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Abstract- This paper describes experimental results obtained with the use of

measurement reduction for statistical IC fault diagnosis. The reduction method

used involves data pre-processing in a fashion consistent with a specific defini-

tion of parametric faults. The effects of this preprocessing are examined.

1 Introduction

An integrated circuit test is specified by a combination of input and output signals which

characterizes some attribute of ideal circuit function. The presence of faults in a fabri-

cated circuit will cause observed output signals to deviate from the simulated ideal. A

fault diagnostic is a decision rule combining what is known about an ideal circuit test

response with information about how the response is distorted by fabrication variations

and measurement noise. The rule is used to detect fault existence in fabricated circuits

using real test equipment.

The IC failure diagnosis problem can be viewed as a statistical pattern recognition

problem. Instead of extracting output response parameters explicitly and comparing with

the specification, the output responses can be identified into faulty or non-faulty according

to some classification decision rules. It has been positively demonstrated that pattern

classification technique can be used in IC diagnosis [Mea90].

Recent experiments [Mea91] have showed that feedforward network classifier (FFN)

generally perform as well as or even better either than the traditional statistical parametric

classifier, Gaussian Maximum Likelihood Classifier (GML) or the non-parametric classifier,

the K-nearest Neighbors classifier (KNN). I-Iowever, it usually needs more computational

efforts for FFN in the training phase to establish the discriminant function. To be more

effective, there is a need to find ways to consistently reduce this training overhead, while

simultaneously retaining prediction accuracy.

Nevertheless, performance of a classifier depends on the data presented in the training,

the discriminant function established in the training phase as well as the classification

algorithm of the classifier. To ensure high performance accuracy, essential information has

to be presented in the training data for the establishment of the discriminant function of

the classifier.

1This work supported by NSF-UIC CDADIC Project 90-1.
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In IC diagnosis, determination of a circuit fault is to classify the circuit from the

input-output measurement according to a decision rule which is built upon the estimated

prior probability distribution in the performance space of the circuit. Judgment is made

according to the decision rule of the classifier established in training, which defines the

decision boundaries for the classification. For accurate classification, decision boundaries

of the classifier has to be coincided with or close to the performance specification criteria

or boundaries. Such decision boundaries has to be captured by the classifier to set up the

discriminant function or deciSionrules_i-n tra_n]_fig. Tile acceptance region of the fabricated

circuits lines between the upper and lower performance specification limits. For highest

accuracy, in tlae training phase, the dec_slon boundaries have to be built around the spec-

ificatlon transition space: in this case, they_are the Upper and lower specification limits

instead of the mean of the performance distribution.:- ............

It is a well known fact that, in back-propagation training algorithm, input values are

multiplied by the derivative of the logistic functlon, Such that, awindow is placed on the

current estimated decision boundaries, not the mean [Lip88]. This character is very impor-

tant in IC diagnostic probiem especially the go/no go testing. If the discriminant function

is established around the specification boundaries, it will improve the performance of the

classifier. Besides, training on these boundaries, it will improve the training computational
load.

To improve the training effort, it is therefore logical to train a FFN based on the

decision boundaries. If data used in the training is collected around these boundaries,

the discriminant function computed by the trained network will be more accurate in these

regions. It will improve the training computational load as well, since fewer epochs are

required to converge to a given accuracy. This paper reports on experiments conducted to

help verify this idea.

2 Data ReduCtion Method: Boundary Band Data Pre-

processing : :

In contrast to the design task, the concern of IC fault diagnosis is mainly on whether the

circuit performance fall within the acceptance region instead of the performance mean. in

other words, the specification transition boundaries are the most concerns in IC diagnosis.

If the decision rules or decision boundaries of any diagnosis algorithm are based on these

transition boundaries, it is reasonable to expect a highly accurate and effective diagnostic

capability. ....

As discussed in the preceding section, there is a need to improve the computational load

of training FFN classifier even though it has a better diagnostic capability than the other

traditional statlst_ca] classifiers. He:re, we proposeda Boundary Band I)ata (BBD) training

method for FFN training to improve the computational load in the training phase. The

essence of the proposed method is based on the characteristic of FFN. In back-propagation

training algorithm of FFN, input values are multiplied by the derivative of the logistic

function, such that, a window is placed on the current estimated decision boundaries, not
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Figure 1: Operational amplifier circuit diagram

the mean. If the discriminant function or decision boundary of the trained network is set

up around the specification transition boundaries, it will improve the performance of the

classifier. Besides, training on these boundaries, it will improve the training computational

load. Making use of this distinctive characteristic of FFN, the proposed Boundary Band

Data training method is to train a FFN with those data gather from the proximity of

performance specification transition boundaries.

3 Experiment Set Up

To investigate the feasibility of using BBD in FFN training, experiments were conducted

in this study. The transient response and frequency response of the operational amplifier

shown in Figure 1 were used for the experiments. For frequency response experiments, the

open loop frequency response of the operational amplifier were used. For transient response

experiments, the step response of an inverting amplifier with the same operational amplifier

for the frequency response experiments are used. The circuit configuration for the transient

response experiment is shown in Figure 2.

4 Fault Definition

All experiments were designed to detect parametric faults in an operational amplifier.

Monte Carlo simulation of MOSFET model parameters was used. Only those statistical

independent model parameters were used so that the correlation effect among model pa-

rameters was eliminated. In each of the experiments, circuit fault was defined as a large

variation in one of the independent model parameter. In our experiments, three types of

parametric faults were used. They were variations in MOSFET oxide thickness (of all the

transistor in the circuit), zero bias threshold voltage, and junction depth.
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Figure 2: Inverting amplifier circuit configuration

Monte Carlo simulation using SPICE with a large variation around the mean wlue

in the chosen model parameter was used. With a pre-selectedperformance criteria, the

appropriate upper and lower limits of the model parameter which defined the fault and

normal _ansl l_0n-boundaries Could }_e determine_.-For exam-pie, we were interested to

define the fault and normal boundaries for the experiment with the inverting amplifier

circuits. The fault was chosen to be variation in oxide thickness. So the SPICE model

parameter, toz, was chosen with mean value equal to 600_i.. The related circuit performance

criteria were the step response overshoot and the slope of the stem response. Using the

above method, the transition boundaries were set at 400)1 and 800_.The acceptance region

was set between these limits. Any circuit fell within this region was defined to be normal;

other-_'se_ii(was defined as faulty_ ..................

In this study, three types of parametric faults were studied. They were circuit faults

in oxide thickness, junction depth, and zero biased threshold voltage. For each of the

experiments, there was only a single parametric fault existing in the circuit. The mean

model parameter values for normal circuit and transition boundaries for circuit faults are

listed in Table 1.

5 Experiment Description

Eight experiments Which were divided into two categories were investigated for the BBD

training methods. For the first category, it consisted of six experiments. To simplify the

problem, in each of the experiments, only one SPICE model parameter was allowed to

alter. It was under the assumption that there was no process existing in IC fabrication

except the process fault. Even though such assumption might not be realistic for actual IC

fabrication, the goal of these non-noisy experiments was to study the effect of the proposed

BBI_ training method Under the ideal condition. In these nonnoisy experiments, the
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1] Experiment Parametric Fault Performance parameters Mean Upper Limit Lower Limit

1 oxide thickness slew rate and overshoot 600._ 800._ 400)1

2 junction depth slew rate 0.4/_m 0.6#m 0.2/_m

3 threshold voltage slew rate 10.TVI 10.5V[ 10.9VI

4 oxide thickness slew rate 600_i 800_1 400_1

5 junction depth slew rate 0.4jum 0.6#m 0.2/_m

6 threshold voltage slew rate 10.7VI 10.5Vl 10.9Vl

7 oxide thickness slew rate and overshoot 600._ 800__ 400)1

junction depth slew rate 0.4#m 0.6#m 0.2/_m

Table 1: SPICE model parameter mean and transition boundary values

transient response of the amplifier in a closed loop inverting circuit under various nominal

and faulty conditions was used to develop the experiment database for the experiment 1

to 3. For experiments 4 to 6, open loop frequency response of the amplifier under the

same nominal and faulty conditions as in experiments 1 to 3 were used. The six non-noisy

experiments were:

E_p.l: Detect a 33% variation in oxide thickness of all the transistor in the circuit by

observing the circuit open-loop frequency response.

Exp._: Detect a 50% variation in junction depth of all the transistor in the circuit by

observing the circuit open-loop frequency response.

Ezp.3: Detect a 30% variation in threshold voltage of all the transistor in the circuit by

observing the circuit open-loop frequency response.

Ezp._: Detect a 33% variation in oxide thickness of all the transistor in the circuit by

observing the circuit time-domain step response.

Exp.5: Detect a 50% variation in junction depth of all the transistor in the circuit by

observing the circuit time-domain step response.

Er.p.6: Detect a 30% variation in threshold voltage of all the transistor in the circuit by

observing the circuit time-domain step response.

The second categories of the experiments consisted of two experiments which were

similar to experiment 4 and 5 with the difference that there were process noise existed.

It was under the assumption that there were process noises in the fabrication but not

contributed to circuit faults. Such assumption was more realistic for actual IC fabrication.

The goal of these experiments was to study the effect of BBD training of FFN under the

non-ideal environment. Those process noises were generated by varying those statistical

independent model parameters [She88] of lateral diffusion (LD), substrate doping density

(NSUB), bulk threshold parameter (gamma), and channel-length modulation (lambda)
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at most one percent. In these two experiments, the transient response of the amplifier

in a closed loop inverting circuit under various nominal and faulty conditions was used

to deVelop theexperTme-n-t_-datab_F0r-: t-hese n01syexperiments, only one pard.met-tic

fault were assumed but accompanied with all the process noises listed above. The noisy

experiments were: ....

Ezp. 7: Detect a 33% VariatVon_no_de thickness 0fall the transist0r with process noise in

the circuit by Observing the _t time:domain S_ep _e_pon_e. ::

Ezp.8: _Detect a 50%- v_riation in j_unc--t_o-n_lepth:o_ _ _he transistor __th process noise in

the circult by observing the circuit time-domain step response.

6 Data Generation

In each 0f the:experiments, two data distributions namely normally distr_uted data and

boundary _c_-_a as s_own m _ure 3 and 4, were used to bu:ld up the experiment

database. 12_0slmu_ated responses were=obtaineci via a Monte carlo s_mulafi0_n_for _each

data distribution. I)ata_for the b0un_dary band'distribution were:generated around the

transition boundaries. The sample data distribution of each of the experiment is similar

to Figure 3 and 4 with difference in variation percentage of the corresponding _gdel

parameter. And the corresponding circm_t=performance distribution _0m the two tiara

distributions were showed in Figure 5 and 6. 60 of the responses correspond to the fault

free condition and 60 correspond to the faulty condition. In other words, there were four

set of data consisting the experimental database for each of the experiments. The data sets

were data for faulty circuit with normal distribution, data for normal circuit with normal

distribution, data for faulty circuit with boundary band dlstribution, and data for normal

circuit with boundary band distribution. For a particular data distribution, 30 responses

from each class (normal/faulty) were used for classifier training. After training, classifier

were tested on the unseen data from the trained data distribution as well as the data from

the other type of d_stribution.

7 Classifier Training

As mentioned in the introduction, the objective of this study is to contr_tst the effectlveness

of a feedforward network classifier trained on boundary band data against that of tradi-

tional statistical classifiers trained on normally distributed data and feedforward network

as weu in the context of IC fault diagnosis. Classifiers used in this study were Gaussian

Maximum Likelihood Classifier, K-Nearest Neighbor Classifier andFee_forward Classifier'

Thirty patterns chosen from each the normal and faulty class of eachof the experimental

database for the training. For G1VIL_, tia_ning data was used to buiid-t-he corresponding

mean matrix, covariance matrix and the inverse of covariance matrix_ For KNN_training

data was used as the base for the classifier. For FFN, different types of training were used

=:
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to establish the discriminant function for the corresponding FFN. There were FFN trained

with non-noisy normal distributed data, non-noisy boundary band data, noisy normal

distributed data, and noisy boundary band data. For each trained FFN, only one of the

listed training method was used. Unlike traditional statistical classifiers, there are some

training criteria can be chosen. We trained our FFN based on the total sum of square

error of all the training data for a particular type of training or up to a preset training

epoch limit.

8 Classifier Computational Load Calculation

The performance of each classifier was not only measured in terms of predictive accuracy on

previously unseen data, but also the number of floating point operations (FLOPS) required

to construct the classifier, and the number of FLOPS required to perform a diagnostic

classification. Number of FLOPS computed for each of the classifier of each experiment

is based on the implementation algorithm. It is not the actual computer operation. Since

different software packages are used in the implementation of the classifier, it is not accurate

if they are compared based on the real CPU time. In comparing computation requirement

in testing , number of flops required per pattern are calculated with the equations 2y(n +

1) + 2z(y + 1) for Feedforward network, ran(3 + 2n) for Gaussian Maximum Likelihood

classifier, 3mnp for K-Nearest Neighbor classifier. (m: no. of class, n: no. of measurement

for each pattern, y: no. of hidden unit, z: no. of output unit, p: no. of pattern for the

training set in each class)

9 Experiment Results

In each of the experiments, the performance of the classifiers were evaluated for the pre-

diction accuracy of unseen data as well as the training and testing computational load.

The results of non-noisy experiments 1 to 6 are summarized in Table 2 and Table 3. The

results of noisy experiments 7 and 8 are summarized in Table 4.
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] Classifier Exp. ! Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 [I

Accuracy (unseen data - %)

FFN(Norm) 82.2 88.8 97.7 88 95.5 98.8

FFN(Boun) 99.4 97.2 98.8 97.2 98.8 96.6

FFN(ReBo) 98.8 97.7 100 98.3 99.4 97.2

GML N.W N.W N.W 50 N.W N.W

INN 85 96 98.3 50 96 I00

3NN 81.6 I00 98.3 53.2 I00 I00

5NN 80 96 98.3 50 96 100

Setup FLOPs (total)

FFN(Norm) 3e8

FFN(Boun) 3e8

FFN(ReBo) 6e7

GML N.A

KNN none

3e8 3e8 2.7e8 2.7e8 2.7e8

3e8 3e8 2.7e8 2.7e8 2.7e8

6e7 3e7 5.4e7 5.4e7 2.7e8

N.A N.A 5e4 N.A N.A

Diagnostic FLOPs (per pattern)

FFN(Norm) 1.5e3 1.5e3 !.5e3 1.4e3 1.4e3 1.4e3

FFN(Boun) !.5c3 1.5c3 1.5e3 1.4e3 1.4e3 1.4e3

FFN(Rebo) !.5e3 !.5e3 1.5e3 !.4e3 1.4e3 1.4e3

GML N.A N.A N.A 5.6e3 N.A N.A

KNN 1.5c4 1.5e4 1.5c4 1.3c4 1.3e4 1.3c4

N.A: Not=ap_plicable

N.W: Not workingforthe casedue tosinguI_tzcovariancematrix

GML: GaussianMaximum LikelihoodCqassi_er....

KNN: K-NearestNeighborsClassifier

F_Norm).'_Fe_ar_netwo_Ic-traine_l withnormal distributeddata ....

FFN(Boun): Fccdforwardnetworktrainedwithboundary band data

FFN(ReBo): Feedforwatdnetworktrainedwithboundary b_vd dataand reducedtrainingepoch

Table 2: ClassifierAccuracy and Computational Overhead of Exp. 1 to 6

m

m
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We trained three FFN for each of the experiments. There was FFN trained with normal

distributed data. In this training, the FFN (Norm) was trained up to a point that the tJJ

did not changed much with ongoing training. We determined the training stopping point

to be 2e5 epochs. FFN (Boun) was a FFN trained with the boundary band data around

the transition values. The same training stopping point was used as in FFN(Norm). The

third type of training used in these six experiments was a FFN trained with boundary band

data but with fewer training epochs. The stopping point of this training method depended

on the prediction accuracy of the trained FFN. We stopped the training whenever the

prediction accuracy of the trained FFN was similar to the FFN(Boun).

From the results of the experiments 1 to 6, summarized in Table 2, it shown that

* _ feedforwardnetworks had better performance than GML and KNN. Besides, in general,

FFN trained with boundary band data had better prediction accuracy than that of FFN

trained with normally distributed data. These results were observed as predicted in the

proposed method section. It was because the decision boundaries of the trained networks

were expected to set around the transition boundaries in the performance space. Moreover,

trained with fewer epoch, in general, it had a better prediction accuracy. It was because of

the nature of neural network. With fewer training, it might eliminate the trained network

from memorize the training data. In most of the cases, inverse covariance matrix of the

= training data for GML could not be computed without further data preprocessing.

__. To investigate the effectiveness of boundary band training, different types of training

were used in our experiment. There were FFN trained with non-noisy normal distributed

data, non-noisy boundary band data, noisy normal distributed data, and noisy boundary

band data. For each trained FFN, only one of the listed training method was used. The

results of FNN trained with these method of the non-noisy experiments are summarized

in Table 3. Experiments with process noises are summarized in Table 4.

Results shown in Table 3 and 4 were the prediction accuracy of FFN with different

training methods. Each trained FFN was tested on the unseen data from both of the

normal distributed database and boundary band database. As showed in Table 3 and 4,

there were two prediction accuracy for each of the trained FFN which tested on unseen

data from normal distributed database (labeled Normal) and from boundary band database

(labeled Boundary). It showed that the boundary band training did work on both non-

noisy and noise cases. In general, with fewer training epochs, FFN trained with boundary

band data performed as well as and even better in some case than FNN trained with

normal distributed data. And, there were a large training epochs and prediction trade

off of FNN trained with boundary band data. Using this method, there was very few

prediction degradation but with a significant reduction in computation load spending on

training.
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[I Frequency Response Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 II __
AccuracyIunseen data-%) with various distribution

FFN{Norm) trained with normally distributed data
Normal 95 96.6 98.3 96.6 96.6 98.3

Boundary 75.8 85 97.5 85 95 99.1
FFN(Boun) trainedwith boundary band data

Normal 99.1 98.3 99.1 96.6 98.3 96.6
Boundary 100 95 99.1 98.3 100 100

FFN(ReBo) train_ed with boundary band data

and reduced training epoch

Normal 98.3 97.5 100 98.3 99.1 97.5

Boundary 100 98.3 I00 98.3 i00 96.3

Setup Computation Load (Training)

FFN(Norm) trained with normally distributed data

Epoch 2e5 2e5 2e5 2e5 2e5 2e5
Flops 3e8 3e8 3e8 2.7e8 2.7e8 2.7e8

Load 100% 100% 100% 100% 100% 100%

FFN(Boun) trained with boundary band data

Epoch 2e5 2e5 2e5 2e5 2e5 2e5

Flops 3e8 3e8 3e8 2.7e8 2.7e8 2.7e8

Load 100% 100% 100% 100% 100% 100%
FFN(ReBo) trained with boundary band data

and reduced training epoch

Epoch 4e4 4e4 2e4 4e4 2e4 2e4
Flops 6c7 6e7 3e7 5.4e7 2.7e7 2.7e7

Load 20% 20% 10% 20% 10% 10%

E

i
m

z

w

Table 3: Comparison of Feedforward Network with Different Training of Exp.! to 6
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Transient Response Exp. 7 Exp. 8

Accuracy (unseen data-%) with various distribution

FFN(Norm) trained with normally distributed data
Normal 98.3 95

Boundary 94.1 94.1

FFN(Boun) trained with boundary band data
Normal 97.5 99.1

Boundary 98.3 96.6

FFN(ReBo) trained with boundary band data

and reduced training epoch
Normal

Boundary

99.1 96.6

98.3 95

Setup Computation Load (Training)

FFN(Norm) trained with normally distributed data

Epoch 2e5

Flops 2.7e8
Load 100%

2e5

2.7e8

100%

FFN(Boun) trained with boundary band data

Epoch 2e5 2e5

Flops 2.7e8 2.7e8
Load 100% 100%

FFN(ReBo) trained with boundary band data

Epoch 4e3 4e3

Flops 5.4e6 5.4e6
Load 2% 2%

Table 4: Comparison of Feedforward Network with Different Training

8

of Noisy Exp.7 and
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10 Conclusion

We studied the effectiveness of a feedforward network classifier trained on boundary data

against that of traditional statistical classifiers trained on normally distributed data and

feedforward network as well in the context of IC fault diagnosis. Eight experiments with

and without process noises were conducted. In this studyl experiment results once again

demonstrated, in general, that feedforward network out performed the traditional staffs-

tical classifiers namely Gaussian Maximum Likelihood classifier and K-Nearest Neighbor

classifier. Feedforward networks trained with boundary band data, it reduced the _raining

effort with only little prediction degradatlon. Experiment results showed that the proposed

boundary band data did improve the computational load needed for feedforward network

training.
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