LOUIS MO 63136</td>
</tr>
<tr>
<td>ROBERT HOWLE</td>
<td>DYNETICS, INC.</td>
<td>P.O. DRAWER B, HUNTSVILLE AL 35814</td>
</tr>
<tr>
<td>JOHN JAREM</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE ECE DEPT.</td>
<td>HUNTSVILLE AL 35899</td>
</tr>
<tr>
<td>MICHAEL JONES</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE PHYS. DEPT.</td>
<td>HUNTSVILLE AL 85758</td>
</tr>
<tr>
<td>KEIICHIRO KANEKO</td>
<td>UNIV. OF ARIZONA</td>
<td>901 N. 1ST AVE., #21, TUCSON AZ 85719</td>
</tr>
<tr>
<td>BOBBY KENNEDY</td>
<td>NASA MSFC</td>
<td>EB-15, HUNTSVILLE AL 35812</td>
</tr>
<tr>
<td>RAYMOND KOSTUK</td>
<td>UNIV. OF ARIZONA</td>
<td>ELECT. & COMPUTER ENGR. DEPT. TUCSON AZ 85721</td>
</tr>
<tr>
<td>PIERRE LANGLOIS</td>
<td>NATIONAL OPTICS INSTITUTE</td>
<td>369 FRANQUET ST., SAINTE-FOY, QUEBEC, CANADA 41P 4N8</td>
</tr>
<tr>
<td>RICHARD HARTMAN</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE</td>
<td>GB-4Q0, CTR. FOR APPL. OPTICS, HUNTSVILLE AL 35899</td>
</tr>
<tr>
<td>DAMIAN HOCHMUTH</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE</td>
<td>3014 KIRKLAND DR., ALABAMA AL 35810</td>
</tr>
<tr>
<td>DALE HOLTZ</td>
<td>NICHOLS RESEARCH CORP.</td>
<td>4040 S. MEMORIAL PKWY., HUNTSVILLE AL 35815-1502</td>
</tr>
<tr>
<td>QIANG HUANG</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE</td>
<td>PHYS. DEPT., HUNTSVILLE AL 35899</td>
</tr>
<tr>
<td>TZONG-SHIN JIANG</td>
<td>UNIV. OF ALABAMA/HUNTSVILLE</td>
<td>702-A SOUTH LOOP ROAD, HUNTSVILLE AL 35805</td>
</tr>
<tr>
<td>MIKE JONES</td>
<td>GENERAL DYNAMICS</td>
<td>P.O. BOX 748, FT. WORTH TX 76101</td>
</tr>
<tr>
<td>RAKESH KAPOOR</td>
<td>ALABAMA A&M UNIVERSITY DEPT OF PHYSICS</td>
<td>NORMAL AL 35762</td>
</tr>
<tr>
<td>DENNIS KENT</td>
<td>NAVAL AIR WARFARE CENTER</td>
<td>P.O. BOX 5152, WARMINSTER PA 18974</td>
</tr>
<tr>
<td>AMY KRANSTEBER</td>
<td>ARMY MISSILE COMMAND</td>
<td>AMSMI-RD-WS-PO, REDSTONE ARSENAL AL 35898</td>
</tr>
<tr>
<td>FRANK HAYES</td>
<td>ARMY MISSILE COMMAND</td>
<td>AMSMI-RD-AS-IR, REDSTONE ARSENAL AL 35898</td>
</tr>
<tr>
<td>DAWN HENSON</td>
<td>BIONETICS CORPORATION</td>
<td>7608 TEAL DRIVE SW, HUNTSVILLE AL 35802</td>
</tr>
<tr>
<td>DONALD LACEY</td>
<td>AF WRIGHT LAB.</td>
<td>WLM/NGS, 101 W. EGLIN BLVD. EGLIN AFB FL 32542-6810</td>
</tr>
<tr>
<td>ALAN KATHMAN</td>
<td>TELEDYNE BROWN ENGR.</td>
<td>300 SPARKMAN DR., HUNTSVILLE AL 35807</td>
</tr>
<tr>
<td>PINCHUS LAUFER</td>
<td>INST. FOR DEFENSE ANALYSES</td>
<td>1801 N. BEAUREGARD ST., ALEXANDRIA VA 22311-1772</td>
</tr>
</tbody>
</table>
JON NISPER
DONELLY CORP.
414 E. 40TH ST.
HOLLAND MI 49424

CHRISTOPHER PARRY
AEROJET ELECTRONIC SYS.DIV.
P.O. BOX 296, MS 53/5801
AZUSA CA 91702

ABE POGODA
OSAF
4C1052, THE PENTAGON
WASHINGTON DC 20330

WILLIAM PRESTWOOD
ARMY SPACE&STRATEGIC DEF.CMD.
CSSD-SD-O, MS/5801
HUNTSVILLE AL 35807

JANINE REARDON
UNIV.OF ALABAMA/HUNTSVILLE
DEPT.OF PHYS.
HUNTSVILLE AL 35899

PHILIPPE REGNAULT
CSEM
MALADIERE 71, NEUCHATEL CH2000
SWITZERLAND

MAX RIEDEL
OFC CORP.
2 MERCER RD.
NATICK MA 01760

CARL ROUK
NICHOLS RESEARCH CORP.
4515 BONNELL DR., #5A
HUNTSVILLE AL 35816

DANNY SAYLOR
AUTOMATED SCIENCES GRP., INC.
1555 THE BOARDWALK
HUNTSVILLE AL 35816-1825

GREGORY SHARP
TELEDYNE BROWN ENGINEERING
300 SPARKMAN DR., MS19
HUNTSVILLE AL 35807

GREGORY NORDIN
UNIV.OF ALABAMA/HUNTSVILLE
EDE DEPT., EB267
HUNTSVILLE AL 35899

PIERO PERLO
FIAT RESEARCH CENTER
STRADA TORINO 50
ORBASSANO ITALY

GEORGE POLLOCK
ARMY SPACE&STRATEGIC DEF.CMD.
PO BOX 1500, CSSD-SA-EV
HUNTSVILLE AL 35807

DON PURDY
PHILIPS IR DEF.COMPONENTS
MILLBROOK IND. EST., P.O. BOX 217
SOUTHAMPTON, HAMPS UK SO9 7OG

PATRICK REARDON
UNIV.OF ALABAMA/HUNTSVILLE
OPTICS. BLDG.
HUNTSVILLE AL 35899

DANIEL REILEY
UNIV.OF ALABAMA/HUNTSVILLE
PHYS.DEPT.
HUNTSVILLE AL 35899

APRIL ROBERTSON
TELEDYNE BROWN ENGR.
300 SPARKMAN DR.
HUNTSVILLE AL 35807

MICHELE RUBIN
ESSEX CORPORATION
9170 RUMSEY RD.
COLUMBIA MD 21045

ALLEN SCALES
NICHOLS RESEARCH CORP.
4040 S. MEMORIAL PKWY.
HUNTSVILLE AL 35802

ROSHAN SHETTY
UNIV.OF ARIZONA
OPTICAL SCIENCES CENTER
TUCSON AZ 85721

GREGORY NORDIN
UNIV.OF ALABAMA/HUNTSVILLE
P.O.BOX 5525
HUNTSVILLE AL 35814-5525

BRUCE PETERS
TELEDYNE BROWN ENGR.
300 SPARKMAN DR.
HUNTSVILLE AL 35807

MICHAEL POWER
HUGHES DANBURY OPTICAL SYS.
100 WOOSTER HEIGHTS RD.
DANBURY CT 06810

DANIEL RAGUIN
UNIVERSITY OF ROCHESTER
INSTITUTE OF OPTICS
ROCHESTER NY 14627

B. R. REDDY
ALABAMA A&M UNIV.
DEPT.OF PHYSICS
NORMAL AL 35762

ROBYN ROBERTSON
ARMY SPACE&STRATEGIC DEF.CMD.
CSSD-SD-O, MS/200
HUNTSVILLE AL 35807

STEPHEN SAGAN
OPTICAL RESEARCH ASSOC.
550 N. ROSEMEAD BLVD.
PASADENA CA 91107

HARRY SCHLEMMER
CARL ZEISS
DW7022 OBERKochen, CARL-ZEISS
GERMANY

CURTIS SHOEMAKER
3M ELECTRONIC PROD.DIV.
3M CENTER, MS 208-1-01
ST. PAUL MN 55144

GREGORY NORDIN
UNIV.OF ALABAMA/HUNTSVILLE
DEPT.OF ECE
HUNTSVILLE AL 35816

WILLIAM PITTMAN
ARMY MISSILE COMMAND
AMSMI-RD-AS-PN
REDSTONE ARSENAL AL 35898-52

DENNIS PRATHER
ARMY RESEARCH LABORATORY
2800 POWDER MILL RD
ADELPHI MD 20783

JOSEPH RANDALL
NASA/MSFC
HUNTSVILLE AL 35812

ROBERT REDIKER
CYNOSURE, INC.
35 WIGGINS AVE.
BEDFORD MA 01730

DOUGLAS RICKS
NAVAL AIR WARFARE CENTER
CODE C2151
CHINA LAKE CA 93555

RICHARD ROBLE
ELECTRONICS & SPACE CORP.
8100 W. FLORISSANT AVE.
ST. LOUIS MO 63136

DEANNA SALERNO
ARMY MISSILE COMMAND
AMSMI-RD-US-PO
REDSTONE ARSENAL AL 35898

MILES SCOTT
TELEDYNE BROWN ENGR.
300 SPARKMAN DR., MS/200
HUNTSVILLE AL 35807

D. MICHAEL SHOWALTER
ARMY MISSILE COMMAND
AMSMI-RD-JE-MT
REDSTONE ARSENAL AL 35898-52
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loy Shreve</td>
<td>TAI, Inc.</td>
<td>7500 Memorial PKWY, SW, STE.119 HUNTSVILLE AL 35802</td>
</tr>
<tr>
<td>George Sloan</td>
<td>Army SSDC</td>
<td>CSSD-SD-OS, 106 WYN DR. HUNTSVILLE AL 35807-3801</td>
</tr>
<tr>
<td>Beth Sornsin</td>
<td>Univ of Alabama/Huntsville Dept. of Physics</td>
<td>HUNTSVILLE AL 35899</td>
</tr>
<tr>
<td>Richard Steenbliek</td>
<td>Virtual Image Group</td>
<td>1050 Northfield CT., STE.300 Roswell GA 30076</td>
</tr>
<tr>
<td>Julia Teasley</td>
<td>Teledyne Brown Engr. 300 Sparkman Dr.</td>
<td>HUNTSVILLE AL 35807</td>
</tr>
<tr>
<td>Kosta Varnavas</td>
<td>NASA/MSFC</td>
<td>E834 MSFC AL 35812</td>
</tr>
<tr>
<td>Paul Wanko</td>
<td>Army Missile Command</td>
<td>AMSR-SE-MT HUNTSVILLE AL 35898-5270</td>
</tr>
<tr>
<td>Richard Williams</td>
<td>Army Missile Command</td>
<td>AMSR-SE-MT REDSTONE ARSENAL AL 35898</td>
</tr>
<tr>
<td>William Witherow</td>
<td>NASA/MSFC</td>
<td>ES74, SSL BLDG. 4481 HUNTSVILLE AL 35812</td>
</tr>
<tr>
<td>Hsueh-Ling Yu</td>
<td>Univ of Alabama/Huntsville 4912-B COTTON ROW</td>
<td>HUNTSVILLE AL 35816</td>
</tr>
<tr>
<td>Felix Shvartsman</td>
<td>Dupont Co.</td>
<td>P.O. BOX 80352 WILMINGTON DE 19880-0352</td>
</tr>
<tr>
<td>Jerry Smith</td>
<td>Army Missile Command</td>
<td>AMSR-AC-FS BLDG. 5400 REDSTONE ARSENAL AL 35898</td>
</tr>
<tr>
<td>Margaret Stern</td>
<td>MIT Lincoln Lab.</td>
<td>244 WOOD ST., L-237A LEXINGTON MA 02173-9108</td>
</tr>
<tr>
<td>Richard Trissel</td>
<td>Kaiser Electro-Optics</td>
<td>2752 LOKER AVE., W. CARLSBAD CA 92008</td>
</tr>
<tr>
<td>Putcha Venkateswarlu</td>
<td>Alabama A&M University Dept. of Physics</td>
<td>NORMAL AL 35762</td>
</tr>
<tr>
<td>James Wells</td>
<td>Teledyne Brown Engr. 300 Sparkman Dr., MS 19</td>
<td>HUNTSVILLE AL 35807</td>
</tr>
<tr>
<td>Timothy Williams</td>
<td>The Boeing Co.</td>
<td>P.O. BOX 3707, MS 4C-01 SEATTLE WA 98124</td>
</tr>
<tr>
<td>Eleonora Witteles</td>
<td>Summa Technology, Inc.</td>
<td>500 DISCOVERY DR. HUNTSVILLE AL 35806</td>
</tr>
<tr>
<td>Brent Sney</td>
<td>Texas Instruments Inc.</td>
<td>P.O. BOX 660246 DALLAS TX 75266</td>
</tr>
<tr>
<td>Ronald Snow</td>
<td>Aero-Thermo Technology</td>
<td>6703 ODYSSEY DR., STE.303 HUNTSVILLE AL 35806</td>
</tr>
<tr>
<td>Gary Spiers</td>
<td>Univ of Alabama/Huntsville Center for Applied Optics</td>
<td>HUNTSVILLE AL 35899</td>
</tr>
<tr>
<td>Tony Tai</td>
<td>ERIM</td>
<td>P.O. BOX 134001 ANN ARBOR MI 48113-4001</td>
</tr>
<tr>
<td>Thomas Tumolillo</td>
<td>Army Missile Command</td>
<td>AMSR-RD-US-CM REDSTONE ARSENAL AL 35898</td>
</tr>
<tr>
<td>Chandra Vikram</td>
<td>Univ of Alabama/Huntsville Center for Applied Optics</td>
<td>HUNTSVILLE AL 35806</td>
</tr>
<tr>
<td>Thomas Werner</td>
<td>Honeywell, Inc.</td>
<td>10701 LYNDALE AVE., S. BLOOMINGTON MN 55420</td>
</tr>
<tr>
<td>David Wilson</td>
<td>Lockheed</td>
<td>8707 CHURCHILL DR. HUNTSVILLE AL 35801</td>
</tr>
<tr>
<td>John Wootton</td>
<td>Electronics & Space Corp.</td>
<td>8100 W. FLORISSANT AVE. ST. LOUIS MO 63136</td>
</tr>
<tr>
<td>Chris Slinger</td>
<td>RSRE</td>
<td>DRA MALVERN, ST. ANDREWS RD. WORESTSHIRE UK WR14 3PS</td>
</tr>
<tr>
<td>Martin Sokoloski</td>
<td>Science & Technology Corp.</td>
<td>409 THIRD ST., SW, STE.203 WASHINGTON DC 20024</td>
</tr>
<tr>
<td>Sherman Steadman</td>
<td>Nichols Research Corp.</td>
<td>C-1 SHALIMAR CTR., 111TH AV SHALIMAR FL 32579</td>
</tr>
<tr>
<td>Chen-Wen Tarn</td>
<td>Univ of Alabama/Huntsville Electr. & Computer Engr.</td>
<td>HUNTSVILLE AL 35899</td>
</tr>
<tr>
<td>Douglas Turnure</td>
<td>Nichols Res. Corp.</td>
<td>2537 PIONEER DR. HUNTSVILLE AL 35803</td>
</tr>
<tr>
<td>Robert Walker</td>
<td>United International Engr. Inc.</td>
<td>1500 PERIMETER PKWY., #123 HUNTSVILLE AL 35806</td>
</tr>
<tr>
<td>Stephen Whicker</td>
<td>Texas Instruments Inc.</td>
<td>P.O. BOX 655012, MS 39 DALLAS TX 75265</td>
</tr>
<tr>
<td>Robert Wilson</td>
<td>NASA</td>
<td>LANGLEY RES.CENTER, MS 473 HAMPTON VA 23681-0001</td>
</tr>
<tr>
<td>Charles Wyman</td>
<td>MEVATEC</td>
<td>1525 PERIMETER PKWY, STE 500 HUNTSVILLE AL 35806</td>
</tr>
</tbody>
</table>
FINAL PROGRAM

Topics and schedule subject to change due to cancellations or other circumstances beyond our control at the time of the meeting.

TUESDAY MORNING, 23 FEBRUARY 1993

0730 REGISTRATION

0830 CALL TO ORDER AND OPENING REMARKS
Program Co-Chairperson Helen Cole, NASA, Marshall Space Flight Center, Huntsville, AL

0835 WELCOME TO CONFERENCE
Dr. Joe Randall, Director, Astrionics Laboratory, NASA, Marshall Space Flight Center, Huntsville, AL
Mr. Buford Jennings, Associate Director for Technology, RD&EC, MICOM, Redstone Arsenal, AL

0850 KEYNOTE ADDRESS*
Dr. B.D. Guenther, Army Research Office, Research Triangle Park, NC

0930 Perspectives on Binary Optics Programs*†
Dr. Jasper Lupo, ODDR&E(RLM)/DARPA, The Pentagon, Washington, DC

0945 MORNING BREAK

1005 Binary Optics, Trends, and Limitations*
Michael Farn, MIT Lincoln Laboratory, Lexington, MA

1035 TUTORIAL: Design and Fabrication of Binary Optics*
Dr. Michael Morris, University of Rochester, College of Engineering and Applied Science, Institute of Optics, Rochester, NY

1135 LUNCH BREAK

*Indicates Invited Paper
†Withdrawn
TUESDAY AFTERNOON, 23 FEBRUARY 1993

SESSION A: MODELING AND DESIGN
Chairpeople: Dave Lanteigne, Weapons Sciences Directorate, U.S. Army Missile Command, Redstone Arsenal, AL
Steve Anderson, Hughes Aircraft Company, El Segundo, CA

1300 Review of Rigorous Coupled-Wave Analysis and of Homogeneous Effective Medium Approximations for High Spatial-Frequency Surface-Relief Gratings*
Elias N. Glytsis, David L. Brundrett, and Thomas K. Gaylord, Georgia Institute of Technology, Atlanta, GA

1345 Scalar Limitations of Diffractive Optical Elements
E.G. Johnson, M.G. Moharam, and D. Pommet, Teledyne Brown Engineering, Huntsville, AL, and University of Central Florida, Orlando, FL

1410 Sub-Wavelength Structured Surfaces and Their Applications
Daniel H. Raguin and G. Michael Morris, University of Rochester, Institute of Optics, Rochester, NY

1435 AFTERNOON BREAK

1455 Diffractive Optical Elements for Generating Arbitrary Line Foci
D.W. Prather, J.N. Mait, and J. Van der Gracht, Harry Diamond Laboratories, Adelphi, MD

1520 Finite Difference Time Domain Analysis of Chirped Dielectric Gratings
D.H. Hochmuth and E.G. Johnson, Teledyne Brown Engineering, Huntsville, AL

1545 Asymmetric Three Beam Binary Optic Grating
A.D. Kathman, E.G. Johnson, and M.L. Scott, Teledyne Brown Engineering, Huntsville, AL

1610 Scattering From Binary Optics
Douglas W. Ricks, Naval Air Warfare Center, Weapons Division, China Lake, CA

1635 Mathematical Modeling for Diffractive Optics
David Dobson, University of Minnesota, School of Mathematics, Minneapolis, MN; and J. Allen Cox, Honeywell Systems & Research Center, Minneapolis, MN

1700 END OF DAY

*Indicates Invited Paper
WEDNESDAY MORNING, 24 FEBRUARY 1993

0730 REGISTRATION

0800 CALL TO ORDER
 Program Co-Chairperson William Pittman, U.S. Army Missile Command, Redstone Arsenal, AL

0805 TUTORIAL: Fabrication of Binary Optics*
 Dr. Margaret Stern, MIT Lincoln Laboratory, Lexington, MA

SESSION B: FABRICATION
Chairpeople: John Davis, System Engineering and Production Directorate, U.S. Army Missile Command, Redstone Arsenal, AL
 Steve Fawcett, NASA, MSFC, Huntsville, AL

0905 Binary Optics Fabrication Capabilities at HDOS
 B−1 Mike Power and James Logue, Hughes Danbury Optical Systems, Inc., Danbury, CT

0930 MORNING BREAK

0950 Fabrication Techniques for Very Fast Diffractive Lenses
 B−2 Anthony M. Tai and Joseph C. Marron, Environmental Research Institute of Michigan, Ann Arbor, MI

1015 Laser Figuring for the Generation of Analog Micro-Optics and Kineform Surfaces
 B−3 Edward J. Gratrix, Hughes Danbury Optical Systems, Inc., Danbury, CT

1040 Diffractive Optics Fabricated by Direct Write Methods With an Electron Beam
 B−4 Bernard Kress, David Zaleta, Walter Daschner, Kris Urquhart, Robert Stein, and Sing H. Lee, University of California at San Diego, Dept. of ECE, LaJolla, CA

1105 Phase Holograms in PMMA With Proximity Effect Correction
 B−5 P.D. Maker and R.E. Muller, Jet Propulsion Laboratory, Pasadena, CA

1130 Circularly Symmetric, Surface-Emitting Semiconductor Laser
 B−6 Rebecca H. Jordan, Oliver King, Gary W. Wick, and Dennis G. Hall, University of Rochester, Institute of Optics, Rochester, NY

1155 LUNCH BREAK

*Indicates Invited Paper
WEDNESDAY AFTERNOON, 24 FEBRUARY 1993

SESSION B (Continued)

1315 Micro-Optics Technology and Sensor Systems Applications Overview
B-7 G. Gal, B. Herman, W. Anderson, R. Whimey, and H. Morrow, Lockheed Missiles and
 Space Co., Palo Alto, CA

1340 Fabrication of Micro-Optical Devices
 Alto, CA

1405 Diffractive Optics in Adverse Environments
B-9 G.P. Behrmann, Harry Diamond Laboratories, Adelphi, MD

1430 Low Costs Paths to Binary Optics
B-10 Lawrence Domash and Art Nelson, Foster-Miller, Inc., Watham, MA

1455 AFTERNOON BREAK

SESSION C: APPLICATIONS I

Chairpeople: Paul Ashley, Weapons Sciences Directorate, MICOM, Redstone Arsenal, AL
 Alan Kathman, Teledyne Brown Engineering, Huntsville, AL

1515 Diffractive Optics Design for Producibility
C-1 J. Steven Anderson, Hughes Aircraft Co., El Segundo, CA; and Robert Spande, Army
 Night Vision and Electro-Optics Directorate, Ft. Belvoir, VA

1540 Measurements of Microlens Performance
C-2 D. Shough, B. Herman, and G. Gal, Lockheed Missiles and Space Company, Palo Alto,
 CA

1605 Applications of Advanced Diffractive Optical Elements
C-3 W. Hudson Welch and Michael B. Feldman, Digital Optics Corporation, Charlotte, NC

1630 Laser Beam Steering Device
C-4 M.E. Motamedi, A.P. Andrews, and W.J. Gunning, Rockwell International Science
 Center, Thousand Oaks, CA

1655 SURPHEX: New Dry Photopolymers for Replication of Surface Relief Diffractive Optics (U) *
C-5 Felix P. Shvartsman, Dupont Company, Wilmington, DE

1720 END OF DAY

*Indicates Invited Paper
THURSDAY MORNING, 25 FEBRUARY 1993

0800 REGISTRATION

0830 CALL TO ORDER
 Program Co-Chairperson Helen Cole, NASA, Marshall Space Flight Center, Huntsville, AL

0835 Predesign of Diamond Turned Refractive/Diffractive Elements for IR Objectives*
 Max Riedl, Optical Filter Corporation, Natick, MA

0905 Optical Storage System Design With Diffractive Optical Elements*
 Prof. Ray Kostuk and Charles W. Haggans, University of Arizona, Tucson, AZ

SESSION D: APPLICATIONS II
Chairpeople: James Bilbro, Deputy Chief, Optical and RF Systems Division, NASA, MSFC, Huntsville, AL
 Paul Maker, Jet Propulsion Laboratory, Pasadena, CA

0935 Theory of Dispersive Microlenses
D–1 B. Herman and G. Gal, Lockheed Missiles and Space Co., Palo Alto, CA

1000 BREAK

1020 Color Separation Gratings*
D–2 Dr. Michael W. Farn, Robert E. Knowlden, Dr. Margaret B. Stern, and Dr. Wilfrid B. Veldkamp, MIT Lincoln Laboratory, Lexington, MA

1045 Fiber Continuity Test Using Multi-Level Diffractive Elements†
D–3 Roshan Shetty and Tom Milster, University of Arizona, Optical Sciences Center, Tucson, AZ

1110 END OF CONFERENCE

*Indicates Invited Paper
†Withdrawn
The papers herein were presented at the Conference on Binary Optics held in Huntsville, AL, February 23-25, 1993. The papers were presented according to subject as follows: Modeling and Design, Fabrication, and Applications. Invited papers and tutorial viewgraphs presented on these subjects are included.