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Abstract- Speed requirements have been, and will continue to be a major con-
sideration in the design of hardware to implement digital signal processing
functions like digital filters and transforms like the DFT and DCT. The con-
ventional approach is to increase speed by adding hardware and increasing
chip area. The real challenge is to save chip area while still maintaining high
speed performance. The approach we propose is based on the distributed
arithmetic implementation (DA) of digital filters. The improvement is based
on two observations. Firstly, a single memory element can replace several
identical memory elements in a fully parallel DA implementation. Secondly,
truncation or rounding may be introduced into the computation at strategic
points without increasing error unduly. Both of these approaches can be used
to attain area savings without impairing speed of operation.

1 Introduction

Finding the inner product between two vectors is an operation that commonly arises in sig-
nal processing as well as in general data processing. Digital convolution and correlation are
directly described as inner products. Other operations such as the discrete Fourier trans-
form and other common transforms can be implemented as a sequence of inner products.
Consider the inner product

K
y= Auzs (1)
k=1

In the case of a FIR digital filter, A, represents a set of fixed weights, and z; represents
the current and past K — 1 filter inputs. The inner product can be implemented directly
by using a single multiplier and an accumulator in a serial one product at a time manner,
as in Figure 1, or in a fully parallel manner by using K multipliers and a multi-input adder
or adder tree, as in Figure 2. Obviously, the fully parallel architecture will always be faster
than the serial approach.

The distributed arithmetic (DA) approach to computing the inner product was devel-
oped in the early seventies [1,2,3,4,5,6,7,8]. In this approach, combinations of the A; are
precomputed and stored in memory. Input data are used to identify which memory words
are to be fetched, shifted and added to produce the final result. Without loss of generality,
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first assiime that the =, are scaled such that [z4] < 1. In two’s complement form

M-1

Th = —byo + Z bkmé;a‘ (2)

m=1

where the b,’"" represent the individual bits in z; with b the sign bit. Subsiituﬁng (2)
into (1) and rearranging the order of summation gives

M-1 K .. I G - - - A
y= Z {Z Akbkm} 27— ZAkka (3)
k=1 ) ’ : o .

m=1 (k=1

Since &xgbits‘ Bem are either 0 or 1, the term :f=l Apbim can be pre gmpuje(i for all
2K ’ ROM . T

possible combinations of by,,. These values are then stored in a ROM or RAM. The
actual combinations of by,,, arising out of the input data, are used to address one of the
precomputed terms stored in the memory. Note that these combinations are formed by
selecting the mth bit from each of the K M-bit input words. The mth term so addressed
is then shifted by m bits to the right before being added to the other M terms. The only
exception to this is when m = 0. In this case, which corresponds to using the sign bits of
the input data to form the address, the addressed term is subtracted from the other terms.

As with the direct implementation of the inner product, there are two approaches to
implementifig DA. The ifiner product can be computed by using only one memory and a
single accumulator as shown in Figure 3, or in a fully parallel manner by using M memories,
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Figure 3: Single Memory DA Implementation

each with identical contents, as shown in Figure 4. Again, the fully parallel approach will
always be the fastest. In Figure 4, we note that the shifting is actually accomplished by
connecting the memory outputs to appropriate positions on a multi-input adder.

Comparing Figures 4 and 2 is instructive. We note that where the input data words
are M bits wide, M memories are always used in the DA implementation, independent
of K, the number of multiplies in the inner product. However, each memory must store
2K terms. So, increasing K will increase the required size of the memories. Also, as K
increases, the number of stored bits per term must increase in order to maintain accuracy.
The direct implementation, by comparison, uses K multipliers. As M increases, the width
and depth! of the multipliers must increase to preserve accuracy. Thus, depending on
the word size, number of products, and required accuracy, one approach may have size
advantages over the other.

In terms of speed, DA does have one clear advantage over the direct implementation.
Increasing the accuracy of the inner product by increasing the number of bits in the
input data words and in the coefficients will not degrade the speed performance of a DA
implementation. The number of memories and the width of each will increase, but the
number of stored terms in each memory will not. In a direct implementation, however,
not only the width of the multipliers increase, but so will their depth resulting in slower
performance. Increasing K does not decrease the speed of the multipliers, but it will
increase the depth of the adder tree in the direct implementation resulting in some loss of
performance. In a DA implementation, increasing K will slow down the memories, but it
does not increase the depth of the adder tree.

While the structure of the fully parallel DA implementation is very regular and hence
attractive for VLSI implementation, it appears to be very inefficient in terms of its use
of space. That is, for each inner product computed, only one of the 2K terms stored in
each memory is used. Further, the contents of each of the M memories is identical. Our

1This assumes that the width of the coefficients also increases proportional to M.
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Figure 4: Fully Parallel DA Implementation . .. ... ... .. .

first observation about how the fully parallel DA architecture may be improved involves
replacing the M memories with just one memory unit that provides M data access paths.

2 An Improved DA Archltecture

A ROM using one transistor per storage b1t is shown in Fxgure 5. The storeI ths
zero or one depending on whether the drain of the associated transistor is connected to
the data line or not. Note that the address decoder and the data line sense amplifiers are

not shown. Not counting these components, the number of transistors requlred for the
memories in a ROM based fully parallel DA nnplementatxon is

= M(b2K +2F 1) R @)

where b represents the number of bits stored in each word of the memory. N ext con51der
Figure 6 which represents one plane of a M-way multi-access memory. Each plane stores
one word and 2X planes together make up the complete memory unit as shown in Figure
7. Each plane has M sets of b control transistors that are used to route the stored word to
the appropriate output register. Each set of b control transistors is controlled by a single
control line. The data bits associated with control line m in each plane are connected to
& bus which connects with output register m. Which of the 2K control lines is asserted
is determined by address decoder m. Since this circuit effectively addresses the output
registers instead of the stored words, there is no need for address lines for the stored words
themselves. Further, a transistor is not required for each stored bit. A zero is stored simply
with a shorted line, a one with an open. The control transistors assume the function of the
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Figure 5: ROM Architecture
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storage transistors in the ROM architecture, and provide a path between every stored word
in the memory unit and every output register. The total number of transistors required to
implement the memory unit, again excluding address decoders and output registers is

ne = Mb2K 4 62K 4 2K (5)

Note that both approaches use M K to 2X decoders and identically sized adder trees. The
ratio of the number of transistors in the storage sections of the Multi- Access memory unit
and the memories in a fully parallel DA architecture give an estimate of the area savings
potential presented by one approach over the other. Dividing (5) by (4) gives

Mb2K 4 p2K 4 2K MB2K 4 (b +1)2K (6)
Mb2K + M2K + Mb ~ Mb(2k +1) + M2K

Rarea =

Since b will usually be greater than M, Rs.. > 1. That is, the multi-access memory
architecture presents no area savings, despite the fact it replaces M copies of each stored
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word with just one copy. This is because the expense of bus controls erases the savings of
memory transistors. In fact the number of transistors associated with stored bits in the
fully parallel xmplementatlon is Mb2K . This i is also the number of bus control transistors
in the multi-access memory. However, for memory architectures where there is more than
one transistor per stored bit, the savings in storage transistors will not be absorbed by bus
control transistors. To see this, consider the case that 4 transistor static RAM cells are
used as memory elements. Static RAM may be required in cases where the inner product
is to be conﬁgurable in the sense that the coeflicients may be changed from time to time,
Vrequlnng the memory contents to be rewritten. The conventional static RAM architecture

"is shown in Figure 8 and one plane of the multi-access memory architecture is shown in
Figure 9.
A fully parallel implementation of DA using M static RAMs of the type shown in
" Figure 8 would use 4Mb2K transistors and Mb2X cell select transistors. The static RAM
multi-access memory unit would use 4b2¥ transistors for storage and Mb2X bus control
transistors. Thus, when static RAM cells are used,
(M +4)2K M +4 (7
5MbB2K — 5M )
Here there will be an area savings so long as M (the number of bits in the input data words
and the number of memory units in the fully parallel DA implementation) is greater then 1.

Rorea =

LR ]
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Figure 7: Multi-Access Memory Unit

If M = 8, Ryrea = .30. Thus the area savings can be significant. These observations have
been made in the context that the number of transistors corresponds to area requirements.
The same results hold whenever the area required for the storage cell (be it transistor based
or not) requires more area to implement than do bus control transistors. Again, it must be
noted that while the area required for address decoders and the adder tree are the same for
both implementations, these requirements are not included in the R,,., computation. So,
R.... only reflects the savings potential in the storage section of the implementation. To
the degree that the storage section dominates the other elements of the implementation this
may translate into significant savings. Not only do the other elements need to be included
in the computations, but an actual VLSI layout of a multi-access memory based DA circuit
needs to be attempted to make sure that the connection complexity of the multi-access
memory unit does not overwhelm what appears to be a significant area savings potential
in the case of static RAM memory cells.

3 Truncation and Rounding

Once each term is fetched from the memory, they are shifted and added to form the final
result. This operation is diagramed in Figure 10. If each memoryin a fully parallel imple-
mentation stores terms that are b bits wide, then the resulting inner product will occupy
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at most M + b bits.? Suppose, h'owev,er,? that the product erililyjneed'é to be determined to
an accuracy of f signiﬁcant bits. In this case it may be possible to truncate or round the

"} obvious in the case of the fully parallel DA xmplementatxon an& as we wﬂ] see later 1f'
" 1is also true for the multi-access memory unit based 1mplementat10n “First let us con51der
what the impact of truncating or rounding will be on the accuracy of the final result,

Truncating the individual terms and discarding bits that fall in column f + e and to
the right (as shown in Figure 10) will give a maximum worst case error of

By =27((M+b-(f+e)-1+2° (M4 ) 7(8)

where we have normahzed the result SO that the bmary pomt falls Just to the left of column

f.3 The worst case truncatxon error is calculated by considering that all the truncated bits
‘T aré ofies. .. ’

When we round the 1nd1v1dua1 terms and then dlscard b1ts that fa.ll in column f +e
there are two worst case error situations. If the bits in column f + e are all ones, and all
bits to the right are zeros. In this case the error is

E = 2_(c+1)(M +b—(f+e)) (9)

2This can be shown by temporarily treating the terms as whole integers and assuming that all M terms
take on the maximum value (2% — 1). The final sum will then be (2® — 1) « (2™ — 1) which can be written
as ((22+™ — 1) — (2™ — 1) — 2%) 4 1. When written this way and assuming M < b it is easy to see that the
result occupies at most M + b bits.

3We also need f > b.

e
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Figure 9: Static RAM Multi-Access Memory Plane

If the bits in column f + e are zeros and all the bits to the right are ones, the error is
By = 27 (M + b — (f + e +1)) — 1 4 27 M=)y (10)

After the individual terms have been truncated or rounded to f + e bits, the final sum
is computed and then either truncated or rounded to f bits. This second truncation or
rounding will add to the total error. In the case of truncation, the worst case error will be

Ey=1-2"(1 (11)
In the case of rounding, the additional worst case errors are

Erfa =271

E,.ﬂ, = 2_1 -— 2'(3—1) (12)

Noting that E.., > E,s and E.z;, > E, s, we will use E,q and E,;, when referring to
rounding. There are four possible approaches to arriving at the final result depending on
which of truncation or rounding is applied to the individual terms and which is applied
to the final sum. The four possibilities are summarized in Figure 11. From the graph, we
see that as few as five or six extra bits beyond f are required in order to arrive at errors
that are very near what we would expect if we retained all the bits in the individual terms,
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Figure 10: The Final Sum

formed the sum and rounded or truncated the result to f bxts We also note that this is true
independent of whether the individual terms are first truncated or rounded. When e < 4,
the error resulting from rounding is similar to the error resulting from truncating one less
bit. These observations suggest that there is not a great deal to be gained by rounding
individual terms over truncating them. In the case of a fully parallel DA implementation,
the rounding of individual terms can be precomputed and only the rounded terms stored,
so there is no cost in doing so. However in the multi-access memory based implementation,
rounding of individual terms would have to be performed upon access. As we shall see
shortly, the area requirement of the multi-access memory for rounding will be the same
for a memory the truncates one less bit. This, coupled with the above observations on
error, indicate that roundmg individual terms does not prov1de a very great advantage
over truncation in the multi-access memory.

= Sirs s SAETEEAES ERTE T TR CITIESIIES Eés —sFeaidr oo TE T TFE e Bl .o E T 4 .

4 Implementing Truncation and Rounding

First we consider the transistor cost of a ROM based fully parallel DA implementation.
From Figure 10 we see that if we desire to compute the final sum to f + e bits, we will need
(M —t) ROMs storing b bit words, and ¢t ROMs that each store one bit less in succession
where t = (M + b) — (f + €). Note that for consistency, t < bandt < M. Ift > b, M
should be reduced and if t > M, b should be reduced. Now, referring to Figure 5 we see

that for each bit truncated, 2¥ + 1 transistors are saved. Since Y!_,i = {(f + 1)/2, the
cost of the implementation is

= M(b2K + 2% +b) - ﬁ‘;—l)(sz +1) (13)

[N
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Figure 11: Errors from Truncation and Rounding

Again, K to 2% decoders are required for all M ROMs. We also note that this equation
applies equally well to both truncation and rounding of individual terms. Next we consider
the transistor cost of the multi-access ROM based implementation. We note that while
each stored term must have the full b bits, the width of the last ¢t data paths decreases by
one bit for each path. This is shown in Figure 12 where the storage cells are implemented
by connections (or the lack thereof) to ground through a precharge transistor as in Figure
7. Thus, we save t(f + 1)/2 bus control transistors in each plane so, the overall cost of the
implementation is
n, = Mb2K 4 52K 2K t(t—zl—)zx (14)
Comparing the savings of the two approaches, we see, not surprisingly, that the multi-
access ROM continues to loose ground against the fully parallel implementation. The
disadvantage is further amplified when we consider applying rounding to individual terms.
In the fully parallel approach, the rounding is precomputed, but in the multi-access ap-
proach the rounding must be computed on-line. An extra bit in each of the terms to be
rounded is required. If the bit is a one, the one is to be added to the next more significant
bit. This could be achieved by routing the extra bit to an appropriate place in the adder
tree. Another approach might be to truncate so that a final sum of f + e + 1 bits is
computed, resulting in an equivalent error. In either case, an extra bit would be needed
for each of the M data paths in each of the 2X planes.
Extending the comparison to the use of static RAM, from Figures 8 and 10, we see that
truncating or rounding so that the final sum is computed to f + e bits would save (5¢(t +
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1) / 2)2K trans1stors in tﬁe fuﬂy paraﬂeI lmpTementa,tlon Lettmg the storage eIements in

Figure 12 be the 4 transistor cells used in Figure 9, we see that the s savings from truncation

in the multi-access RAM based implementation is the same as it was in the multi-access
ROM, namely 2K¢(t +1)/2. Not surprisingly, we find that the fully parallel ‘RAM based
implementation benefits more from truncation than does the multi-access based RAM

architecture. We note however, that it still possesses a s1gmﬁcant advantage. The ratio of

the number of transistors becories -

Rarca -

(M + 4)b —t(t+1)/2

5(Mb —t(t +1)/2) I (15)

With ¢ = M = 8 and b = 16, Ra,,a = 0 34 as compared to the 30 ratxo that arises if t = 0.
We also note that the reduced number of bus control transistors and reduced bus widths
reduces the connectmn complexlty of the multi-access architecture.

5 Conclusmns

We have shown that the multi-access architecture requires significantly less area than a
fully parallel architecture when the number of transistors per stored bit is greater than
one, as it will be when static RAM cells are employed. Since this observation is based

on the assumption that the transistors used for storage are the same size as those used

T T NN
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for bus control, we can say more abstractly that the multi-access architecture will save
space whenever the area required to implement each storage cell is greater than the area
required to implement a bus control or routing transistor. The savings estimates do not
include the cost of decoders and the cost of the adder tree (which will be the same in both
cases). The area requirements of these elements must be added in so we can truly asses
the area savings advantage of our approach. Both approaches appear to be fairly regular,
both lending themselves well to VLSI implementation. Again this observation is made
independently of the implementation of the decoders and the adder tree. The connection
complexity between these elements in both architectures also needs to be considered. In
short, a VLSI layout of both architectures needs to be done in order to be able to accurately
compare the two.

We have also presented the errors associated with truncating or rounding individual
terms and the area savings that can result in both architectures from doing so. These
errors need to be reconsidered, placing them in the overall context of the inner product.
In particular we have not considered what b should be given M and K.
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