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1. Introduction: The dynamic analysis of complicated structures often produces large

finite element models. In some instances, the automated computer procedures to generate

finite element meshes also lead to large models. These hlgh]y refined models are really a

byproduct of the use of model generating software and they may not be needed for accuracy.

A common approach to reduce the size of the eigenvalue problem for structural dynamics

applications is Guyan reduction. This approximate method finds its place among other

applications also. For the purposes of cost-effectiveness, Guyan reduction is employed

in Coupled Loads Analysis using substructuring techniques. In the experimental modes

analysis, analytical selection of retained degrees of freedom for G,,yan reduction is used as

a guide to select accelerometer locations on the test article. Mass weighted orthogonality

computations between the test and analytical modeshapes are performed using Guyan

reduction.

While Guyan reduction [1] is exact in static applications, it introduces approximations

in structural dynamics. The correct relationship between the retained and omitted degrees

of freedom can be expressed in the form of a series. The Guyan reduced mass and stiffness

matrices, available in explicit form, are used to compute the series terms approximately.

The Guyan reduced matrices provide the best possible solution without requiring any

further iterations. The condition for convergence of the series and the relationship of this

series transformation to the improved reduced system (IRS) introduced by O'Callahan [2]



are examined in this paper.

2. Theory: The eigenvs/ue problem from the structural dynamic mmMysis is given as

K_ = _Mx

Eq. (1) can be written in the partitioned form as,

(1)

} {..}Ko. Koo J Wo = _ I Mo" Moo Wo
(2)

where u, represents the eigenvector of the retained degrees of freedom and mo the eigen-

vector of the degrees of freedom omitted in the Guyan reduction. Mij and Kij are the

corresponding submatrices of the mass and stiffness matrices respectively and ,_ is the

eigenvaiue. The second partition of Eq. (2) can be written separately as

(Ko, - _Mo,)U°+ (Koo- :_Moo)Uo= 0

Expanding the vector Uo in terms of tso from Eq. (3),

(3)

Uo = -(Koo - ,XMoo)-l (Ko° - AMo,.)u°

= - if- _K='Moo)-' (K='Ko, - _K='Mo,),,°
(4)

Guyan reduction transformation leaves out the frequency dependent terms in Eq. (3).
Hence, the regular Guyan reduction transformation becomes,

,o = -K£_Ko.,. (S)

If the condition for convergence (Section 4.) is satisfied, the inverse of (I- AK;_ Moo)
can be expanded in Neumann series as,

(I- _K='Moo)-' = Z+ _K:o'moo+ _' [K_o'mo°]'

Using Eq. (6) in Eq. (4) and simplifying the terms yields,

where

+... (6)

mo = - [K_olKoo + BA + ABA 2 + A2BA a +...] Uo

A = K_o 1Moo and B = K_o 1Moo - AK_o I Koo

(7)

(8)
The exact relationship between uo and Uo in Eq. (7) involves nonlinear terms of the un-

known eigenvalues (,_). A practical approximation to compute these terms in Eq. (7) can
be made from regular Guyan reduction by taking,

Krtt° _- ,_MrUo (9)
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where Kr and Mr are Guyan reduced stiffness and mass matrices respectively and are

given explicitly as,

Kr = K,, - K, oK:o 1Koo (10)
-I -I

Mr = M°a - M.oK_o x Ko. - KoaK_ t Mo°+ K.oKoo MooKoo Ko.

From Eq. (9), it is seen that,
At;° -- M;'l Krw° (11)

Using Eq. (11) repeatedly, it can be shown that,

A_° = (M71K,.)'tto

(12)

Aim° = Ciwo, C = M71Kr

Substituting Eq. (12) into Eq. (7), the relationship between t_ in Eq. (1) and t_o becomes,

u = Tu° (13)

where

I 1 (14)T = -K_Koo + _ Ai__BC i

i=1,2,..

By applying the relation between u and Uo in Eq. (13), the new improved matrices from

series reduction can be obtained as,

7"_ = TT KT and ]_/= TT MT (15)

It is interesting to note that Mo° vanishes for lumped formulations of the mass matrix.

Taking the value of i to be unity, the transformation in Eq. (14) reduces to

; ] (16)T = Xoo+ BC

which is the improved reduced system (IRS) proposed by O'Callahan [2].

:L DMAP Alter: A rigid format alter for dynamic analysis in NASTRAN has been

developed to incorporate the improved Guyan reduction with the series terms. A parameter

called GOPT is used to choose the number of correction terms. The alter listing is also

provided in this section.
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$$$$$$$$$$$$$$$$$$$$$$_$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$_$$$$$$$__$$$$$__$

$ CSA/NASTRAN ALTER FOR IMPROVED GUYAN REDUCTION

_$_$$$$$$$$$$$$_$$$$$$$$$$_$$_$$$$$$$$$$$$$_$$$_$$$$$$$$$$$$$$$$$$$$_$___$$$_$$$
$

RFINSERT SMP2 $

PARAM//C,N,NOP/V,Y,GOPT=-I $

PARAM//C,N,SUB/V,N,GOUT/V,Y,GOPT/C,N,2 $

COND LGOPT,GOPT $

UPARTN USET,MFF/MAAB,MOA,,MOO/*F*/*A*/*O* $

FBS LOO,,MOO/AMAT/1 $

FBS LOO,,MOA/BMAT1/1 $

MPYAD AMAT,GO,BMAT1/BMAT $

SOLVE MAA,KAA/CMAT/I $

$

MPYAD BMAT,CMAT,/SUM $

COND OUT,GOUT $

MATMOD SUM,,,,,/PRDT,/13 $

LABEL LOOPTOP $

EQUIV SUM,SUMI/NEVER $

EQUIV PRDT,PRDTX/NEVER $

SMYPAD AMAT,PRDT,CMAT,,,/PRDTX/3 $

ADD SUM,PRDTX/SUMI $

EQUIV SUM1,SUM/ALWAYS $

EQUIV PRDTX,PRDT/ALWAYS $

REPT LOOPTOP,GOUT $

LABEL OUT $

ADD GO,SUM/GONE $

SMP2 USET,GONE,MFF/MAA $

SMP2 USET,GONE,KFF/KAA $

LABEL LGOPT $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$_$$$

4. Validity of Guyan Reduction: The inverse of the matrix [I - AKoo _Moo] in Eq. (4)

can be expanded as a converging Neumann series only if all the elgenvalues of AKoo 1Moo are

less than unity. In other words, the Guyan reduction is valid only for those frequencies less

than the smallest frequency of the elgenvalue problem formed out of the omitted degrees

of freedom. The effect of violating this condition will be scrutinized in the next section.

5. Demonstration Examples:

5.1 Uniform Cantilever: The first example is concerned with a cantilevered bar clamped

at one end. The relevent structural parameters are taken to be the modulus of elasticity

(E) being equal to 30 x l0 s psi, weight density (pg) as 0.2839 Ib/in _, area of cross section

as 1 in 2 and the length of the bar (L) as 72 in.

The characteristic equation of this cantilever is cos x/'_wL = 0 from which the

theoretical natural frequencies can be computed. The cantilever is divided into twenty finite
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elements. The retained degrees of freedom for Guys.n reduction are the axial displacements

at the free end _nd at two successive nodes. The reduction transformation includes n as

the number of additional series terms. The natural frequencies from improved Guyan

reduction for different values of n are listed in Tables 1 through 5.

Table 1. Cantilever Frequency Comparisons (n = 0)

Standard Guysn Reduction

Mode

Number

1

2

3

Theoretical

Frequency (Hz)

7.012E2

2.104E3

3.506E3

Computed

Frequency (Hz)

7.428E2

7.562E3

1.655E4

Error

%

5.926E0

2.595E2

3.722E2

Table 2. Cantilever Frequency Comparisons (n = 1)

Mode

Number

1

2

3

Theoretical

Frequency (Hz)

7.012E2

2.104E3

3.506E3

Computed

Frequency (He)

7.012E2

2.583E3

1.390E4

Error

%

8.014E-2

2.279EI

2.964E2

Table 3. Cantilever Frequency Comparisons (n = 2)

Mode

Number

1

2

3

Theoretical

Frequency (Hz)

7.012E2

2.104E3

3.506E3

Computed

Frequency (Hz)

7.011E2

2.239E3

7.043E3

Error

%

-2.169E-2

6.440E0

1.009E2

Table 4. Cantilever Frequency Comparisons (n = 3)

Mode

Number

1

2

3

Theoretical

Frequency (Hz)

7.012E2

2.104E3

3.506E3

Computed

Frequency (Hz)

7.012E2

2.167E3

3.879E3

Error

%

-2.170E-2

3.003E0

1.063E1
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Table 6.

Mode

Number

1

2

3

!

Theoretical

Frequency (Hz)

Cantilever Frequency Comparisons (n = 4)

7.012E2

2.104E3

3.506E3

Computed

Frequency (Hz)

7.010E2

2.120E3

3.680E3

Error

%

-3.235E-2

7.937E-1

4.950E0

The accuracy of the computed frequencies is improved by taking into account the

higher order correction terms. However, when n _> 6, the reduced mass matrix is no longer

positive definite and the eigenvalue solution process breaks down. This limitation of adding

a finite number of correction terms can be explained by the fact that the third frequency

of the overall structure exceeds the lowest frequency of the omit set (O-set) system thus

violating the convergence criterion for Guyan reduction.

Another cantilever example is constructed by assuming that the three elements near

the free end are made up of a material with E - 30 x I0 _ pJi instead of steel. By retaining

the same degrees of freedom as in the previous example of all steel construction, it becomes

possible to add an almost limlt]ess number of correction terms. This is because there is

no overlap between the frequency spectrum of the first three modes of the full system and
that of the O-set system.

6.2 Plama Motor Generator (PMG): This example comes from the modal testing

and finite element analysis of the PMG Far End Package (Figure I). The PMG experiment

is a payload on a Delta II 7925 launch vehicle. The mission is scheduled to take place in
July 1993.

Figure 1. PMG Far End Package
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The analysis set degrees of freedom correspond to the accelerometer locations used in

the modal survey test. The improved Guyan reduction is performed with different n on

the PMG Far End Package model. The computed frequencies are compared with those of

the full mode] which are taken as the reference solution and the results are listed in Tables

6 through 8. Several frequencies that were not found by the standard Ouyan reduction

start to reappear by adding the correction terms.

Table 6. PMG Frequency Comparisons (n _ 0)

Mode

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Reference

Frequency (Hz)

56.32

84.46

100.66

118.19

159.46

170.06

185.19

215.16

217.65

228.36

234.52

243.43

264.53

299.03

305.16

Computed

Frequency (Hz)

56.39

84.66

101.20

119.58

160.48

220.65

224.09

236.73

256.55

330.53

Error

%

0.13

0.23

0.53

1.17

0.63

2.55

2.95

3.56

5.38

8.31

Table 7. PMG Frequency Comparisons (n = I)

Mode

Number

1

2

3

4

5

6

Reference

Frequency (Hz)

56.32

84.46

100.66

118.19

159.46

170.06

Computed

Frequency (Hz)

56.32

84.46

100.66

118.20

159.46

171.65

Error

%

0.00

0.45E-4

0.59E-3

0.46E-2

0.16E-2

0.92
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Table 8. PMG Frequency ComparJlons (n ----2)

Mode

Number

I

2

3

4

5

6

7

8

9

I0

11

12

13

14

15

Reference

Frequency (Hz)

56.32

84.46

100.66

118.19

159.46

170.06

185.19

215.16

217.65

228.36

234.52

243.43

264.53

299.03

305.16

6. Conclusion:

Computed

Frequency (Hz)

56.82

85.52

101.12

118.31

160.32

170.18

185.29

215.19

217.71

228.61

234.60

242.79

264.65

299.59

305.60

Error

%

0.89

1.24

0.45

0.09

0.53

0.064

0.054

0.016

0.026

0.10

0.035

-0.26

0.043

0.17

0.14

A noniterative procedure to enhance the standard Cuyan reduction with a series of terms

has been presented. In practice, it may be possible to add only a finite number of the

correction terms as demonstrated by the NASTRAN examples.
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