
3rd NASA Symposium on VLSI Design 1991

N94-13338
1.1.1

Experience with Custom Processors
in Space Flight Applications

M. E. Fraeman, J. R. Hayes, D. A. Lohr, B. W. Ballard,

R. L. Williams, and R. M. Henshaw

Johns Hopkins University Applied Physics Laboratory

Laurel, Maryland 20723

Abstract- APL has developed a magnetometer instrument for a Swedish satel-

lite named Freja with launch scheduled for August 1992 on a Chinese Long

March rocket. The magnetometer controller utilized a custom microprocessor

designed at APL with the Genesil silicon compiler. The processor evolved from

our experience with an older bit-slice design and two prior single chip efforts.

The architecture of our microprocessor greatly lowered software development

costs because it was optimized to provide an interactive and extensible pro-

gramming environment hosted by the target hardware. Radiation tolerance

of the microprocessor was also tested and was adequate for Freja's mission--

20 kRad(Si) total dose and very infrequent latch-up and single event upset

events.

1 Introduction

The Johns Hopkins University Applied Physics Laboratory (APL) has developed a micro-

processor that is well suited to one-of-a-kind embedded applications especially in satellite

instrument control. The chip has been qualified for use in a magnetometer instrument for

the Swedish Freja satellite. The processor's language directed architecture reduced Freja

software costs because the flight hardware served as its own development system. Thus,

unlike traditional interpreted programming languages like Basic, Lisp, or Smalltalk, our

Forth language development system was fully supported on the embedded flight proces-

sor. Performance was also equivalent or better than that obtained by other microprocessors

programmed in languages like C with traditional cross-compilers and development systems.

Our experiences using Forth to program spacecraft instrumentation computers, and our

early efforts to design a 32-bit microprocessor specifically intended to execute Forth code

are described in this paper. The design, architecture, and performance of our most recent

version of this microprocessor, called the SC321, are summarized in Section 4. Discussion

of our use of the SC32 in the Freja magnetometer includes our efforts to qualify the

microprocessor for space flight. Finally, we discuss some of the lessons we learned using a

custom designed integrated circuit in space flight hardware.

1The SC32 has been commercially licensed by Silicon Composers, Inc., Palo Alto, Ca. They offer chips,
board level development systems, and support software.



1.1.2

Table 1: APL Forth-based Subsystems and Experiments

SPACECRAFT SUBSYSTEM/EXPERIMENT LAUNCH DATE PROCESSOR

MAGSAT Attitude Control 6/79 RCA 1802

DMSP Magnetometer (classified) RCA 1802

HILAT Magnetometer 6/83 RCA 1802

Polar Bear Magnetometer 6/83 RCA 1802

Astro-1 Ultraviolet Telescope(HUT) 12/90 AMD 2900

Freja Magnetometer 8/9_ (est) SC32

2 Background

2.1 Forth

Forth has an extremely simple syntax so only a trivial parser is needed to allow it to

run in impoverished hardware environments. Lexical properties are also simple. Forth

subroutines, called words, are delimited by spaces. The words themselves can consist

of any characters other than the delimiter. This simplicity keeps the interpreter small

allowing full featured Forth systems to fit comfortably in as little as 8 kbytes of memory.

Programming in Forth consists of defining new words in terms of existing words. The

new word is incrementally compiled and can be invoked interactively by the programmer.

Thus, the usual benefits of interpreted languages are reaped, especially simplified testing

and a resulting higher confidence in program correctness.

2.2 APL Space Applications of Forth

Table 1 summarizes APL's experience with spacecraft instrumentation we have developed

and programmed using Forth. [1] We have also used the language on other projects including

ground support equipment and control of laboratory instrumentation. Application tasks

ranged from relatively simple data acquisition functions to control of the complex, space

shuttle based Hopkins Ultraviolet Telescope (HUT)--one of three ultraviolet telescopes

(all programmed in Forth) that comprised the Astro-1 mission at the end of 1990. Our

most recent instrument, a magnetometer for the Swedish Freja satellite will be described

later in this paper.

Our earliest space flight applications were based on the relatively simple RCA 1802

microprocessor. But during the early definition of the HUT command and data handling

system around 1980, it bec_ne Clear that a far more powerful processor was needed to

satisfy that project's requirements. After exploring an architecture based on as many

as four TI 9900 microprocessors (the fastest microprocessor qualified for space that was

then available), we realized that a single faster machine would have numerous advantages.

The software would be easier to write and test, and more importantly, uniprocessor code

and hardware would be more flexible in the face of evolving requirements and as system



3rd NASA Symposium on VLSI Design 1991 1.1.3

interfaces were more clearly defined.

2.3 The Hopkins Ultraviolet Telescope Processor

The AMD 2900 bit-slice component family was used to build a 16-bit computer that im-

plemented Forth's primitive operations directly in microcode. In the early 1980s, this was

the only way we could build a single processor with throughput that met our requirements

and that also could be qualified for use in space. Our bit-slice processor was able to com-

pile and execute Forth interactively, even on the flight unit, without needing extensive

support tools. Performance was also very good (approximately 500,000 Forth operations

per second) which allowed us to design an unusually flexible software system. The final

flight software required about 5 person-years of development time (including developing

the detailed software requirements), contained 29 cooperating concurrent processes, and

consisted of about 12,000 lines of Forth code and comments.

We gained valuable experience with Forth based computers while developing, using,

and flying the HUT processor. A fast computer that supported a compact but interactive

and extensible software development system on flight hardware had many advantages. It

encouraged the development of powerful yet flexible software while minimizing the costs of

writing, testing, and maintaining that code. However, HUT also showed that the 64 Kword

address space of 16-bit machines was inadequate for larger embedded systems. Towards

the end of the development cycle flight processor memory became too full to support an

interactive environment so we had to fall back on clumsier traditional cross-compiler based

methodology.

3 The FRISC Project

At the same time our work on HUT hardware was winding down in 1984, we were also

initiating an effort to develop experience in VLSI design. We combined our experience

in Forth computers and our interest in VLSI into an effort to develop a 32-bit Forth

microprocessor. During 1985 we developed the processor architecture that we called FRISC

(Forth Reduced Instruction Set Computer) and ported VLSI design tools developed at

several universities a 68010 based workstation.

3.1 FRISC 1

By the beginning of 1986, with tools and architecture firmly in hand, we started detailed

design of a chip that implemented most of our ideas. This was FRISC 1, the first in a

series of chips that evolved into the SC32. We targeted the 4 /_m Silicon on Sapphire

(SOS) process then available through MOSIS. We selected SOS technology for several

reasons. First, SOS is inherently immune to radiation induced latch-up and would thus be

a candidate technology for future integrated circuits used in flight systems. The absence

of active-substrate junction capacitance reduces load and hence improves speed. Circuit

density is improved because there is no minimum p-active--n-active separation design rule.



1.1.4

Finally, on a more practical note, the SOS process was available through MOSIS at no

cost as far as the project's budget was concerned. So the chance to get experience with

a technology with significant benefits for chip_ intended for use in space was too good to

pass up.

Design of the 18,000 transistor chip was completed by mid-April 1986. It easily fit

inside a standard MOSIS 7.9 mm x 9.2 mm pad frame. We used caesar for layout, lyra

for design rule checking, rnl for functional simulation, spice for circuit simulation, and

the usual collection of customized shell scripts, format translators, and system utilities for

coordinating the design team's work. While the chips were being fabricated, we built a

wire wrapped Multibus CPU board with memory and a programmable non-overlapping

clock generator board to test our parts.

Three months later we had our chips and began to test theM. About half of the parts

that were eventually delivered appeared to function except that one data bit was always

stuck high. Unfortunately, that specific bit was u_sed in the instruction set to cause the

processor to output a value, so we had no way to inspect the contents of the chip's registers.

Microscopic analysis later revealed a spacing design rule violation at the interface between

the pad ring cell and the cell containing the chip's interior logic. This error was undetected

because lyra flattened the layout of intersecting areas on adjacent cells after checking the

cells individually. Our design hierarchy consisted of the pad ring in one cell and all the

other circuitry in a second cell completely enclosed by the ring. Therefore the top level

rule check flattened the entire design and greatly exceeded the maximum virtual memory

space supported by our host workst_ation so our mista_ke went undetected.

Despite this layout error, one chip was fully fu.nctionM and we were able to demonstrate

a full Forth system running on our own custom 32-bit microprocessor. But before we could

submit a corrected design, MOS!S announced that they would no longer offer access to
SOS.

3.2 FRISC 2

At the beginning of 1987, we started to redesign our chip with the MOSIS scalable (3 #m

to 1.2 #m) bulk CMOS process. We also used the magic layout editor instead of caesar but

still depended on rnl for switch level simulation. By April we sent the layout to MOSIS for

a 20,000 transistor chip that implemented almost all of our original architecture. The active

area for this chip, designed with 3 #m feature sizes, was slightly smaller than the previous

version but it still required a 7.9 mm x 9.2 mm pad frame. However, an inadvertently

grounded substrate prevented that part from working. Using a combination of infrared

microphot0graphy and-careful _nspection_0f-the layout in the hot _region We_eventually

located the error. 2 Since we made our mistake, a circuit extractor called meztra, was

modified at the University of Washington to specifically detect similar errors. Apparently

we weren't the first, and based on errors we've detected in other designs, not the last group

to make a substrate connection error.

2This error has since been missed by dozens of students taking the midterm exam in a JHU VLSI design
class.



3rd NASA Symposium on VLSI Design 1991 1.1.5

A corrected layout was fabricated shortly thereafter and was fully functional. The fixed

FRISC 2 could execute about 2.5 million Forth primitives per second (about five times

faster than 25 MHz Motorola MC68020 running Forth) and consumed 150 roW. However,

this performance was about twice as slow as we expected due to an incorrectly sized control

line driver.

4 The SC32

While our efforts had eventually produced a functional and usable microprocessor, we did

not reach our design goals on first silicon. In fact, we felt that our small team would not

be able to build chips much more complex than FRISC 2 with the tools and workstations

we used for that design. Furthermore, full logical and parametric functionality would

probably be achieved only after several fabrication iterations. Our simulations were not as

thorough as we would have liked since our workstation required a day to complete a switch

level simulation of the execution of a few machine instructions. Determining the impact

of more than one or two architectural alternatives on chip speed and area was impractical.

Irregular structures such as control logic were very tedious to layout. Minor changes in

control logic would often result in days of work to resimulate and update the lay out. As

our speed problem with FRISC 2 demonstrated, these structures were also a likely source

of parametric as well as functional errors.

4.1 Genesil

Rather than waiting several years for workstation speeds to improve before tackling more

complex chip designs, we investigated commercial VLSI design tools. Silicon Compilers

Inc. (now part of Mentor Graphics, Inc.) had just released the Genesil silicon compiler.

This was a fully integrated set of VLSI tools that let the user describe, implement, and

analyze a design at the block diagram level.

Genesil's intended market was logic designers with no VLSI experience. Yet we were

attracted to it because the compiler allowed a user to easily and quickly investigate the

implications of many architectural alternatives. We felt that the greatest improvements

in system performance could be gained by optimizing architecture while lower level en-

hancements would be of secondary importance. Any inefficiencies introduced by the high

level design tool should be more than compensated for by the better architecture that the

silicon compiler would allow the designer to develop. Genesil also automated many of the

most time consuming aspects of VLSI design so a small team would be able to tackle larger

projects. Thus we hoped that Genesil would be the better tool that would let our small

team tackle larger designs.

4.2 SC32 Design

Genesil was installed at our site by June 1087, and we started using it to explore approaches

to implementing our Forth architecture. We also enhanced our computer's architecture



1.1.6

based on the experience we gained on our earlier designs. The greater complexity that

Genesil let us tackle with the same size team (2-3 part time people) also allowed us to

improve the architecture. By mid-November we had completed our Genesil design work

including thorough simulations of thousands of instructions. But due to delays in design

verification at Silicon Compilers, our mask level design wasn't delivered to the foundry

until February, 1988. After an extra month delay caused by problems with test vector

formats, we received fully functionM tested parts in May. The next day we had a single

board computer running an interactive Forth development system.

We consider this third version of our Forth processor a complete success. It was fab-

ricated with a 2 #m epitaxial CMOS n-well process, contained 35,000 transistors, and

consumed 660 roW. The die was 9.9 mm x 9.6 mm and was packaged in an 84 pin ceramic

pin grid array. Despite obvious inefficiencies in the overall chip layout, the processor still

ran at 10 Mttz. Because the processor architecture is optimized for Forth the comparatively

slow clock rate speed still executed 8-12 million primitives per second--a throughput still

unmatched by any other 32-bit microprocessor implementation of the language of which
we are aware.

4.3 Architecture

The detailed architecture of the SC32 has been described elsewhere.[2] Briefly, the machine

has a 32 bit word address architecture and an instruction set that can implement most

Forth primitives in a single instruction. Flow control instructions specify an absolute

destination address and execute in a single cycle with no delay slots. The machine's

register set is organized into two top-of-stack caches with single cycle access within the

instruction set to the top four locations of each stack. These on-chip caches support

stack depths limited only by main memory with overflow and underflow events handled

entirely by hardware. Less that 1% overhead is added to typical Forth programs by our

approach to stack management. There are up to eight other utility and special purpose

registers allowed. The data path allows arithmetic operations between these registers to be

completed in a single cycle. A flexible load/store instruction format transfers data between

registers and memory and can also be used to form literal values.

4.4 Performance

Measuring and comparing processor performance is always controversial--especially fo_ a

new architecture not supported by commonly used languages. Different implementations of

Forth are also difficult to compare since there are no commonly used benchmark programs

written in that language. Finally, it is only natural to ask how a Forth version of a program

compares to an equivalent implementation in a more widely used language.

Since Forth is the only high level language available for the SC32, we took the approach

of manually translating a set of small integer benchmark programs from C to Forth. These

programs were collected by the Computer Systems Laboratory at Stanford University and

have since been translated from their original Pascal into C. They have been widely used



3rd NASA Symposium on VLSI Design 1991 1.1.7

to evaluate the performance of many computer systems.

Because the Stanford programs are small, they are generally considered "toy" bench-

marks that provide overly optimistic results in comparison to similar tests made with

larger codes. But several factors suggest that the translated benchmark suite will provide

a conservative estimate of performance running large Forth programs.

Merely translating these programs into Forth produced very poor and uncharacteristic

Forth code. Word definitions were extremely long and difficult to debug. This meant

that the SC32's efficient call/return mechanism was not used. However, our measurements

showed that real Forth programs greatly benefit from this feature of the SC32. Array and

structure accesses involved run time calculations repeated within inner loops and unnec-

essary calculations were performed. There are many optimizations traditional compilers

perform to minimize this arithmetic. Writing the equivalent program in Forth exposed

these excess calculations directly to the programmer. Thus the high level Forth source

code would normally be written to avoid these inefficiencies.

Finally, the algorithms and data structures used by the Stanford programs were heavily

influenced by traditional languages. A version of one of them, Towers of Hanoi, ran 9.6

times faster when coded with data structures and algorithms better suited to Forth than

the simple translation of the original code.

The SC32 running with a 10 MHz clock and programmed in Forth was 8.4 times faster

on the Stanford benchmarks than a Vax !1/780 programmed in C. If the multiplication

dominated intmm program is disregarded, then the SC32 is 9.9 times faster. The SC32 is

also 19.9 times faster than a 25 MHz Motorola MC68020 running Forth. If the MC68020

is programmed in C than the SC32 is still 1.4 times faster.[3]

Our goal was to develop a processor that could deliver the benefits of an interpreted

programming environment without any performance penalty. The data we have collected

show that this goal was achieved. Small Forth programs run at least as fast on the SC32

as equivalent C programs on traditional microprocessors. Furthermore it is likely that

this relationship will become more favorable for large programs due to the SC32's efficient

call/return mechanism.

4.5 Applications of the SC32

Several different SC32 based computers have been built at APL. A simple single board

computer was designed to demonstrate the chip. That design was later modified and used

in telemetry decommutation ground support equipment for the TOPEX and SPINSAT

radar altimeter satellites. A standalone computer system, including operating system and

utilities, based on magnetic bubble memory for mass storage was developed to show the

benefits of self hosted embedded processors for the NASA Goddard Space Flight Center.

The most complex SC32 system we have built is a VME bus CPU with full master/slave

capability. It will be used to control a balloon borne solar magnetograph. These were

interesting projects, but it was not until 1989 that the Freja magnetometer instrument

gave us the opportunity to use one of our chips in space flight hardware.



1.1.8

Table 2: Freja Magnetometer Requirements Summary

• Anti-alias low pass filters for DC and AC channels

- 64 Hz cutoff during normal rate (14.3 kbits/sec _ocated to our instrument) telemetry opera-
tions

- 128 Hs cutoff during high rate (28.7 kbits/sec allocated to us) telemetry operations

• Digitize X, Y, Z AC and DC magnetic field measurements to 16 bits

- 128 samples/sec during normal rate telemetry operations

- 256 samples/sec during high rate telemetry operations

• Oversample and average X, Y, and Z DC measurements

• Anti-alias filter one AC channel with 256 Hz cutoff and sample at 512 samples/sec

• Computer amplitude spectrum 0-256 Hz for the AC channel with 512 point FFT

• Detect magnetic activity to trigger data collection in other experiments

• Collect and digitize housekeeping and status data

• Format and output telemetry

• Interpret and execute commands

5 The Freja Magnetic Field Experiment

Freja is a Swedish satellite that will be launched into a nearly polar orbit to study the

earth's magnetosphere and ionosphere. Experiments from Sweden, Germany, and Canada

will fly on the satellite and the U.S. is represented by a magnetic field experiment designed

and built at APL. Freja is clearly an international effort with launch scheduled in August

1992 as a "piggyback payload" on a People's Republic of China Long March rocket (barring

significant changes in the political situation).

5.1 Magnetometer Requirements

The magnetometer uses the SC32 to implement the instrument's data acquisition and

analysis system. Overall instrument requirements are summarized in Table 2.[4]

The conventional approach to satisfying these requirements would include a switchable

hardware anti-aliasing filter (for the two different sample rates), a 16-bit A/D, and an on

board computer for status and housekeeping tasks. The processor would be programmed in

its assembly language and the code would be cross-assembled on a separate machine. The

object code would be downloaded to the target hardware for debugging using in-circuit

emulators and other support equipment. No data analysis would be performed on the

satellite but would be deferred to ground based postprocessing.

This configuration was not feasible within the resources provided by Freja to our mag-

netometer. There was neither power nor enough circuit board space for the switchable

filters. Filters would also seriously degrade the noise floor of the magnetic field measure-



3rd NASA Symposillm on VLSI Design 1991 1.1.9

ments. Telemetry bandwidth precluded transmission of the 512 samples/see channel to

ground for spectral analysis. A separate digital signal processing device used to perform

this task would exceed the available power and board space. The extra hardware and

software design tasks would also have lengthened our development schedule. Finally, the

traditional approach to developing embedded computer software with cross-development

tools and in-circuit emulators was too costly due to the long edit, compile, download, and

emulate cycle.

Our magnetometer overcame these problems by using a simple fixed hardware anti-

aliasing filter, a 16-bit A/D converter, and the SC32 microprocessor. The computer

performs data acquisition and averaging, digital anti-alias filtering, FFT computation,

telemetry formatting, command interpretation and execution, and other instrument con-

trol functions. Software development and debugging were performed interactively on the

actual target hardware in a high level language. Despite the processing demands imposed

by satisfying these requirements with software, the magnetometer processor has a 50%

throughput margin when the SC32 is driven at 40% of its maximum clock rate.

Mass and power requirements were typical of small satellite experiments. The chassis

was milled from a solid block of magnesium rather than aluminum and circuit cards were

hardwired together instead of using cable assemblies. The completed instrument, excluding

probes and boom, weighed 3.5 kg. The entire instrument consumed less than 3.7 W

including DC-DC converter, sensor electronics, telemetry subsystem, and the computer

itself.

5.2 Instrument Development

Schedule and budget constraints were also quite challenging. The flight hardware and

software were delivered to Sweden in July 1991, two years after the project was started.

We estimate that the hardware and software were developed for 50-75% lower cost than a

system of equivalent capability based on a traditional microprocessor such as the 80C86RH.

The cost savings were due primarily to our use of an interactive Forth system rather than

a cross-compiler/assembler that would be needed for the conventional processor. We also

have significant doubt that an equivalent instrument could be based on the 80C86RH due

to its limited throughput, even if it were programmed entirely in assembly language.

The productive software development environment provided by the SC32 was a key

factor in quickly completing the instrument. Forth's interactive capability greatly assisted

hardware debug and and subsystem integrations. The flight code was extremely compact,

in source (2500 lines) as well as object form (16 Kwords including operating/development

system). Small code size was due to two factors. First, our real time scheduler allowed

the program to be organized into 8 cooperating tasks. Each task was simple and easily

programmed especially when compared to the alternative of a single monolithic piece of

code. Secondly, Forth's extensibility meant that program size grew logarithmically as

complexity increased. Essentially Forth was used to develop a new programming language

specifically oriented to the problem domain. Therefore programs that solved tasks in that

domain were very compact. Because of these characteristics of Forth, one of us (Hayes)



1.1.10

was able to write the magnetometer flight software in only two months. The magnetometer

was delivered in July 1991 and has since been integrated with the other Freja subsystems.

We were the first of the seven experiments on Freja to deliver fully flight-ready hardware

and software for satellite integration. No flight software changes have yet been needed.

5.3 Radiation Testing

Much of the development of our instrument was affected by considerations of the natural

radiation environment in Freja's 600 km x 1700 km high inclination orbit. During the two

year Freja mission, we expect to receive a total radia{10n dose of 12 kRad(Si). Radiation

induced latch-up and single event upset (SEU) soft errors also concerned us.

The Freja magnetometer CPU board contains the SC32, two 32 K x 32 RAM modules,

two 32 K x 32 EEPROM modules, two 82C54R]=[ timer c_aips, and 52 SSI/MSI parts. The

RAM and EEPROM parts were chosen because other APL flight programs had determined

that their radiation characteristics Were acceptable in Freja's orbit. The 82C54RH radia-

tion tolerance was guaranteed by its manufacturer. SSI/MSI logic from the 54AC00 family

were used for the support chips because they were also known, again due to information

from other APL flight projects, to work in our environment. We had to establish the

radiation characteristics of the SC32 ourselves.

5.3.1 Total Dose

Two different SC32 fabrication lots were evaluated for total dose characteristics using our

in-house Co 8o facility. Exposure was performed at a rate of i kRad(Si)/min with bias

and a low speed clock applied to force the part into a known state. Bias current was

monitored during exposure. Component functionality was assessed within 1-2 rain after

each radiation exposure using a standalone computer board executing SC32 diagnostics.

Testing required no more than five minutes after each exposure step, thus annealing effects

were minimized and the entire test was completed within an hour.

The first lot, obtained from our commercial licensee, was fully functional and within

parametric limits beyond 15 kRad(Si) for all five parts tested. The mean total dose toler-

ance of these parts was 19.9 kRad(Si) with a variance of 4.8 kRad(Si). Full functionality

returned overnight to all tested parts from this lot after annealing at room temperature
with no bias applied.

The Other part lot was supplied directly by our foundry and had been packaged ac-

cording to Mil-Spec-883B. Our reliability group performed a pre-cap visual inspection of

these parts at the foundry and found their quality was excellent and that these parts could

easily be upgraded to higher reliability levels through APL's in-house testing and screening

procedures. Unfortunately, a process change to improve yield in the two years since the

first lot had been built degraded total dose tolerance. Three parts from this lot all failed

at slightly more than 5 kRad(Si) when tested with same procedures used with the first

lot. An additional three parts were exposed to 1 kRad with two days between subsequent

exposures to more nearly simulate the radiation environment of the Freja orbit. These



3rd NASA Symposium on VLSI Design 1991 i.I.II

parts also failed at 5 kRad(Si). Room temperature unbiased annealing has only restored

functionality to two of these six parts.

Because of the disappointing total dose behavior of the second batch of parts, we were

forced to obtain our flight parts from the first lot. Several factors allowed us to upgrade

these commercial parts to space flight quality. The positive report on our foundry's quality

control was encouraging, both commercial and Mil-Spec parts were packaged in the same

high quality ceramic pin-grld array package, and all lots were assembled with the same

equipment and personnel at the foundry. So commercial parts from the first lot were

extensively screened at APL and passed all tests.

5.3.2 Latch-up and SEU

Radiation induced latch-up and and SEU sensitivity of the flight part lot were also eval-

uated. Initially, SC32 parts were screened for latch-up sensitivity in an in-house Cf as2

chamber. This equipment exposed the die to heavy ions with a mean linear energy trans-

fer (LET) of 36 Mev-em2/mg at a high flux rate. The SC32 did not latch during a 30

minute exposure. Subsequent work showed that many other chip types also did not latch

in the Ci ¢s2 chamber.

However, later tests made at the Single Event Upset Test Facility of the Brookhaven

National Laboratory Tandem Van de Graaff accelerator cast doubt on conclusions about

latch-up sensitivity based on Cf 2s2 data. Using the Brookhaven equipment we were able

to gather both radiation induced SEU and latch-up sensitivity of the SC32. The chip did

latch-up with an LET threshold of 15.6 Mev-cm2/mg which corresponds to about 1 latch-

up per 21 years in the Freja orbit. An SEU threshold of 5 Mev-cm2/mg was also observed

which was estimated to be equivalent to one soft error every 166 days in our orbit.

These radiation testing results led us to add latch-up protection circuitry to the DC-DC

converter. If excessive current is drawn by the SC32, the CPU board will be momentarily

turned off thus resetting the latched circuitry. After power is restored the computer will

resume normal processing.

SEU events are more difficult to detect and their impact can be more subtle. An SEU

could disturb the program controlling the processor or it could invalidate a single word

of science data. Because an SEU is only expected every few months, it represents only

a minor error in the collected data and will be ignored. Program errors will be detected

by a watchdog timer that must periodically be updated. An SEU induced program error

will most likely be detected by a failure to properly access the watchdog. In response,

the watchdog will reboot the system. Both types of radiation induced error should occur

rarely enough that these correction strategies will not significantly degrade the quality of

the magnetometer data.

6 Conclusions

Because the SC32 was originally designed as a research effort and was only manufactured

by a commercial foundry, many questions had to be resolved before we could use it a space



1.1.12

based instrument. Reliabilityconcerns were greatly reduced aftera sitevisitto the foundry

showed excellent manufacturing procedures were foUowcd. A thorough screening of parts

from the flightlot has also added to our confidence in the reliabilityof the SC32.

Radiation tolerance of our chip was also studied. Early testing of our prototype chips

indicated they would meet our needs. Commercial versions of our chip manufactured

shortly thereafter were fullyevaluated and had acceptable radiation tolerance. However,

the foundry modified the manufacturing process to improve yield in the interval between

when our prototypes were evaluated and when we ordered Mil-Spec chips for our instru-

ment. This process change had the unfortunate side effectof diminishing total dose tol-

erance to unacceptable levels. Unless a foundry rigorously controls those aspects of the

process that impact radiation tolerance,performance may vary significantlybetween lots.

We have shown that a Forth language directed microprocessor with hardware and soft-

ware optimized for embedded systems can significantlyimprove spacecraft instrumentation.

Because of the capabilitiesof the magnetometer's computer based on the SC32, an instru-

ment of unprecedented capabilitywas developed at far lower cost than could otherwise be

achieved.

The most important lesson we have learned from thiswork isthat a custom integrated

circuitof the right architecture can deliversubstantialbenefitscvcn when only one chip is

needed. System performance that isunreachable with catalog components can be achieved

and qualificationissuescan be resolved. Most surprisingly,system development costs can

be reduced by using custom chips. Savings from designing fewer circuitboards, consum-

ing less power, buying fewer expensive flightcomponents, and most importantly greater

software productivity easilybalance the additional costs of developing and qualifying the

right custom integrated circuit.

7 Acknowledgements

In addition to the authors, Susan Lee, Susan Waters, Mary Wong, and Tom Zarcmba have

all contributed to this work over the past decade. We greatly appreciate the advice and

assistance received from many people in APL's SOR group in making our instruments

as reliable as possible. The many talents our shop groups contributed to this work were

also vital to our success. Finally, we would like to thank Larry Zanetti, the Freja mag-

netometer's principal investigator, for encouraging us to use the SC32 in his instrument,

and our management, particularly Jay Dettmer and Tom Zaremba, for their support and

encouragement of our efforts.

References

[1] B. Ballard and J. Hayes, Forth and Space at the Applied Physics Laboratory, Proc.

o] the 1991 Rochester Forth Con]erence, Inst. of App. Forth, Rochester, N.Y., June

1991.



3rd NASA Symposium on VLSI Design 1991 1.1.13

[2] J. Hayes and S. Lee, The Architecture of the SC32 Forth Engine, J. of Forth App.

and Res., V5, N4, pp. 493-506.

[3] M. Fraeman, Performance Evaluation of the SC32 Stack Microprocessor, Proc. of the

1989 Rochester Forth Conference, Inst. of App. Forth, Rochester, N.Y., June 1989.

[4] R. Henshaw, B. Ballard, J. Hayes, and D. A. Lohr, An Innovative On-Board Processor

for Lightsats, Proc. of the 4 th AIAA/USU Conf. on Small Satellites, AIAA, August

1990.





3rd NASA Symposium on VLSI Design 1991 1.2.1

Multi-chip Modules:
A High-performance Packaging Alternative

L. Salmon

Brigham Young University

Abstract- Multi-chip Module (MCM) packaging has emerged as an important

technology for high-performance electronic systems. Benefits of MCMs in-

clude: high IC packing density, low interconnect propagation delay, excellent

power dissipation characteristics, and low cost. This paper will review MCM

substrate fabrication, testing, and design. Major challenges for MCM imple-

mentation in hlgh-performance systems will be discussed. Finally, applications

of MCM technology to current high-end computer systems will be reviewed.



l

E

mI


