
3rd NASA Symposium on VLSI Design 1991

N94-18340
2.1.1

Automated ILA Design
for Synchronous Sequential Circuits

M. N. Liu, K. Z. Liu, G. K. Maki and S. R. Whitaker

NASA Space Engineering Research Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - This paper presents an ILA architecture for synchronous sequential

circuits. This technique utilizes linear algebra to produce the design equations.

The ILA realization of synchronous sequential logic can be fully automated

with a computer program. A programmable design procedure is proposed to

fulfill the design task and layout generation. A software algorithm in the C

language has been developed and tested to generate 1 um CMOS layouts using

the Hewlett-Packard FUNGEN module generator shell.

1 Introduction

The design of sequential circuits presents a major task for most digital systems. As Very

Large Scale Integrated (VLSI) technology advances, developing an architecture to maxi-

mize the ei_iciencies of all the design steps becomes a major goal in the research of sequential

circuit design.

This paper introduces the Iterative Logic Array (ILA) as a new architecture for syn-

chronous sequential circuits. This architecture realizes a sequential circuit by replicating

simple basic modules. With an ILA architecture, a sequential machine can be built into a

very regular form automatically by a computer program with a single type of ILA mod-

ule. The simplicity and programmability of the ILA architecture significantly reduce the

design task in all stages of VLSI implementation, from logic design, circuit design, artwork

generation to verification.

2 ILA Architecture

Iterative Logic Arrays (ILA) have been described in the literature for quite some time [1,2].

An ILA circuit consists of an array of identical cells. Generally, as shown in Figure 1, each

ILA cell contains two sets of input signals. One set of inputs are applied in parallel, while

the other set of inputs are driven by adjacent cells. Signals normally propagate in only

one direction between cells, and outputs are derived only from the serial outputs of the

last cell.

In an ILA architecture for sequential circuits, the next state of each state variable is

generated by a slice of concatenated ILA cells. A sequential network is then constructed

by placing the ILA slices side by side.



2.!.2

ParallelInput

Input Cell 1 t
• i I_I •

Cell 2 ! Cell n
!
t

I I

Figure 1: A sliceof ILA circuit

Q

S 3•

II

Serial

Output

Figure 2: PaSS translstor2-rod MUX

The basic ce_-o_an ILA seque_network consists 0f a 2-io-i muitlpIexer CM_IJX) and

a next state forming logic. A MUX cell has a select line S, its complement ]_ and two data

inputs I0 and Ia, and a logic function dei_nedby E¢tua{_on 1.

.... Q = s,tx +_',x0 (1)

The simplest way to implement the MUX function is to Use a pass transistor circuit.

Basically, the pass transistor MUX, excluding level restoration logic, is a module of two

pass transistors, which funcGons _ two simple switches. Figure 2 si_ows the circuit of

two inputs I1 and i0 and one output Q controlled by two control lines 5" and _ which

are assumed to be asserted exclusively such that only one of two inputs Ix and t0 can be

passed to Q at a given time.

Some details in pass transistor transmission characteristics are omitted here. Design

considerations, such as level restoration, are assumed to be handled by the output buffers.

The circuit design considerations have been discussed in [3,4,5].

3 Operational Function

In this research, the one-hot-code is utilized as the state assignment for a synchronous flow

table. With the one-hot-code assignment, there isa unique state variable corresponding

to each state. That makes it possible to express the design function using the states in

the flow table explicitly. A new form of mathematical expression is proposed next which

describes a flow table directly by ]low t_bie states.



3rd NASA Symposium on VLSI Design 1991 2.1.3

Definition 1

flow table of n rows and m columns.

the flow table.

The set o/ operational functions is the behavior description of a synchronous

Each ]unction is an equation ]or a nezt state Si in

m

L = _ s,pg (2)
p=l

where sip is an OR function of the states Sj,Vj = 1,...,n, which have Si as the nezt entry

under input Ip.

It can be shown that there is a one-to-one mapping between the next state equation

ErL

y, = _ ]jp (3)
p=l

With the one-hot-code state assignment, each v-partitionand the operational function.

can be expressed as

r = {&;S}

which partitions a single state S/from the rest states S in the flow table. The number

of state variables is equal to the number of states. Next state r/-partitions can be formed

using known procedures [6]. If an r/-partition r/i is

m = {&&'"&;S}

then it is well known that

On the other hand, Equation 2

lip = Yl + Y2 + "'" + Yl.

ITL

s, = Z s,pzp
p=l

can be mapped into a next state equation as Equation 3 if the one-hot-code assignment

is used where lip are sum of the state variables Y1 corresponding to Sip in Equation 2.

Therefore, there is a one-to-one mapping between Equation 2 and Equation 3.

Since the operational function is a direct representation of the flow table, they can be

derived by inspection. For each state in the next state entry, there is a product term of

the present state and input state in the operational function. If a synchronous machine

is specified by a state diagram, the state diagram may need to be converted to a flow

table, though it will not be too hard for an experienced designer to derive the operational

functions from the state diagram directly.

Table 1 is the flow table of a state machine with four states. For example, State S,

appears as the next state entry of states Sb, S¢ and Sd under/1. Therefore, the operational

function for So is

_o= (& + & + s,)z,.

For State Sb, it appears as the next state under both /1 and /2. So the operational

function for state Sb is

& = SoZ_+ (& + &)z_.



2.1.4

s.
&
so
sd

Table 1: A synchronous

/1 /2 /3
&saso
sa&s¢
so&sa
So Sd Sd

flow table for the state di_agram

The operational functions for state Sc and Sd can be derived in the Same way. All
together, the operational functions for Table 1 are as follows:

& = S.[, + (S_ + ,.,e,)I 2 (4)

_, = (s, + s_+ s,)z_
(so+s,)z=+(so+ s,)z 

4 If,A Architecture for Synchronous Sequentiaii:c]r-
cuits

A simple regular ILA structure requires:

• The design equation is convertible to a pass logic function where each control variable

passes a single pass variable or a constant.

• The control variables are shared with each pass logic function.

With such a structure, if the pass variables in each equation are the same, the signal bus

to each slice of ILA circuit can be minimized to a single wire.

If state Si is used as the control and Si appears as a next state under only one input

Ip, then Ip can be the only pass variable in the design equation for 5"i- For example, the

equation for Sa in Equation 4 can be converted into a pass logic function with input/1 as
a pass variable:

_'o= s_(z,)+ so(z,)+ s,(z,)

From the definition of the operational function in Equation 2, if Si appears only under
input Ip, then Equation 2 can be rewritten as:

s, = ,,_r-. (5)

where sir is an OR function of the states Sk, k E {1, 2,..., n}. Therefore, Equation 5 can
be written into:

Tt

k=l



3rd NASA Symposium on VLSI Design 1991 2.1.5

_ D flip flop DI

Q D flip flop

Sl

L I I I

is 1 i l 1 1

• * * ILA cell
Q ILA cell 0 Q 0

S sn $ $11

I I • I I

s s°1_
',. • ',__jQ x_.Aoe. 0L--

D ILA cell 0 _ ! 0

sn "

Figure 3: The general ILA structure for synchronous logic

or in a form of pass logic expression:

Si = S_(gaIp) + S--l(...Sk(glkI,) + -S'kk(...( S.(g,.I,) + S-_.(O) • • -).

where

(;)

1 if Si is the next state of Sk under Ipglk = 0 if Si is not the next state of Sk under Ip

Theorem 1 The architecture depicted in Figure 3 is a proper model for a aynchronoua

sequential circuit.

Proof: The proof follows directly from one-hot-code assignment that one and only one

state variable are active at a time and Equation 6 contains only one input state. Clearly,

the architecture realizes Equation 6 by placing a multiplexer under Sk where glk = 1 and

a wire under Sk where gik = 0.

[]

To accomplish the ILA structure, S/must be restricted to appear in a flow table under

only one input Ip. If a state S_ appears as a next state under both Ip and I,, S_ has to be

split into two different states. For example, in Table 1, state Sb appears under both input

11 and 12. It is necessary to distinguish Sb with two unique states Sbl and Sb2 where Sbl

represents the Sb under I1 and Sb2 represents the Sb under/2. Similarly, state Sa needs to

be split into Sd2 and Sa3. A revised flow table can then be obtained by splitting all states

under different columns. Table 2 shows the result.

After updating the flow table, the operational function for each state can be derived

in the same way as before. For example, Sb_ is the state under/2 only. Therefore, its

operational function is

Sb2 = 0 + S_112 + Sb212 + SoI2 + 0 + O.



2.1.6

&1

&
&2
S_

/I /_ /3

5'. &_ &
5'. &= &
S. &_ Sds

Tab!¢ 2: A revised flow table

klI other operational functions are also in the same form. The results ar_e shown as follows:

Ss_= S,,I_ +0 +0 +0 +0 +0
^

Sb2= 0 + Sb,I2 + Sb,I_ + S_I2+ 0 + 0

S_ =SoI3 + SblI3 + S_213 0 +0 +0

_d_=sj_+ o + o + o + s__I_+ Sa_:_
_= o .... _ o + 0 + sox_+s_%+ S_

Splitting states in a flow table allows _l of the pass variables in an opera_tional function

to be the same. The disadvantage of splitting states is that it generates additional next

state equations. Increasing the number-of equations implies increasing the area in silicon.

It is a trade off by gaining programmability and regularity of the. ILA. realization-versus

cost. An automated sequential _rcuit design C_II-_gni_cc_ly_re_uce the design efFort-and
speedup the process of implementation.

5 The Matrix Expression ....

Th_ operational functions d_seussed in previous sections can be efllcienfly expressed with

matrices. The matrix will also help to implemenA the function in silicon. With Equation 6,

a synchronous sequential circuit can be expressed with a set of equations.: - -:

S1 = Xp _ _lkS k

k=l

rt

k--1 .

Such a set of fiquaiions are equivalent to a matrix expression:

S=AxGxS (8)

!

|
!

=



3rd NASA Symposium on VLSI Design 1991 2.1.7

where matrices S are S are column vectors

/_ $2
_= : ; S= : ;

L £

matrix A is a diagonal matrix with I v in the i th row/column if the next state Si is under

/p,
Ii

0

and matrix G is defined as

flk---_

0

gll .... gln

gnl gnn

in which

For example,

1 if Si is the next state of Skgik= 0 if Si is not the next state of Sk

the matrix expression for the flow table in Table 2 is:

^

&l
^

Sb2
^

&
^

^

Sa2

/1
0

0

0

0

0

0 0 0 0 O_

I, o o o o
o I_ o o o
o o I3 o o
o o o I_ o
o o o o x3

011111

100000

011100

111000

100011

000111

Sbl

&2
&
Sd:

isd,

(o)

The matrix A and G are directly related to hardware structure. As in the ILA realiza-

tion, there will be a slice of the ILA circuit for each design equation, as shown in Figure 3.

Now each element at the diagonal of the matrix A indicates the input state to the ILA

slice. Each row of matrix G reveals the location of ILA cells in the slice. If the element

gik is 1, then an ILA cell will be placed under the control of state Sk in the slice of the

ILA circuit for next state Si. If gik is equal to 0, a wire will be placed in that position. An

example of the ILA realization will be shown in next section.



2.1.8

6 Design Procedure

From the discussion in the previous section, the design of a synchronous machine can be

completely automated by programming an ILA cell or a wire into a pre-interconnected

layout floor. It allows the physical layout to be designed and stored in computer as a set

of building blocks. Then for each instance of synchronous sequential logic, an ILA circuit

can be implemented by placing ILA cells according to the corresponding G matrix. The

A matrix will indicate tire interconnection to input states. =

From the layout point of view, a wire can be considered as a cell as well. Hence

there will be two cell types in an ILA realization. Let the ILA cell which performs the

multiplexer function be defined as a-.rldrbrx ce[/. Let a wlre be c_e/_ned_ aS an i-LA _R0

cell. Now the computer program can search the G matrix and p!ace a Mux cell o_ee

'T' is encountered or a ZERO cell once a "0" is encountered. 'the schematic of a MUX

cell and a ZERO cell are shown in F_gure 4 (b) and (c) respectively.

Procedure i 3ynchronous ILA network design procedure.

Step i. For a Synchronous machine specified by a stale diagram, convert it into a J_¢i,

chronous flow table (state table).

Step 2. If a state appears as a neZt siate under more than One input column, spat the

state and give a unique name to the state under each input column. Repeat this step

until all states under one column are distinguished from states under other coiumn,_.

Step 3. Generate the A matriz by Selling t_e _tagonal element in the i ih column to be Ip

if state St appears as a nezt state in the flow table under I v.

Step 4. Generate the G matriz such that gij is "1" if Si is the nezt state o] Sj, gij = 0
otherwise.

Step 5. Map the matrices to the layout floor. Place a MUX cell under the control of Sj,

in the slice of the ILA circuit for the nezt state St if gik = 1 or place a ZER 0 cell if
glk = O.

6. Connect Input-1 of the last ILA cell in the slice of the ILA circuit for S_ to I v

which is the diagonal element of matriz A in the i th row. Connect Input-O of the last

ILA ceil to the level of logic low (V,qS).

Step

For example, for a synchronous machine specified a flow table s_own in Tabie I, it

needs to find those states which are under more than one input state and to split them.

The result of splitting is shown in Table 2. The matrices of the flow table can then be

generated. For instance, So is a next state under/1 of state Sbl, &2, S_, Sa2 and Sas. Then

It becomes the diagonal element ali in matrix A; the 1 "t row of matrix G will have a "0"

in the first column since the next state of S, under/'1 is not S_, and have a "1" in the rest

of columns. The A matrix and G matrix can then be mapped into an ILA network. The

result is shown in Figure 4 (a) where each ILA cell is represented by a box. The boxes in

dash line represent the ZERO cell (g,j = 0) and boxes in solid line represent the MUX cell



3rd NASA Symposium on VLSI Design 1991 2.1.9

I I

I I

I I

"L.

w
! I

t zero I t

0 0' '

m
I I I

I I I

I i I

h

VSS

i I

I I

I i

I

I

I

I I I

l I I

I I I

I

I

VSS
I

/2

VSS

(a) Synchronous ILA network

...._---_- --

*II*o o

i ........... I

(b) ILA cell - mux (c) ILA cell - zero

Figure 4: The ILA network for the example



2.1.10

(gij = 1). As the first row of matrix G is "011111", the top slice of the ILA for So consists

of one ZERO cell on the left and five MUX cells. Again, from matrix A, the input of the
last ILA cell is tied to/1 and VSS.

As mentioned before, a major advantage of the design approach in Procedure 1 is that

it allows a hierarchical layout design. The high level layout, including intereonnections, is

identical for all synchronous flow tables. When the function of a flow table changes, the

only thing one has to do is to instruct the computer to re-program the position of MUX

cell and ZERO cell. Of course, the input state to each slice of the ILA may need to be
changed as well. : _

7 Automated Synchronous ILA Design System

The ILA deslga procedure has been coded into C6mputer programs and ported to Hewlett-

Packard FUNGEN layout tool. The automatic synchronous ILA design system consists of

an HP FUNGEN shell and three major subsysien_s:

• Sequential Logic Processor

* FUNGEN Configuration Code

• Library of Layout Building Blocks.

The Sequential Logic Processor is an iL._ circuit topology generator which receives the

specification of synchronous sequential machine and converts it into a form specified by

FUNGEN Configuration Code. There are three phas_ _n impIementlng ihe Sequential

Logic Processor: flow table revising, matrices generation and __] for_a-tion. Tl_efirst

two phases follows closely to the step 2, step 3 and step 4 in Procedure 1. The third phase

is to generate parameters of device modules pre-defined by FUNGEN Configuration Code

and write them into a FGNRC file. By modifying the last phase, the program can be

ported to any other artwork generator systems.

The FUNGEN Configuration Code describes the artwork architecture and defines the

modules in the FGNRC file. The FUNGEN Configuration Code is written in Fungen

Configuration Language (FCL), a subset of C language with a number of functions for

Hewle-tt-Packard TRANTOR. dat-abase generation. T_e 0v-era_ ILA arcl_tecture and a set

of ILA configuration modules are specified in the FUNGEN Configuration Code.

When running the FUNGEN shell, the system invokes the FUNGEN Configuration

Code, FGNRC file and Layout Library, and automatically generates a layout artwork

by placing pre-designed ILA cells and peripheral buffers. It also labels all of blocks in

accordance with the FUNGEN Configuration Code and FGNRC file. Figure 5 illustrates

the block diagram of the ILA design systemand the algorithm of Sequential Logic Processor
implementation.



3rd NASA Symposium on VLSI Design 1991 2.1.11

FUNGEN

2onfiguratic n

Code

Library

Building

Blocks

[ SYNCHRONOUS FLOW TABLE]

NO

YES

YES

[ g(ij)=l

For all States I

Modify Columns

J

IFo_AuStates_--

g(ij)=o

YES <__

FGNRC data [

1

NO

HEWLETT-PACKARD FUNGEN

ARTWORK

i

Figure 5: Block diagram of the automatic ILA design system



2.1.12

8 Summary

This paper presents an ILA architecture for synchronous sequential circuits. The design

procedure is also proposed to realize synchronous sequential ILA circuits by programming

the placement of two basic cells, a 2 to 1 multiplexer or a cell of metal wires. The inter-

connections between ILA cells is only a single route llne in both the X and Y dimension.

The simplicity and programmability of the procedure significantly reduce the effort in all

stages of synchronous sequential circuit implementation, from logic design, circuit design,

physical layout to verification.

The ILA design procedure utilizes matrices expression to represent design equations.

One of the advantages of using matrices is that they directly indicate the placement of the

ILA cells in the realization. An ILA design tool for synchronous sequential circuits has

been implemented into a computer system which automatically generates layout artwork

from a synchronous sequential machine specification.

References

[1] C. Roth, Fundamentals of Logic Design, 3rd Ed,. St. Paul, Minn., West Publishing,

1985.

[2] D. Givone, Introduction to Switching Circuit Theory, McGraw-Hill, Inc., 1970.

[3] S. Whitaker, "Design of Asynchronous Sequential Circuits Using Pass transistors,"

Ph.D Dissertation, University of Idaho, Feb. 1988.

[4] S. K. Gopalakrishnan and G. K. Maki, "VLSI Asynchronous Sequential Circuit De-

sign", ICCD, Sept, 1990, pp. 238-242.

[5] S. Whitaker and G. Maki, "Pass-Transistor Asynchronous Sequential Circuits", IEEE

JSSC, Vol.24, No.l, Feb. 1989, pp. 71-78.

[6] W. W. Stiehl, "A Mathematical Basis for the Optimal Synthesis of Finite State Ma-

chines." Master of Science Thesis, University of Idaho, Moscow, Idaho, June, 1986.


