
3rd NASA Symposium on VLSI Design 1991

N94-13355
5.3.1

VLSI Synthesis of Digital
Application Specific Neural Networks

Grant Beagles

Department of Electrical Engineering

Montana State University

Bozeman, Montana 59717

Kel Winters

Advanced Hardware Architectures, Inc.

Moscow, Idaho 83843

Abstract- Neural networks tend to fall into two general categories, 1) software

simulations, or 2) custom hardware that must be trained. The scope of this

project is the merger of these two classifications into a system whereby a

software model of a network is trained to perform a specific task and the

results used to synthesize a standard cell realization of the network using

automated tools.

1 Introduction

Neural net research may be roughly classified into two general categories; software

simulations or programmable neural hardware [2,6].

Many neural network simulators are readily available. The major drawback to all of

them is that, no matter how well written, they are run on a sequential machine. This means

that the software must simulate the parallelism of the network and slows down dramatically

as the number of connections increases [1,3].

Hardware neural networks are usually general purpose and must be trained.

Depending on the training, a significant percentage of the total hardware resources may be

unused. By defining the network with a software model and then synthesizing the network

from that model, all of the silicon area will be utilized. This should result in a significant

reduction in die size when comparing the application specific version to a general purpose

neural network capable of being trained to perform the same task.

5.3.2

2 Network Modeling

The simulator that is being used for this project is version 2.01 of NETS written by Paul T.

Baffes of the Software Technology Branch of the Lyndon B. Johnson Space Center [3]. This

simulator was chosen for several reasons. NETS has a flexible network description format,

the source code is available, and the weight matrix may be stored in an ASCII file for easy
use in later steps.

As a first design effort, a simple numeral recognition network with three layers and

37 neurons was defined. The neiwork consists 0fa 5 by 6 input layer, one hidden layer that

is also 5 by 6, and a 1 by 7 output layer. This network is fully connected. Figure 1 contains

the NETS description of the network.

LAYER : 0 --INPUT LAYER

NODES : 30

X-DIMENSiON : 5

: = . y-DIMENSION ; 6

TARGET i 2

LAYER : i --OUTPUT LAYER

NODES : 7

X-DIMENSION : 1

Y-DIMENSION : 7

LAYER : 2 --FIRST HIDDEN LAYER : _

NODES : 30

X-DIMENSION • 5

Y-DIMENSION : 6

TARGET" 1

NETS _desc__pti_on Of neur_al ne_tw_or_k._

=

r

Figure 1.

A training set consisting of ten digits (0 through 9) and the corresponding ASCII values is

used to build the network weighting matrix. Figure 2 illustrates a typical character

representation and its corresponding input/output vector. The network training set does not

include any noisy or corrupted data to simplify the model. Training the network required 100

iterations and was completed in about 6 minutes. The fully connected network has 1110

connections. The weights in the weight matrix range between +_1.7 following training.

3rd NASA Symposium on VLSI Design 1991 5.3.3

Once the network is trained, the number of connections is reduced. This is done by setting

all weights having an

absolute value less than

a specified value to zero

(no connect). This

process is easily

automated allowing

various cut off values to

be evaluated. The

modified weight matrix

is evaluated using

NETS to determine

whether or not the

network will still

satisfactorily perform its

designed task.

011 lO00b

Character
w/ASCII code

(.1.9.9 .g .1
.g .1.1.1 .g
.1.9.9.9.1
.g .1.1.1.9
.9.1.1.1.9
.I .g .9.9 .I
.1.9.9.9 .I .I .I)

Input/outputvector

Example of training set element.

Figure 2.

Table 1 is a summarizes the results of reducing the network.

CUT-OFF NUMBER OF SATISFACTORY THRESHOLD 1

VALUE CONNECTIONS PERFORMANCE

0.3 688 yes 0.5

0.4 530 yes 0.5

0.5 413 yes 0.5

0.55 344 yes 0.5

0.6 288 no

Any value > threshold is a "one" otherwise "zero".

Table 1.

The actual cut-off values tested ranged up to 1, however, all results with a cut-off above 0.55

were inconsistent with the desired results. Figure 3 is the test vector for the character shown

in figure 2 with its associated output vector. (The cut-off is 0.55 and the threshold is 0.5.)

5.3.4

-- test set formin.net

(.I.9.9.9 .I--"8"

.9.1 .I.I .9

.1.9.9.9.1

•9.1.i.i.9= : : =

.9 .I .i .i ._ =

.1.9.9 '9.1) : :_

Outputs for Input 8:

(0.002 0.846 0.994 0.865 0.036 0.257 0.164)

Output vector for test vector from figure 2.

Figure 3.

With the threshold value taken into consideration the output is 011 1000, which is the ASCII

code for "8";

3 Logic Synthesis

The intent of the neural network synthesis process is to provide a fuily automatic path to

siiic0n realization once a network model has been constructed and verified in the NETS

environment. The entire synthesis process is schematically shown in figure 4. The OCT tool

set from the University of California, Berkeley [8], was chosen for the back end of this

procedure, which includes ioglc optimization, technolo_ mapping, standard-ceil place-and-

route,and composite artwork assembly and verification.

E

z

=,

5.3.5

no

Verified?

'9S

UseVedtledNetwork
withLamest

ReductionFactor Hardware Synthesis

Phase

i

i

|

i

, Verified?

' yes i
' !

d Pe,_,_DRc=,d I
I |::!i_il Releasefor I l

no

|

Application specific neural network synthesis process.
Figure 4,

First, the completed neural network topology is translated from the NETS environment to

the OCT hardware description language BDS by a NETS-to-OCT program written for this

purpose. A simple example of a single neuron in NETS netlist and the corresponding BDS

description are shown in figure 5. The BDS file is then compiled into unminimized logic

5.3.6

functions by the OCT tool Bdsyn. These are mapped into a standard cell library by MisII.

Currently, the SCMOS2.2 standard-cell library from Mississippi State University is used,

implemeilted in the SCMOS6 N-Well CMOS process available from the National Science

Foundation MOSIS program. This process has a minimum feature size of two microns.

LAYER : 0--INPUT LAYER

NODES : 5

TARGET: 1 -: 7 = :

:A

LAYER : 1--OUTPUT LAYER

NODES : 1

Majority logic NETS description.

MODEL dumb

out<0>,sum0<4:0>=in<4:0>;

ROUTINE dumbnet;

target layer # 0 node } 0

sum0<:t:0> = 8

+ inO<O>

÷ inO<l>-

>
+ in0<_>

- in0<4>

IF sum0<4> EQL 1

Tlt_EN ou't,_0> --]

ELSE out<0> = 0;

ENDROUTINE;

EN]3_0D-EL;

]VIajority logic BDS description.

=

m

r

i

Figure 5.

MislI is an n-level logic Optimizer, which creates a realization of a logic function from a given

cell library minimizing both wffrst-case propagation delay and the number of cells required.

The relative priority of area t'ersus speed is user selectable. The resuIt is stored in the OCT

3rd NASA Symposium on VLSI Design 1991 5.3.7

database and may be verified with MUSA, a multilevel simulator in the OCT suite. From

here, the design process may be easily iterated from the NETS description forward as shown

in figure 4.

A number of additional OCT tools are available for padring composition, composite

placement and channel routing, power distribution routing, and artwork verification.

Artwork may be generated from the OCT database in Caltech Intermediate Format (CIF)

for release to MOSIS or other foundry services.

The standard-cell realization of the digit recognizer described previously is shown in

figure 6. Its 37 neurons required 2741 standard cells in 47 square millimeters.

Standard cell realization of character recognizer.

Figure 6.

5.3.8

4 Conclusions and Future Directions

Figure 7 shows a block diagram of a 5 input programmable neuron. To build the digit

recognizer using this generic neuron would require about 45 neurons. T!_e actual network

has 37 neurQns. The increased number of generic neurons is due to the five input limitation.

Many of the nodes in the network have more than five inputs. With the generic neurons,

multiple neural cells would be connected at the outputs giving the behavio-r characteristics

of a neuron having a larger number of inputs.T-he number of standard cells required for the

entire network realized with the generic 5 input neuron is approximately 8280 (-45 neurons

by 184 standard cells per neuron [7]). This network would cover nearly 141 square
millimeters.

Synaptic Woig ht

flip_ flops_.._=..-__ _ __

.....
Thresnold

flip flo_

Output
flip flop

Generic five input neu-rai-=celi: - -

Figure 7.

As stated previously, the network created with the methodology described here requires 2741

standard cells and 47 square millimeters. This represents a 66% reduction in the number

of cells used and silicon area. This reduction wil] allow the chip to be fabricated at a

significantly lower cost than a chip with a sufficient number of the generic neurons.

Furthermore, all of the silic0_ area in the application specific area is utilized whereas, a

significant percentage is unused in t_l_e ge-n-eral mode[These results are very preliminary.

Experiments with simpler models suggest that substantial improvements in standard cell

optimization remain possible.

The models used in this research were trained using ideal training sets, meaning that

the characters were well formed and the level of contrast between the background and the

characters was high. For the neural network to have any real value, a larger training set

would be necessary. This set would have both poorly formed and low contrast examples of

each character. Using a training set of this type would cause _ increase in the number of

connections necessary in the network [5].

3rd NASA Symposium on VLSI Design 1991 5.3.9

The synthesis process described may be used to deliver an application specific neural

network, trained to perform a specific task at less cost than utilizing general neural

hardware. Silicon area will be more highly utilized in the application specific case since only

the necessary circuitry is fabricated. Although more research is necessary, early results show

the method to be promising.

Acknowledgement

This work was supported by an educational grant from the National Science Foundation

MOSIS program and equipment donations from the Hewlett-Packard Co, Tektronix Inc., and

Advanced Hardware Architectures Inc. The authors would especially like to thank Paul

Cohen, of Advanced Hardware Architectures; Andrea Casotto of UC Berkeley; Dr. Gary

Harkin, Jaye Mathisen, Diane Mathews, and Bob Wall, of Montana State Univerisity; and

Dr. Gary Maki, of the University of Idaho; for their invaluable assistance.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

H. C. Anderson, "Neural Network Machines," IEEE Potentials, Vol. 8 no. 1, pp. 13-16,

Feb 1989.

J. A. Anderson,D. Hammerstrom, and L. D. Jackel, "Neural Network Applications for

the 90's," IEEE Videoconference, May 23, 1991.

P. T. Baffles, NETS User's Guide, Software Technology Branch, Lyndon B. Johnson

Space Center, Houston, TX.

M. W. Firebaugh, Artificial Intelligence, Ch. 18, PWS-KENT, Boston MA, 1988.

H. P. Graf, L. D. Jackel, W. E. Hubbard, "VLSI Implementation of a Neural Network

Model," IEEE Computer, pp. 41-49, March 1988.

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Vol 1 and 2,

MIT Press, Cambridge, MA, 1986.

S. Wandler and D. Metcalf, "Development of a Neural Network Integrated Circuit,"

Senior Project Report, Montana State University, Department of Electrical

Engineering, 1991.

5.3.10

[8] A. Casotto, ed., OCTTOOLS Revision 5.1 User Guide , University of California

Berkeley, Electronics Research Laboratory, Berkeley, CA, 1991.

