
DESIGN OPTIMIZATION STUDIES
USING COSMIC NASTRAN

N94
S. M. Pitrof, G. Bharatram, V. B. Venkayya

Wright Laboratory
Wright-Pattexson AFB OH 45433-7552

5 7"

Summary

The purpose of this study is to create, test and document a procedure to

integrate mathematical optimization algorithms with COSMIC
NASTRAN. This procedure is very important to structural design

engineers who wish to capitalize on optimization methods to ensure that
their design is optimized for its intended application. The OPTNAST

computer program was created to link NASTRAN and design optimization

codes into one package. This implementation was tested using two truss
structure models and optimizing their designs for minimum weight,

subject to multiple loading conditions and displacement and stress
constraints. However, the process is generalized so that an engineer could

design other types of elements by adding to or modifying some parts of the

code.

Introduction

Since the advent of NASTRAN during the early 70's, engineers have

found many applications of finite element analysis in diverse fields. Its

popularity, which is still growing, has spawned many commercial and
research programs and they are available on just about every kind of

computer available on the market. The parallel development of graphics
interfaces, which started as pre- and post-processors to finite element

programs, have further stimulated fascinating applications in the analysis
of mechanical components, built-up structures, fluid-structure interaction

problems, thermal and heat transfer analysis, acoustics and other

engineering analyses. The reliability of finite element analysis is

increasingly attributed to the graphical aids. They are the means for model
error correction, display of analysis results such as displacements, mode

shapes (including animation), color coded displays of stresses and strains,
etc. With shrinking budgets and increasing competition for market share,

the industry is groping for ways to cut product development costs and
reduce development time from concept to market. Analysis tools such as

NASTRAN offer challenging opportunities for rapid parametric studies at
minimal cost. Adept use of these tools is the key to improving quality and

reducing cost of new products. These two aspects are the most important

ingredients for market leadership.

81

Having realized the many advantages of finite element analysis
during the 70's, engineers have embarked upon the development of even
more ambitious integrated design systems in the name of computer aided

engineering (CAE). The basic elements of these multidisciplinary systems
are finite element analysis and mathematical optimization (nonlinear
programming) algorithms coupled by sensitivity analysis. The sensitivity
analysis is an extension of finite element analysis through first order
approximations. These integrated systems take full advantage of the ever
improving capabilities of modern digital computers and provide significant
reductions in product development costs and time. The objective of this
paper is to show how COSMIC NASTRAN, which is basically an analysis
tool, can be coupled to a nonlinear programming package to obtain an
optimized structure. Although the single discipline analysis architecture
of NASTRAN presents numerous difficulties, it is possible to achieve
objectives of optimization to a limited extent. The bridge between the
analysis and optimization is the sensitivity analysis and the procedure
outlined in Reference 1 is used in this implementation.

The next section provides a brief introduction to optimization theory
and sensitivity analysis, followed by some details of the implementation
using COSMIC NASTRAN. This is followed by discussion of the results
gained from this implementation as applied to simple truss problems.

Theo

The optimization problem is generally posed as follows:

Minimize an objective function:

F(x) = F (Xl, x2, ... x a)

Subject to a set of constraints:

zi(x) - zi (x l, x2, ""Xa) -< zi

zj(x) = zj (x l, x2, ...x a) -- _j

xl< x<x u

F is the user defined objective function, while x is the vector of design

variables. The first set of constraints, zi, is the inequality constraints. The

second set zj is the equality constraints. The third set is the constraints on

the variables (upper and lower bounds) themselves. The weight of the
structure is the objective function addressed in this paper while the
constraints are on the displacements and stresses. The variables in the
structural optimization problem described in this paper are the cross-

82

sectional areas of the rods, but could instead be thicknesses of the plates or

some other design parameter.

The constraints are non-linear functions of the variables and thus

the problem comes under the category of nonlinear programming. The
iterative solution of the linear or nonlinear programming problems can be
written as:

xV+ 1 = x v + _:D

where x v and x v+l are the variable vectors in two consecutive cycles, D (

VF, VZ) is the travel direction or perturbation, and _ is the step size. The

travel direction in most gradient-based solutions is based on the objective

and constraint function gradients (VF and VZ).

So basically, the steps involved in the solution of the nonlinear
programming problem are as follows:

1. Initial solution x

2. Function evaluation

3. Selection of active constraints

4. Gradient evaluation

5. Determine the travel direction D

6. Determine the step size z.

7. Check for the optimality conditions.

8. Repeat the steps until the conditions are satisfied.

Gradient computations are as outlined in Reference 1. CONMIN, a
nonlinear programming package based on the modified method of feasible
directions, is used as the optimizer (Reference 2).

Implementation

As previously discussed, there is potential for considerable benefit in
performing structural design optimization studies using NASTRAN.
However, integrating optimization algorithms with NASTRAN has been a

daunting proposition. The effort required to develop a fully integrated
structural design optimization package is so extensive that only through
intensive, dedicated efforts such as the Air Force's Automated STRuctural

83

Optimization Program (ASTROS) program can finite element analysis
codes and mathematical optimization algorithms be interfaced into a

system capable of performing structural design. A true integrated package
such as ASTROS consists of one executable program, with all capabilities

built into it. Another approach, which we will discuss in this paper, is to

synthesize separate executable files with a shell script program run by the

computer's operating system. The script program calls multiple
executable files and performs some rudimentary computations and data

processing activities. In the past few years two phenomena have emerged
to make our task of implementing optimization in NASTRAN far more

realizable.

The first is the emergence of code written in subroutine form to

compute values needed as inputs to optimization algorithms such as
constraint values and constraint sensitivities. Optimization algorithms

need to specify a design problem as an objective function to be maximized or
minimized. As design variable values change, the objective function value

changes. The algorithm also requires that bounds on the problem are

placed. These bounds take form as constraint values and design variable

upper and lower bounds. Much of the information required by optimization

algorithms is very simple and straightforward to compute. Some values
such as initial design variable values, design variable value upper and

lower bounds, and constraint limits are left to the user to define. Other

values such as objective function values and constraint values are fairly

simple to compute but require information about the structure such as

geometry and response to loading. Of significantly greater difficulty to

compute are objective function and constraint sensitivities. Sensitivity
values, which are defined as the first derivative of the objective and
constraint functions, tell the optimizer which direction in design space to

move. Recently, programs in subroutine form to compute such values have

become more available (exemplified in Reference 1) to calculate constraint

sensitivities for NASTRAN elements.

The second phenomenon is the emergence of open computer

operating architectures. Cosmic NASTRAN has in the past been available

on proprietary computer architectures such as CDC/CYBER and
VAX/VMS. As Unix systems are becoming more available, NASTRAN is

migrating to these new machines in order to take advantage of open

systems. This environment is especially amenable to programmers who

wish to integrate stand-alone programs into a package but either cannot or
choose not to rewrite stand-alone programs in subroutine format and link

operation by a main driver program. Since we have programs such as
NASTRAN to perform structural analyses , programs such as CONMIN to

perform optimization studies, and many miscellaneous programs to
formulate input values required for optimization from output values from

NASTRAN, Unix provides us with the necessary capability to synthesize

these programs into one system capable of performing structural

optimization tasks.

84

The OPTNAST computer program was created to demonstrate the

feasibility of integrating NASTRAN with optimization methods in the
context of structural design. OPTNAST, which capitalizes on previously

written optimization code and the Unix operating system, consists of
several fortran programs and a Unix shell script program. The Unix c-

shell script was written to perform a loop operation between the analysis
program (NASTRAN) and the optimizer (CONMIN). In order to use the
script the user must obey some basic rules regarding his design problem.
These rules are imposed on the user in order to simplify the code

development process. The restrictions are as follows:
- No free format

- Only one material card
- All elements will be designed
- Constraints will be applied to all elements/nodes
- All load cases will be designed; limit of 5 load cases

With more extensive code development, any of these restrictions can be
removed. However, our intent is to develop a reasonably practical
methodology to conduct optimization with NASTRAN and thus some

restrictions are acceptable.

There are two input files required by the OPTNAST program. They
are a standard NASTRAN input file (e. g. tenbar.nid) and a file of

optimization parameters (e. g. tenbar.opt). The input file must obey the
previously discussed restrictions and must also include the following
statements:

- Request for OUTPUT2 file with KELM matrix (for use in gradient

computations)
- Request for punch file with displacement and/or stress data (for use

in constraint calculations)

The optimization parameter file must contain the following:
- New CONMIN parameters to override defaults (if any are desired)
- Number of and values for displacement and stress constraints

Examples of each are contained in Appendices 1 and 2.

Once the user has properly prepared the NASTRAN input file and

the optimization parameter file, the user is ready to run the OPTNAST
program (Figure 1). The OPTNAST program consists of a Unix script
(Appendix 3) file that calls the executable programs and processes the data
shared by the executables. There are three executable files called by
OPTNAST. The first is PREPARE, which preprocesses the bulk data file.
The second is NASTRAN, and the third is COSOPT, which performs all of

the optimization computations (Appendix 4). The OPTNAST script

performs the following operations:
- Reads the name of the input file
- Processes the input file to include load cases to calculate virtual load

vector response (for gradient calculations)
- Submits the problem to NASTRAN to calculate initial structural

design response to the applied loads
- Sends the data to the COSOPT program to:

(1) calculate constraint and objective function and gradient values
(2) submit to CONMIN for optimization
(3) return a new NASTRAN input file if design has not converged or

a converge flag iT it has
- Loop back and submit new input file to NASTRAN to continue

optimization task
- Continue looping until optimum is reached or maximum number

of 16 iterations is reached

While the OPTNAST program is not an integrated package, but rather a
collection of executables driven by a script file, it is fully capable of
performing all tasks necessary to solve the optimization problem.

Results and Discussion

The OPTNAST program was used to perform design optimization
studies on two structural models, each with varying constraint values and
load cases. The first model, the Ten Bar Truss (Figure 1) was modeled with
the properties as illustrated in the NASTRAN input file example (Appendix
1). This problem was solved with six different conditions, with
minimization of structure weight being the objective in each case. The first
case featured 2.0" displacement constraints applied to all grid points. The
second case featured 25000 psi stress constraints (both tensile and
compressive) on each element. The third case synthesized both the first two
cases. The fourth case featured stress constraints with two separate load
cases applied. The fifth case was identical to the second case except that no
linear approximations were made during the redesign phase (NASTRAN
was called to recalculate structural response after each iteration). The
sixth case was again identical to the second, except that the initial design
variable values are set to minimum gauge. This is what is described as an
infeasible design because all constraints are violated.

The second structural model designed was a Two Hundred Bar

Truss (Figure 3). The objective of this model is to provide an example of a
large structure in order to indicate feasibility of designing a large model.
This structure was solved with stress constraints applied to each element
and with two separate load cases. Since there are two hundred elements
and two load cases, this design model includes two hundred design
variables and four hundred constraints.

Each of the previously described models was run with the OPTNAST

program, and results are provided to compare with those provided by the
ASTROS program. Since ASTROS input is generally compatible with
NASTRAN and since ASTROS uses a similar optimization algorithm,
approximation concepts and gradient calculations, results gained from
each code should be comparable. This comparison is bourne out when

viewing the final results tabulated in Table 1. The results show that for any
design the final design's optimal weight for each method agree to within
one percent. One obvious penalty is that the amount of time required is
much less with an integrated package like ASTROS. Improvements to the

85

OPTNAST program can be made to improve efficiency, but an integrated

package with a centralized database like ASTROS benefits from inherently
more efficient methods of processing, storing and sharing data between
modules. It should also be noted that the timing summary for the
OPTNAST program is only an approximation since the code was not

included to keep track of the actual time spent.

Concluding Remarks

This study has proved the feasibility of conducting optimization
studies with NASTRAN. The OPTNAST program generated for this study
can be used for designing truss structures with displacement and stress
constraints. As many as five different load cases can be considered with

the program. The program can achieve optimum designs very similar to
integrated design optimization packages such as ASTROS, but a
computational performance penalty is inherent and unavoidable. Still, this
method is very attractive when integrated packages do not offer the
necessary capabilities, such as element types or constraints that the user
needs to design for. As a result, this is a viable alternative when the user
has highly specialized design needs.

Ref_

1. Tischler, V. A.; Venkayya, V. B.: Sensitivity Analysis and Optimization
Issues in NASTRAN, 1991 NASTRAN Colloquium

2. Vanderplaats, Garret N.: CONMIN - A Fortran Program for
Constrained Function Minimization User's Manual, NASA TMX-62282,
Ames Research Center, August 1973

3. COSMIC NASTRAN User's Manual, NASA SP-222(08), June 1986

87

Tables

Table 1: Results

Model
Nnme

10 Bar
Trn_

10Bar
Trn_

10 Bar
Truss

10 Bar
Tr:l_m

lOBar
Truss

Constra-
ints

V_p

V_p&
Stress

Stress
Con_L

Strum

Stress,
No

Appmx
10 Bar Stress,
Truss Infeas.

200 Bar
Truss

Weight
0bs)

5024

5O66

1594

1741

1609

OPTNAST

Iteration

cycles
12

10

14

144

Clock
(rain)

14._0

9_0

Hrs

Weight
0bs)
5102

5104

1594

17"o8

1594 13 13._)0 1593

98J32 5Hrs12 9&75

AS't_OS

Iteration

cycles
12

! Clock
(min)

1:15

12 1:41

18 2:31

15 1:26

16 1:30

6 8:47

88

Figures

NASTRAN Input File Design Optimization
Parameter File

(User Created) (User Created)

PREPARE Module:

- Cre..ates. n..e.wNAS_ input file
w_tn ad0_.tlQnaa mac/_ases neeoeo
tor sensmvtty anatysls

COSMIC NASTRAN:

- Conducts structural analysis
- Writes stiffness matrix in output2 fret
- Writes response data in punch format

COSOPT Module:

Reads NASTRAN analysis & optimi-
zation data, calculates constraint &

gradient info, sends to optimizer

No

Converged'

Stop

OptimizatioK Data Output
ttsy t..yc_e)

Figure 1: OPTN_ Pr_gl'aln

89

/

[

\

j_

/
/

/

/
f

,t

/

J
/

i

/

.i/

\ ,,/J

//'/'f _'_.

\\

.'!

\
\
\

J

/"

/

/

?

J
//

//
rf j

/
/

,f

_. o /

./" \
/ "x.

\

4

\
\\\

\

\

Figure 2: Ten Bar Truss

9O

:i7_!!!!!_!!i!;_:_:;!.!i:7i]i_;i_;!i!i:T:;:i:i;!i!!i!:

Figure& Two Hundred Bar Trmm

91

ID TENB,TENB

SOL 1,0
TIME 50

ALTER 37 $
OUTPUT2 KELM//-I/15/ V,N,Z $

OUTPUT2,,,,//-9/15 $

ENDALTER $

CEND

TITLE ffiTEN BAR TRUSS

DISP(PRINT,PUNCH)=ALL

STRESS(PRINT,PUNCH)=ALL
SPC ffi1

SUBCASE 1

LOAD = 1

BEGIN BULK

$

$

$

$

$

$
GRID 1

GRID 2

GRID 3

GRID 4

GRID 5

GRID 6

CROD 1

CROD 2

CROD 3

CROD 4

CROD 5

CROD 6

CROD 7

CROD 8

CROD 9

CROD i0

PROD 1

PROD 2
PROD 3

PROD 4

PROD 5

PROD 6

PROD 7

PROD 8

PROD 9

PROD I0

$
MAT 1 2

$

SPCI, i,

SPCl, I,

$

FORCE, I,

FORCE, I,

$
ENDDATA

TEN BAR TRUSS MODEL

FROM SCHMIT, L.A., JR. AND MIURA, H., " APPROXIMATION

CONCEPTS FOR EFFICIENT STRUCTURAL SYNTHESIS ",

NASA CR-2552, MARCH 1976.

720.0

720.0

360.0

360.0

0.0

0.0

1 3

2_ 1

3 4

4 2

5 3

6 1

7 4

8 3

9 2

i0 1

2 30.0

2 30.0

2 30.0

2 30.0

2 30.0

2 30.0

2 30.0

2 30.0

2 30.0

2 30.0

360.0

0.0

360.0

0.0

360.0

0.0

5

3

6

4

4

2

5

6

3

4

0.0

0.0

0.0

0.0

0.0

0.0

I.E+7 0.3 0.i 25000.0

123456, 5,

3456, i,

6

THRU, 4

2, , -I.E5,

4, , -I.E5,

0.0, 1.0, 0.0

0.0, 1.0, 0.0

Appendix 1: NASTRAN Input File

92

$ _ EXAMPLE PROBLEM
INDMIN=0

0.I0

$ PRINT CONTROL
IPRCTL=3

$ DISPLACE_NT CONSTRAINT
LMTDSP=2

6,-2.0 2 1
-2.0 2 2

-2.0 2 3

-2.0 2 4

-2.0 2 5

-2.0 2 6

NZLMIT=4

IPRINT=I

FXMIN=I.0E+I0

ITERT=40
XMIN=.I

XMAX=IO00.O

Appendix 2: Optimization Parameter Input File

93

Unix c-shell script to optimize rod structure for displacement
and stress constraints using NASTRAN to derive structural response

quantities (displacements, stresses, K matrix), CONMIN optimization
algorithm for optimization and assorted routines to calculate

objective function, constraint values and sensitivities (sensitivity

analysis uses virtual load vector method
#

Inputs to program are NASTRAN input deck (no free format) <filename.nid> and

optimization parameter file <filename.opt>

#

get model name if not provided

if ($I a=) then
echo 'model name?'

set a a $<

else

set a - $i
endif

check to see if optimization parameter file exists

if (! -e Sa.opt) then

echo "RUN REQUIRES OPTIMIZATION PARAMETERS ($a.opt)
exit

endif

echo "i.0" >fort.85 #initialize last obj fn value to 1.0

cp Sa.nid $a.nid.old #save old input

cp Sa.opt fort.4 #get optimization date

cp Sa.nid fort.55 #copy input to unit 55

prepare <$a.nid >$a.out #add virtual load vectors to NASTRAN input
rm $a.out $a.nid

my fort.65 Sa.nid

build script to execute cosmic
echo "c" >cosfeed

echo Sa >>cosfeed
echo "o" >>cosfeed

echo "i" >>cosfeed

echo "y" >>cosfeed
set it = 0

#begin loop

while (Sit < 16) #maximum 16 iterations

cp Sa.nid fort.55
@ it = Sit + 1 #counter

cosmic <cosfeed >$a.out #execute cosmic interactively
#prepare for optimization segment

#cp Sa.nid fort.55 #copy input file to unit 55

cp Sa/PCH fort.25 #punch file to unit 25

cp $a/INPI fort.15 #output2 file to unit 15
rm -rf $a

cosopt <fort.55 >$a.opt.it$it #submit to optimization program
if (-e fort.65) my fort.65 Sa.nid

set loop m "cat fort.75"

if (Sloop == "0") set it="16" #if optimization converged end loop
end

rm cosfeed fort.15 fort.25 fort.55 fort.75 fort.4 fort.85

Appendix 3: OPTNAST Unix SheJl Script

94

C_--

PROGRAM COSOPT
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

C

C_--m

Program to submit NASTRAN output to CONMIN optimization algorithn
for rod structures with displacement and stress constraints

C.

EXTERNAL SETFUN

C_

INCLUDE 'cosopt.inc'

C_u

COMMON/CNMNI/DELFUN,DABFUN,FDCH,FDCHM,CT,CTMIN,CTL,CTLMIN,

+ALPHAX,ABOBJI,THETA,OBJ,NDV,NCON,NSIDE,IPRINT,NFDG,

+NSCAL,LINOBJ,ITMAX,ITRM, ICNDIR,IGOTO,NAC,INFO,INFOG,ITER

SAVE/FUNPAR/

COMMON/FUNPAR/FXMIN,XL,XU,NZLMIT,ITERT,IPRINTI

C Thickness (of membrane elements or area of bars--input)

C

DIMENSION TH(MAXELM)
SAVE /ANLYZI/

COMMON /ANLYZl/ TH, MEMBS, JOINTS, MM, NFI

C
C Index to elements' material properties

C

INTEGER MYOUNG(MAXELM)

C

C Material properties

C

DIMENSION YOUNGM(MAXMTL), POISON(MAXMTL), RHOI(MAXMTL)

C

C Allowable Stresses

C

DIMENSION ALSTRS(3, MAXMTL)

C
SAVE /ANLYZ2/

COMMON /ANLYZ2/ EEE, PMU, RHO, YOUNGM, POISON, RHOI, MYOUNG,

+ ALSTRS, NMAT, MSSTRS

C--

INTEGER NNODES(MAXELM)

C
C Node number connectivities for each element

C

INTEGER MA(MAXELM), MB(MAXELM), MC(MAXELM), MD(MAXELM)

C

C Nodal coordinates for each joint

C

DIMENSION X(MAXJNT), Y(MAXJNT), Z(MAXJNT)

C
SAVE /ANLYZ3/

COMMON /ANLYZ3/ NNODES, MA, MB, MC, MD, X, Y, Z, INCHES

Cml

C

C

C

C

C Degree of freedom numbers for restrained nodes (boundary conditions)

C

DIMENSION IBND(MAXBND)

_umber of load components for each loading condition

4:c op'r

DIMENSION NJLODS(MAXLOD)

C

C Displacement and force resultants for each degree of freedom and

C and loading condition

C

DIMENSION DR(NNMAX,MAXLOD), FR(NNMAX,MAXLOD)

C

C Stiffness and mass matrices

C

DIMENSION SK(MAXSK), GM(MAXSK)

C

C Pointers to diagonal elements in stiffness matrix, SK;
C Row number for first nonzero element in each Column of SK

C

DIMENSION IDIAG(NNMAX), ICOL(NNMAX)
C

SAVE /ANLYZ4/

COMMON /ANLYZ4/ IBND, NJLODS, FR, DR, SK, IDIAG, ICOL, GM,

+ NBNDRY, NN, KIPS, NR, NONZRO

C--mmmmmmmmm_m_

SAVE /ANLYZ5/

COMMON /ANLYZ5/ LOADS

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Cmu_

Element Area (size) Minimum and Maximums,

Variable Bounds factor limits

DIMENSION AEMIN(MAXMEM), AEMAX(MAXMEM)

DOUBLE PRECISION VBMIN, VBMAX

LOGICAL INDMIN, INDMAX

Key to Limited Displacements;

Number of Displacement Constraints;
Deflection constraints: maximum deflection for all nodes or

magnitude, direction, and node number for each node's constraint

INTEGER LMTDSP, NDSPCN

DIMENSION DEFMAX(3),

+ DEFMAG(MAXDEF), IDRDEF(MAXDEF), NNDDEF(MAXDEF)

Frequency limits (negative for lower bound);

Number of Frequencies Constrained, Mode number of Constrained freq.

DIMENSION FRQLMT(MAXFQL)

INTEGER NFRQCN, MODECN(MAXFQL)

Flag for Rayleight Quotient Frequency Constraint Approximation;

Flag for inverting form of Frequency constraint.

LOGICAL FRQAPX, FRQINV

Structural to total mass modal energy ratios

DIMENSION GAMMAJ(MAXFQL)
SAVE /OPTIM2/

COMMON /OPTIM2/ FRQLMT, GAMMAJ, DEFMAX, DEFMAG, IDRDEF, NNDDEF,

+ AEMIN, AEMAX, VBMIN, VBMAX, INDMIN, INDMAX,

+ LMTDSP, NDSPCN, NFRQCN, FRQAPX, FRQINV, MODECN,

+ LMTSTR, NSTRCN, NDUMMY

96

C

C

C

Von Mises Effective Stress Ratio for each element

DIMENSION VMEFSR(MAXCON, MAXLC)

Strain energies for each element & axial stress values

DIMENSION ENRG(MAXCON+I, MAXLC), SX(MAXCON)

COMMON /OPTIM3/ VMEFSR, ENRG, SX

SAVE /OPTIM3/

C--------

C
C Allowable stress values

DIMENSION ALS(3)

SAVE /OPTIMI2/

COMMON /OPTIMI2/ ALS

C_--------D----m------.

DIMENSION A(NI,N3),AI(N6,N7),AS(NI,N3),AD(NI,N3),XOBJ(NI),VLB(NI),

+VUB(NI),G(N2),SCAL(NI),S(NI),GI(N2),G2(N2),B(N3,N3),C(N4), DF(NI),

+ISC(N2),IC(N3),MSI(N5), ITYPG(N2),IHAC(MAXCON+3),KMAT(KI,KI)
REAL OBJOLD

C Override selected CONMIN default parameters
DELFUN = 0.0001

DABFUN = 0.01

CTMIN = .0005

CTLMIN = .001

CT = -.003

CTL = -.01

ITRM = 3

NFDG = 1

NSCAL = 0

LINOBJ = 1

ITMAX = 75

NSIDE = 20

IGOTO = 0

INDEX=6

MM=3

C Read NASTRAN data deck to get structural data

CALL INPUT(SETFUN, NDV, NCON)

C Calculate initial design variable and objective function values

CALL INIDV(XOBJ, DF)

IF (NDSPCN .GT. 0) NFI=NFI+JOINTS

IF (NSTRCN .GT. 0) NFI=NFI+MEMBS

DO I = I,NCON

ISC(I) = 0
ENDDO

DO I = 1,NDV

VLB(I)=XL

VUB(I)=XU
ENDDO

WRITE(75,*)1

C Calculate objective function value

CALL CALOBJ(OBJ,DF,XOBJ,NDV,.FALSE.)

C Calculate constraint values

CALL CALCON(XOBJ,G,ITYPG)
NAC = 0

SF=I.0

PRINT*,'Constraint values'

DO J=I,NCON

97

PRINT*,'g(j)=',G(J)
ic(j)=0
IF (G(J) .GE. CT) THEN

NAC = NAC + 1

ic(nac)=j
ENDIF

ENDDO

PRINT*,'Number of active constraints:',NAC

C CALCULATE CONSTRAINT GRADIENTS

CALL VICKYI(KMAT)

IF (NDSPCN .GT. 0) THEN
CALL VICKY2(KMAT,INDEX,AD)

DO I=I,N7

DO J=I,N6

A(J,I)=AD(J,I)
ENDDO

ENDDO

IF (NSTRCN .GT. 0) THEN

CALL VICKY4(KMAT,INDEX,AS)

DO K=I,NSTRCN
DO J=I,N6

A(J,K+NDSPCN)=AS(J,K)
ENDDO

ENDDO

ENDIF

ELSE IF (NSTRCN .GT. 0) THEN

CALL VICKY4(KMAT,INDEX,AS)

DO I=I,N7

DO J=I,N6

A(J,I)=AS(J,I)
ENDDO

ENDDO

ELSE

PRINT*,'ERROR - NO CONSTRAINTS IDENTIFIED'

STOP

ENDIF

PRINT*,'Constraint Gradients'

do i=l,n7

do j=l,n6

WRITE(6,70)(a(9,i))
enddo

enddo

70 FORMAT(6EI5.6)
CALL APXCMN(XOBJ, VLB, VUB, G, A, NDV, NCON, OBJ, DF, IHAC,

+ RTCNV, INVFLG, MAXCON, MAXNDV, IACT, IVIOL, ITYPG,NVC)

IF (NVC .EQ. 0) THEN

READ(85,*)OBJOLD

IF (ABS((OBJOLD-OBJ)/OBJOLD) .LE. 0.001) THEN

REWIND(75)

WRITE(75,*)0

PRINT*,'COSOPT HAS CONVERGED'
ENDIF

ENDIF

REWIND(85)

WRITE(85,*)OBJ
PRINT*,'XOBJ=',(XOBJ(I),I=I,NDV)

CALL UPDATE(XOBJ,MAXNDV)

WRITE(6,187)OBJ

187 FORMAT(5X,21HOBJECTIVE FUNCTION = ,E15.8)
STOP

END 98

