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AbJtract- Speed requirements have been, and will continue to be a major con-

sideration in the design of hardware to implement digital signal processing

functions like digital filters and transforms llke the DFT and DCT. The con-

ventional approach is to increase speed by adding hardware and increasing

chip area. The real challenge is to save chip area while still maintaining high

speed performance. The approach we propose is based on the distributed

arithmetic implementation (DA) of digital filters. The improvement is based

on two observations. Firstly, a single memory element can replace several

identical memory elements in a fully parallel DA implementation. Secondly_

truncation or rounding may be introduced into the computation at strategic

points without increasing error unduly. Both of these approaches can be used

to attain area savings without impairing speed of operation.

1 Introduction

Finding the inner product between two vectors is an operation that commonly arises in sig-

nal processing as well as in general data processing. Digital convolution and correlation are

directly described as inner products. Other operations such as the discrete Fourier trans-

form and other common transforms can be implemented as a sequence of inner products.

Consider the inner product
K

y = (1)
k=l

In the case of a FIR digital filter, At, represents a set of fixed weights, and zk represents

the current and past K - 1 filter inputs. The inner product can be implemented directly

by using a single multiplier and an accumulator in a serial one product at a time manner,

as in Figure 1, or in a fully parallel manner by using K multipliers and a multi-input adder

or adder tree, as in Figure 2. Obviously, the fully parallel architecture will always be faster

than the serial approach.

The distributed arithmetic (DA) approach to computing the inner product was devel-

oped in the early seventies [1,2,3,4,5,6,7,8]. In this approach, combinations of the Ak are

precomputed and stored in memory. Input data are used to identify which memory words

are to be fetched, shifted and added to produce the final result. Without loss of generality,
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Figure I: Multipller-Accumulator Implementation
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i_igure 2: Fully Parallel Direct imp|emen_a_ion

_rs_ assume that the zk are scaJed such that l_kl < 1. In two_scomp]eement iorm

M-I

........ •_ -b_0+ _ b_2-_ (2)
wt-----1

where the bk,,, represent the individual bits in zk with bk0 the sign bit. Substituting (2)

into (1) and rearranging the order of summation gives

y = _ A_b_ 2-_ - Z A_b_0 (31
m=l k=l

Since the bits bi,,_ are either 0 or 1 the term K, El,=1 A_,bk,._ can be precomputed for all

2 K possible combinations of b_,,,. These vaJues are then stored in a ROM or RAM. The

actual combina_ns of bk,_, a_s_g outof the input clara, are used to address one of the

precomputed terms stored in the memory. Note that these combinations are formed by

selecting the ruth bit from each of the K M-bit input words. The mth term so addressed

is then shifted by m bits to the right before being added to the other M terms. The only

exception to this is when m = 0. In this case, which corresponds to using the sign bits of

the input data to form the address, the addressed term is subtracted from the other terms.

As with the direct implementation of the inner product, there are two approaches to

implementing DA. The inner product can be computed by using only one memory and a

single accumulator as shown in Figure 3, or in a fully parallel manner by using M memories,

=

=
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Figure 3: Single Memory DA Implementation

each with identical contents, as shown in Figure 4. Again, the fully parallel approach will

always be the fastest. In Figure 4, we note that the shifting is actually accomplished by

connecting the memory outputs to appropriate positions on a multi-input adder.

Comparing Figures 4 and 2 is instructive. We note that where the input data words

are M bits wide, M memories are always used in the DA implementation, independent

of K, the number of multiplies in the inner product. However, each memory must store

2 K terms. So, increasing K will increase the required size of the memories. Also, as K

increases, the number of stored bits per term must increase in order to maintain accuracy.

The direct implementation, by comparison, uses K multipliers. As M increases, the width

and depth 1 of the multipliers must increase to preserve accuracy. Thus, depending on

the word size, number of products, and required accuracy, one approach may have size

advantages over the other.

In terms of speed, DA does have one clear advantage over the direct implementation.

Increasing the accuracy of the inner product by increasing the number of bits in the

input data words and in the coefficients will not degrade the speed performance of a DA

implementation. The number of memories and the width of each will increase, but the

number of stored terms in each memory will not. In a direct implementation, however,

not only the width of the multipliers increase, but so will their depth resulting in slower

performance. Increasing K does not decrease the speed of the multipliers, but it will

increase the depth of the adder tree in the direct implementation resulting in some loss of

performance. In a DA implementation, increasing K will slow down the memories, but it

does not increase the depth of the adder tree.

While the structure of the fully parallel DA implementation is very regular and hence

attractive for VLSI implementation, it appears to be very inefficient in terms of its use

of space. That is, for each inner product computed, only one of the 2 K terms stored in

each memory is used. Further, the contents of each of the M memories is identical. Our

tThis assumes that the width of the coefficients also increases proportional to M.
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Figure 4: Fully ParallelDA Implementation ..............

firstobservation about how the fully parallelDA architecture may be improved involves

replacing the M memories with just one memory unit that provides M data access paths.

2 An improved DA Architecture

A ROM, using one transistorper storage blt,is shown in Figure 5. The store_F_|_s_

zero or one depending on whether the drain of the associated transistori_onnected to

the data lineor not. Note that the address decoder and the data llnesense amplifiersare

not shown. Not counting these components_ the:numbcr Of transistorsrequired for ths

memories in a ROM based fullyparallelDA implementation is

rtt = M(b2 K + 2 _ + b) -- (4)

where_represents the number of bits stored in each word of the memory. Next, consider

Figure 6 which represents one plane of a M-way multi-access memory. Each plane stores

one word and 2K planes together make up the complete memory unit as shown in Figure

7. Each plane has M sets of b control transistors that are used to route the stored word to

the appropriate output register. Each set of b control transistors is controlled by a single

control line. The data bits associated with control line m in each plane are connected to

a bus which connects with output register m. Which of the 2 K control lines is asserted

is determined by address decoder m. Since this circuit effectively addresses the output

registers instead of the stored words, there is no need for address lines for the stored words

themselves. Further, a transistor is not required for each stored bit. A zero is stored simply

with a shorted llne, a one with an open. The control transistors assume the function of the
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Figure 5: ROM Architecture

storage transistors in the ROM architecture, and provide a path between every stored word

in the memory unit and every output register. The total number of transistors required to

implement the memory unit, again excluding address decoders and output registers is

nt : Mb2 g + b2 K -4- 2 g (5)

Note that both approaches use M K to 2 K decoders and identically sized adder trees. The

ratio of the number of transistors in the storage sections of the Multi-Access memory unit

and the memories in a fully parallel DA architecture give an estimate of the area savings

potential presented by one approach over the other. Dividing (5) by (4) gives

Mb2 K + b2 g + 2 K Mb2 K + (b + 1)2 K

Ra,e_ = Mb2K + M2 K + Mb = Mb(2 _ + 1) + M2 K (6)

Since b will usually be greater than M, Ra_e_ > 1. That is, the multi-access memory

architecture presents no area savings, despite the fact it replaces M copies of each stored
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Figure 6: Memory Unit Plane

word with just one copy. This is because the expense of bus controls erases the savings of

memory transistors. In fact the number of transistors associated with stored bits in the

fully parallel implementation is Mb2 K. This is also the number 0f bus control trans_st0rs

in the muir-l-access memory. However, for memory architectures where there is more than

one transistor per stored bit, the savings in storage transistors will not be absorbed by bus

control transistors. To see this, consider the case that 4 transistor static RAM cells are

used as memory elements. Static RAM may be required in cases where the inner product

is to be configurable, in the sense that the coemcients may be changed from time to time,_

requiring tl_e memory contents to be rewritten. The conventional static _ architecture

_=i_sshown in Figure 8 and one pl_ane or the m_ti_access memory architecture is shown in

Figure 9.

A fully parallel implementation of DA using M static RAMs of the type shown in

" Fi---gure-8-would use 4Mb2 K t_an_is{0rs and ._b2g ce_ seiect transistors-. The static-R._M

multi-access memory unit would use 4b2 K transistors for storage and Mb2 K bus control

transistors. Thus, when static RAM cells are used,

R_,_ - (M + 4)b2 K M + 4
5Mb2 K - 5M (7)

Here there will be an area savings so long as M (the number of bits in the input data words

and the number of memory units in the fully parallel DA implementation) is greater then 1.
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Figure 7: Multi-Access Memory Unit

If M = 8, R_,_o = .30. Thus the area savings can be significant. These observations have

been made in the context that the number of transistors corresponds to area requirements.

The same results hold whenever the area required for the storage cell (be it transistor based

or not) requires more area to implement than do bus control transistors• Again, it must be

noted that whiIe the area required for address decoders and the adder tree are the same for

both implementations, these requirements are not included in the Ra,ea computation. So,

Ra,_, only reflects the savings potential in the storage section of the implementation. To

the degree that the storage section dominates the other elements of the implementation this

may translate into significant savings. Not only do the other dements need to be included

in the computations, but an actual VLSI layout of a multi-access memory based DA circuit

needs to be attempted to make sure that the connection complexity of the multi-access

memory unit does not overwhelm what appears to be a significant area savings potential

in the case of static RAM memory cells.

3 Truncation and Rounding

Once each term is fetched from the memory, they are shifted and added to form the final

result. This operation is diagramed in Figure 10. If each memory in a fully parallel imple-

mentation stores terms that are b bits wide, then the resulting inner product will occupy
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at most M + b bitsJ Suppose, however, that the product only needs to be determined to

an accuracy of f significantbits.In thiscase itmay be possible to truncate or round the

individual terms before adding. Doing so would not only reduce the amount of har_c[ware

req_ired_n:i_e adder-tree,13u_o_ _o r-edti_ _s_ze_ofsome 0f the mem_ries__his

-_S o_l_vi-ous in-the c-ase oft-_- he_fufly parcel DA i-_mple-rnentafion and-, as _e_l_ see i_/_er,- i_

-iS-also true-for-the _muRi-access merfiory Unit based-imt_lement-M]on.°F_r°st_ie_t- "us consider

what the impact of truncating or rounding wifl be on the accuracy of the final resffft.

Truncating the individual terms and discar_ding bits that fall in column ] + e and to

the right (as shown in Figure 10) will give a maximum worst case error of

Eu = 2-'((M + b- (/+ e)) - 1 + 2 -(M+b-(/+'))) (8)

where we have normalized the result so that the binary point falls just to the left of column

/.3 The worst case truncation error is calculated by considering that all the truncated bits

-are o_es.

When we round the individual terms and then discard bits that fall in column / + e

there are two worst case error situations. If the bits in column / -{- e are all ones, and all

bits to the right are zeros. In this case the error is

E,° : 2-('+_)(M + b- (/+ e)) (9)

2This can be shown by temporarily treatingthe terms as whole integersand assuming that allM terms

take on the maximum value (2_ - 1). The finalsum willthen be (2_ - 1)* (2M - 1) which can be written

as ((2_+M - 1) - (2M - 1)- 2_)+ I. When written thisway and assuming M < b itiseasy to see that the

resultoccupies at most M + b bits.

aWe also need f __b.

E
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Ifthe bits in column f + e are zeros and allthe bitsto the right are ones, the error is

E, tb -- 2-(_+1)((M + b - (f + e + 1)) - 1 + 2 -{M+_-(f+'+1))) (lO)

After the individual terms have been truncated or rounded to f -b e bits, the final sum

is computed and then either truncated or rounded to f bits. This second truncation or

rounding will add to the total error. In the case of truncation, the worst case error will be

Et/= 1 - 2 -(_-I) (11)

In the case of rounding, the additional worst case errors are

E,J. =2-1 (12)
E, fb = 2 -I - 2 -(_-I)

Noting that E,.t,, > E, tb and E,.t,, > Ertb, we will use E_to and E_Io when referring to

rounding. There are four possible approaches to arriving at the final result depending on

which of truncation or rounding is applied to the individual terms and which is applied

to the final sum. The four possibilities are summarized in Figure 11. From the graph, we

see that as few as five or six extra bits beyond f are required in order to arrive at errors

that are very near what we would expect if we retained all the bits in the individual terms,
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formed the sum and rounded or truncated the result to f bits. We also note {hat tl_s is true

independent of Whether the individual terms are first truncated or rounded. When e .< 4,

the error resulting from rounding is similar to the error resulting from truncating one less

bit. These 0bservations_ suggest that there is not a great deal to be gained by rounding

individual terms over truncating them. In the case of a fully parallel DA implementation,

the rounding of individual terms can be precomputed and only the rounded terms stored,

so there is no cost in doing so. However in the multi-access memory based implementation,

rounding of individual terms would have to be performed upon access. As We shall s-ee

shortly_ the area requirement of the multi-access memory for rounding will be the same

for a memory the truncates one less bit. This, coupled with the above observatigns on

error, indicate that rounding individual terms does not provide a very great advantage

over truncation in the muiti:accessmemory. ........

4 Implementing Truncation and Rounding

First we consider the transistor cost of a ROM based fully parallel DA implementati6n.

From Figure 10 we see that if we desire to compute the final sum to f + e bits, we will need

(M - t) ROMs storing b bit words, and t ROMs that each store one bit less in succession

wheret = (M + b) - (] + e). Note that forc0ns{siency, t < b andt _ M. Ift _> b, M

should be reduced and if t > M, b should be reduced. Now, referring to Figure 5 we see

that for each bit truncated, 2g + i transistors are Saved. Since = + 1)/2, the
cost of the implemcntation is

n, = M(b_. _ + 2 x + b) t(t + 1)(2K + 1) (13)
2

|
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Figure 11: Errors from Truncation and Rounding

Again, K to 2 r decoders are required for all M ROMs. We also note that this equation

applies equally well to both truncation and rounding of individual terms. Next we consider

the transistor cost of the multi-access ROM based implementation. We note that while

each stored term must have the full b bits, the width of the last t data paths decreases by

one bit for each path. This is shown in Figure 12 where the storage cells axe implemented

by connections (or the lack thereof) to ground through a prechaxge transistor as in Figure

7. Thus, we save t(t + 1)/2 bus control transistors in each plane so, the overall cost of the

implementation is

nt = Mb2 K + b2 r + 2 r t(t + 1)2 K (14)
2

Comparing the savings of the two approaches, we see, not surprisingly, that the multi-

access ROM continues to loose ground against the fully parallel implementation. The

disadvantage is further amplified when we consider applying rounding to individual terms.

In the fully parallel approach, the rounding is precomputed, but in the multi-access ap-

proach the rounding must be computed on-line. An extra bit in each of the terms to be

rounded is required. If the bit is a one, the one is to be added to the next more significant

bit. This could be achieved by routing the extra bit to an appropriate place in the adder

tree. Another approach might be to truncate so that a final sum of f + e + 1 bits is

computed, resulting in an equivalent error. In either case, an extra bit would be needed

for each of the M data paths in each of the 2 K planes.

Extending the comparison to the use of static RAM, from Figures 8 and 10, we see that

truncating or rounding so that the final sum is computed to f + e bits would save (5t(t +
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1)/2)2/_ _ranslstorsin tl_efully para_eI im-pie_rnentatlon.Letting tlaeStorage elements'_n

Figure 12 be the 4 transistorce_s usedqnqTqgure 9, wesee that the savings from truncation

in the multi-access RAM based implementation is the same as it was in thcmulti-access

ROM, namely 2tct(t+ 1=)/2.Not Surprisingly,we find that-the fullyparailelRAM based

implementation benefits more from truncation than does the muir'-access based RAM

architecture. We note however, that it stillpossesses a significantadvantage. The ratio of
the number of transistorsbccS_c_

/1_,,, __ (M + 4)b - t(t + 1)/2
5(Mb- t(t + 1)/2) (i5)

With t = M = 8 and b - 16, R,,_o = 0.34 as compared to the .30 ratio that arises if t = O.

We also note that the reduced number of bus control transistors and reduced bus widths

reduces the connection complexity of the multi-access architecture.

_=

=

z

5 Conclusions

We have shown that the multi-access architecture requires significantlylessarea than a

fully parallelaxchitecturc when the number of transistorsper stored bit is greater than

one_ as it will be when staticRAM cellsarc employed. Since this observation is based

on the assumption that the transistorsused for storage axe the same size as those used
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for bus control, we can say more abstractly that the multi-access architecture will save

space whenever the area required to implement each storage cell is greater than the area

required to implement a bus control or routing transistor. The savings estimates do not

include the cost of decoders and the cost of the adder tree (which will be the same in both

cases). The area requirements of these elements must be added in so we can truly asses

the area savings advantage of our approach. Both approaches appear to be fairly regular,

both lending themselves well to VLSI implementation. Again this observation is made

independently of the implementation of the decoders and the adder tree. The connection

complexity between these elements in both architectures also needs to be considered. In

short, a VLSI layout of both architectures needs to be done in order to be able to accurately

compare the two.

We have also presented the errors associated with truncating or rounding individual

terms and the area savings that can result in both architectures from doing so. These

errors need to be reconsidered, placing them in the overall context of the inner product.

In particular we have not considered what b should be given M and K.
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