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Abstract- A cellular logic array is described for squaring binary numbers. This

array offers a significant increase in speed, with a relatively small hardware

overhead. This improvement is a result of novel implementation of the formula

(x ÷ y)2 _,_ z2 + y2 T 2xy. These results can also be incorporated in the existing

arrays achieving considerable hardware reduction.

1 Introduction

The advent of VLSI has spurred a renewed interest in the development of specialized

arithmetic circuits. Special arithmetic functions like squares and square-roots are generally

implemented in software. However, when a machine is designed for a specific application,

wherein squaring is a frequent process, it may prove advantageous in terms of speed to use a

hardware implementation. Most of the approaches, reported in literature for squaring and

square-rooting, use array multipliers or special purpose arrays which perform a multitude

of other operations in addition to squaring. As a result, there are very few arrays which are

solely devoted to extraction of squares. However, Dean[l] has reported such a dedicated

array which is probably among one of the fastest squaring circuits known, thus far. In

addition, Dean's array uses considerably less hardware than other arrays reported so fax.

Hence Dean's array has been selected as the obvious choice for comparison with the array

proposed in this paper. The proposed array, will provide a significant gain in speed, with

a very small hardware overhead, as compared to Dean's squarer[I].

2 Algorithm

Dean[l] has not presented a formal algorithm for his implementation. So, the widely

used general binary squaring algorithm[3] will be presented first followed by the proposed

algorithm for purposes of clarity and easy understanding. The existing algorithm for binary

squaring is generally formulated as follows:

(1)2 = (01) 

(a,1) 2 = (al) 2 + (0a,01)b or

tThis research was supported ( or partially supported ) by NASA under Space Engineering Research
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F2 : F1 + (0al01)b

where F1 = (0l)b if al -" 1 and F1 = (00)b otherwise. Similarly, we have

In general if 1 then,

(anal1) 2 "- (a2a!) 2 + (OOa2alO!)b, or

F3= F2+ (00a2a,01)b

F,.+I = F,. + D_

rtimes

where F,:(a,.a,._a...a2al) 2 is the r th square and D, : 00 .... 0t_h-ar-1 ... al01 is called

the r th radicand. It is obvious that F,+I = F, if q,.+l = O. The ab.ove ite_rative formula

applies for all:r=_ ], 2,..., n. -F_gures 4 and $ ...........show t_e schematic'..... _ deta_s......................oi_ a three bit'=

squaring array for the above algorithm[3].

The proposed algorithm ma_esuse of_the well known formula (x + y)2 = z2 + y2 + 2zy_

Consider a three bit number (a222 + a_2 _ + ao2a). The LSB-1 and LSI] of the square 9f

any number will respectively be 0 and LSB of the origin_ n umber_itse]f. =_erei_: ....

..............................

(a222 + a,2' + ao2°) 2 = (an + al)24 + (a;ao)23 + (a, ao +ao)2 _ +:ao._ ..... . ::

The same result can also be achieved by the repeated application of the formula (Z +

y)2 : z2 + y2 + 2xy where y is the LSB and x is the rest of the binary number.

Also,

= (a_21) 2 + 2(a2a_2 _) + a12 °

x 2 2zl/ y2

= (a2)2 2 + (a2a,)2 2 + a12°

: (a2 + a2al)22 -4-a12 ° (1)

z y

= (a222 -4- a121) 2 + 2(a2ao22 + alao2 _) + ao2 °

z 3 2zy y_

= (a22 _ -4-a,2°1_2' + (a_ao23 + a,ao2') + ao2 ° (2)

Equation 1 proves that the LSB-i bit and the LSB of the final answer is always 0

and the LSB of the original number itself respectively. Since multiplication by 2 implies

a !eft-shift by one bit position the term (2a_al) has been shifted from the 21 bit position

to 2 _ bit position in Equation 1. This result for a three bit binary number i_ realized by

the array of Figure 1. The algorithm can easily be extended to any n bit number. The

uovelness of the algorithm lies in the f_ct that squaring of the number is carried out in

steps coupled with the ingenious us_e _of left-shifts in the bit positions.
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3 Comparison

The implementation of the proposed algorithm for a 3 bit and a 4 bit number has been

illustrated in Figures 1 and 3 respectively. The proposed array is built of the basic half-

adder cell shown in Figure 2. Its function may be defined as follows:

= (w + _-1)(_v)

The symbols + and • stands for the Inclusive-Or and And operations in the above expres-

sions.

The implementation of 3 bit squarer based on Dean's algorithm is also illustrated in

the Figures 6 and 7. The basic cell (Figure 7) has two control inputs A and B. The inputs

on the lines C and D are added in the cell, S being the sum out and P being the carry

out. When both A and B are present, a further digit is added to the sum (and carry), so

that the cen then functions as a full-adder[l].

It can be seen that the proposed array has 1 + _=3 i whereas Dean's array [1] uses

1 + _'=1 i cens resulting in a overhead of (n - 2) cells. However, the hardware inside the

proposed basic cell is much simpler, as it utilizes only half-adders, compared to full-adders

in Dean's array. So the increase in the number of cells is offset by the reduction in the

complexity of the individual cell. This leads to the authors contention that the hardware

overhead which translates into increased chip area is almost negligible. Moreover, the

propagation time through the proposed array is only nr as compared to (2n - 3)v which

is the delay through Dean's array. The hardware overhead-speed gain relation follows the

square law for most specialized arithmetic arrays. Here, an increase in speed has been

accomplished with a linear increase in hardware.

The proposed array has a number of unused inputs which can be used to add in an

other number so that the array would function as a full squarer (all outputs in l state).

A specialized array of this sort has a number of applications including the generation of

binary logarithms[2] which depends on iterative squaring.

4 Conclusions

A new cellular array for extraction of squares of binary numbers has been presented. An

squaring algorithm based on the formula (z + y)2 has been described. The proposed array

provides impressive speed gains compared to the existing arrays at the expense of negligible

hardware overhead. It is hoped, that the algorithm discussed in this paper will provide

fresh insights, to reduce redundant hardware present in most of the existing squaring

arrays.
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Figure 2: Basic ceil Used in the proposed Squaring array
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Figure 3: Proposed squaring array for four bit numbers
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Figure 4: A three bit squaring array using the general algorithm
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Figure 5: Basic cell used in the general three bit squaring array
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Figure 6: Dean's array for three bit numbers
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Figure 7: Basic cell used in Dean's array
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