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Abstract - The integration of modern CAD tools with formal verification envi-

ronments require translation from hardware description language to verifica-

tion logic. A signal representation including both unknown state and a degree

of strength indeterminacy is essential for the correct modeling of many VLSI

circuit designs. A higher-order logic theory of indeterministic logic signals is

presented.

1 Introduction

As higher transistor counts increase the complexity of VLSI circuits and the number of

potential test cases explode, formal verification methods promise value in design fault

exclusion. Before verification is accepted by design engineers, stand alone verification tools

that are used in the academic research arena must be integrated with the CAD tools being

used by VLSI designers. One major benefit of this integration is that VLSI designers will

enjoy increased confidence that abstract behavioral models are correct. There are several

reasons a VLSI designer may choose to use abstract behavioral models. In a top-down

design, a behavioral description may be used to simplify circuit understanding before the

implementation is designed. A behavioral model can be utilized as part of a simulation of

the entire system at an early date. After the circuit structure is designed and modeled,

the logic simulation of complex systems can become very slow. The simulation can be

made faster by replacing circuit blocks with the corresponding behavioral model. The

problem with these design approaches is that there is currently no way to relate the circuit

structural model to the abstract behavioral model. Having a verification tool available in

the VLSI CAD tool suite would allow these models to be related through mathematical

analysis.

The hardware description languages (HDL) used by VLSI CAD tools can provide the

link between these tools and the verification environment. Engineers can design using

the CAD tool HDL and this description can be automatically translated for use in the

verification tool. This paper examines the translation of logic signal representations from

the BOLT (Block Oriented Logic Translator) HDL, used in the NOVA simulation engine,

to the HOL theorem proving system.
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2 HOL

HOL is a general theorem proving system developed at the University of Cambridge [4,6]

based on Church's theory of simple types, or higher-order logic. Higher-order logic is suit-

able for specifying all aspects of hardware, inc!udin_g_ both structure and behavior [6,8].

In using higher-order logic, predicates are defined to represent both circuit primitives and

behavioral definitions [4]. First-order logic is well suited to represent simple combinational

circuits, but not sequential circuits. In higher-order logic, variables are allowed to range

over functions and predicates which make it suitable for representing sequential circuit

behavior [8]. HOL is noi a-n-aut--oma;ecl-theorem-prover butis more_thansimpiy a l_roof

checker, falling somewhere between these two extremes. Translat_on_rom _OLT cIescrlp-

tions to HOL predicates requires that HOL primitives be defined to correspond to the

BOLT circuit representations.

Symbols in HOL are represented by strings of ASCII characters. Conjunction, dis-

junction, negation, implication_ and equality are represented by /\, V, ", ==>, and

= respectively. Universal quantification (for all) is symbolized ! and existential quen-

tification (there exists) is ?. The function composition operator is o and the conditional

expression "if a then b else c" is symbohzed a => b I c.

3 Logic States and Strengths

Few modern VLSI circuitsare designed using only classicallogic gates [3,10].In designs

using pass-transistor,tri-statc,and pre-chargc logic,it is common for circuitnodes to bc

driven from multiple circuitelements. These multiple driversarc designed to have differing

drive strengths in order for one to dominate over another in cases of contention. The drive

strength can be considered to bc closelyrelatedto current drive (charge sourcing) capability

[7,2].The signal values represented in the NOVA simulation engine are an extension of

Bryant's latticetheoretic approach [7,11].In the latticetheoretic approach the elements

in the domMn of signalvalues represent the combination of logicstate,from the set True,

False, and Unknown; and a signalstrength. These signalvalues form a partiallyordered

set with their order based on strength dominance when circuitoutput values are combined.

While Bryant later abandoned the latticetheoretic approach [2] stating "while this

approach at firstseems very elegant,itcannot adequately describe the effectsof transistg_rs

in the X (Unknown) state," Cameron and Shovic have shown that the problem with the

Unknown state can be corrected by extending the domain of signalvalues to include some

degree of strength indeterminacy [3]. Thus, the signal values are extended to represent

both logic statesand a range of signal strength.

The I/nknown state can be the resultof a node connected to two drivers,one driving

to a True and the other driving to a False, neither driver having su_cient strength to

dominate the other; or simply a node whose voltage isnot yet known. Combining the cases

of "invalid"logic level and "valid but not known" into a singleUnknown state simplifies

the simulation algorithm but may make the simulator pessimistic since it will propagate

.ffi
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the Unknown state when resolving some circuit nodes[2].

We refer to the combination of state and strength information as STATES. The STATES

representation presented here is consistent with that presented in [3,10] except the total

number of strengths N, is extended to include a weakest strength, Nil, which represents a

node that is disconnected from all charge sources. By definition, a signal being driven by

the Nil strength must be at the Unknown state.

3.1 Representation of STATES

Given the set of states True, False, and Unknown and a fully ordered set of strengths

al, a2,..., and aN we can define STATES. The STATES corresponding to the states True and

False are represented as a triple Kbd where:

K is 1 or 0 representing the logic state True or False;

bd represents a indeterminate range of strengths where:

b is the strongest possible strength (al <_ b <_ aN-l) which sets a lower bound on

the strength of a signal that can overdrive this state;

d is the weakest possible strength (b < d < aN-l) which sets a upper bound on the

strength of a signal that this state can overdrive.

The STATES corresponding to the Unknown state are represented as a triple Xpq where:

X represents the Unknown state;

p is the strongest possible strength driving toward 0 (al _< p _< aN-l) which sets a lower

bound on the strength of a signal that can overdrive this state to a 1;

q is the strongest possible strength driving toward 1 (al _ q _< aN-l) which sets a lower

bound on the strength of a signal that can overdrive this state to a 0.

3.2 The Number of STATES

For N strengths the number of True and False STATES is:

TF_STATES(N) = 2((g - 1) ÷ (Y - 2) +... % 1) = (N - 1)(Y) (1)

For the Unknown state the number of STATES is:

X_STATES(N) = (N - 1) 2 ÷ 1 (2)

The plus one term in equation (2) represents the combination of Unknown state and

weakest strength, ajv = Nil. This STATE is referred to as Nil. Thus, the total number of

STATES for N strengths is equal to:

TOTAL:STATES(N) = 2N 2- 3N + 2 (3)
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Figure 1: Base Case Signal Lattice (N-2)

4 STATES Theory

A complicated algorithm for determining the result of combining _AT]_S is presented

in [3]. This algorithm is not satisfactory for use in HOL. We have developed a lattice

that describes the result of joining two signals, in this lattice theoretic approach to signal

strengths, the join (least upper bound) operation represents the resolution oi" contending

circuit elements [11].

The lattice structure is described through the notion of immediate superiors or covers.

_or two elements, a and b of a partially ordered set, a covers b _f and only if a > b and

there exists no element z of the partially ordered set such that a > z > b [1]. A list of all

of the elements and covers completely describe a lattice. The covers can also be used to

define a graph of the lattice. The vertices of the graph are the elements and the segments

of the graph represent the covers. If the graph is drawn such that whenever z covers _, the

vertex z is higher than the vertex y, it is called a "Hasse diagram" of the lattice [1].

4.1 Defining STATES Lattice Structure

Given the base case N : 2 (N : 1 is a trivial case of one single STATE, Nil) there axe four

STATES and no strength indeterminacy, meaning there is only a single value (0"1) within

the range of possible strengths. There are four covers and the lattice Hasse diagram is as

presented in [7,11], a simple diamond (Figure 1).

To extend a N strength Hasse diagram (lattice) to N + 1 strengths:

1. Add three STATES and four covers to form a new diamond at the bottom of the N

strength diagram by replacing Nil with X_rN_N, adding 0O'N_ and IO'NO" N each

covered by X0"tVO'N and placing Nil at the bottom of the diagram covered by both

00"N0"N and 10.N0.N.

2. For each M" = N to 2, by -1, add the following STATES and covers:



3rd NASA Symposium on VLSI Design 1991 10.2.5

(a) XdrM-IO'N covered by 0ffM_ltTN-1 and covering XO'MO"N

(b) XO'NO'M_I covered by lorM_l_rN_l and covering XO'MO'N

(C) OcYM_ldrN covered by XO'M_IO'N and covering OO'MO"N

(d) IO'M-ltYN covered by XO'NdrM-1 and covering lO'MtrN

4.2 The Number of Covers

The total number of covers for N strengths is equal to:

COVERS(N) = 4N 2 - 10N + 8 (4)

4.3 The Lattice Structure for NOVA

The NOVA simulation engine and BOLT HDL have been selected for this research so that

we may have access to commercial-scale designs written by nonacademic VLSI designers

while a translation tool to HOL is developed. In NOVA, N = 4 and _rl = a (active), _r2 = r

(resistive), _rs = f (float) and cr4 = Nil. Note that float > Nil and can be used to represent

signal levels at charged capacitive nodes. For N = 4, equation (3) yields 22 STATES and

equation (4) yields 32 covers. The Hasse diagram for the STATES and covers for NOVA

is shown in figure 2. In addition to identifying the list of covers required to define the

lattice structure in the verification logic, the Hasse diagram also provides a quick, visual

understanding of the resolution of joined STATES.

5 Implementing STATES in HOL

The HOL system includes a type definition package that allows the user to define new

types and prove theorems about essential properties of the new type. The type package

automatically carries out much of the necessary formal proof required for a new type

definition. Theorems about the new type are proven, rather than simply postulating

axioms for the new type, in order to avoid the introduction of inconsistency into the logic

[9]. A new type for signal values, called strength, is defined in I-IOL by enumeration of all

of the STATES. Properties proven about the new type include each value being distinct, an

induction theorem, and a case analysis (perfect induction) theorem. The STATES lattice

is defined by enumeration of the covers and the function join is defined to be the least

upper bound. Once the join function definition is complete, consistency of proofs that

utilize join are insured by formal proof of the lattice theoretic obligations [11] for the join

operation. These obligations are:

1. Idempotence. For all a STATES, join a a = a.

2. Commutativity. For all a and b STATES, join a b = join b a.

3. Associativity. For all a, b and c STATES, join a (join b c) = join (join a b) c.
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Figure 2: Signal Lattice for N=4 (NOVA)
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Figure 3: Memory Cell Schematic Diagram

4. Existence of bottom. For all a STATES, join a Nil = a.

5.1 STATES Abstraction Function

Typically a behavioral specification is defined in terms of boolean values. An abstraction

function is required to relate STATES, used in structural specifications, to boolean values.

STATES_ABS sig = ((sig=laa)\/(sig=lar)\/(sig=lrr)\/

(sigflaf)\/(sigflrf)\/(sig=lff)) => T I

((sig=0aa)V(sig=0ar)V(sigf0rr)\/

(sig=0af)\/(sigf0rf)\/(sig=0ff)) => F I

ARB

The Unknown STATES are assigned a value ARB, defined to be an arbitrarily chosen boolean

value.

6 Theory Demonstration

A static memory circuit cell, implemented with gate level and pass transistor primitives, is

used to demonstrate the STATES theory (Figure 3). Without a signal value representation

that realizes output dominance this circuit cannot be correctly modeled. Fundamental to

the operation of this circuit is that the output strength of pass-transistor M1 dominates

the output of inverter Inv2 to force node nl to the state of the input d while the gate g

is True (high voltage). The feedback inverter Inv2 acts to store the state, by dominating

the pass-transistor after the gate goes False, turning the transistor off.

6.1 The Circuit Primitives

The memory cell structure includes three predicate definitions; a pass-transistor element,

inverter elements, and the JOIN operation. Time is represented as a number (hum) stream

and circuit signals are defined to be functions of type num to type strength.



!0.2.8

The behavioral model of the cell is not defined for the gate input being at an unknown

state. A simplified pass-transistor model is used that defines that the signal at the drain

is equal to the signal at the source if the gate is True, else it is Nil.

NTRAN (g,,,d) =

! t.

d t = ((g t =laa)\/(g t =1at)\/

(g t =lrr)\/(g t =laf)\/

(g t =lrf)k/(g t =lff)) => stl

Nil

The inverter predicate has five arguments. The first three arguments are of type

strength and define the possible inverter output STATES. The first is the output STATES

for a True output, the second for a False output, and the third the Unknown state output.

The Unknown output value is derived from the str?ngest True and False strengths. The

fourth and fifth arguments are signal functions of type hum to type strength. The fourth

is the {nverter input and the fifth is the output.

INV ls 0s Xs (in,out)

! t.

out t =(((in t =laa)

(in t =lrr)

(in t =lrf)

((in t =Can)

(in t =9rr)

(in t =Orf)

\ICin t =i_)\I

\/(in t =laf)\l

\/(in t =1_z)) => os I

\/(in t =O_r)\/

\/(in t =0a_)\/

\/(in t =0f_)) => I, I

x, )

6.2 JOIN

The JOIN predicate performs two operations. It determines the resulting signal value of

combining circuit outputs by applying the j oin function. The second operation is related

to the sequential behavior of a charge storage node. The capacitance of a node may result

in a time delay when the node is driven to a new signal level. The delay time increases as

the strength of the driving signal decreases. This sequential behavior is modeled as having

a variable delay, whose length is based on the strength of the join function result. [5,7].

The Hasse diagram shows the relative strength of STATES and can be used to abstract

the delay values for individual STATES by segregating them into horizontal bands on the

diagram. All STATES within a common band have the same delay and the delay is longer

for lower bands. For cases where it is desired to model different delays for rise and fall

times the diagram can be segregated right from left also.

The demonstration cell is modeled as having two possible delays. When the pass-

transistor is turned on, the storage node at the join is driven by an active strength and

the delay is defined to be zero. When the pass-transistor is turned off, the storage node
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is driven by the resistive strength of the feed-back inverter and the delay is defined to be

One.

JOIN (s',s'_,s:num->strength) =

' t. let sig = join (s _ t) (s'' t) in

((Sig = 0aa) \/

(sig = laa) V

(sig = Xaa) \/

(sig = Xar) \/
(sig = Xra)) => (s t = sig)

(s (t+l) = sig)

6.3 The Structural Description

A BOLT description of the cell is:

MODULE Q .CELL G D;

BEGIN

N1

Q
NI

END;

.NTRAN G D;

.INVR NI;

.INVR Q (STR='RR');

The STR= ' 1_' parameter in the second INVR invocation defines the output strength of that

inverter as resistive. The default value used for the first invocation is active. The HOL

structural specification of the cell is:

cell_IMP (d,g,q) =

? nl nl' nl'':num->strength

NTRAN (g,d,nl')

INV laa 0aa Xaa (nl,q)

INV Irr 0rr Xrr (q,nl'')

JOIN (nl',nl'',nl)

/\
/\
/\

6.4 The Behavioral Description

When the gate of the pass-transistor is True the cell is writing the input and the output,

q, follows as the inverse of d. When the gate is False the cell is storing the previous data.

The HOL behavioral description is:
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cell_SPEC (d,_,q) =

(g t) => (q t = "d t)

(q (t+l) - q t)

6.5 The Cell Verification

Because the operation of the cell requires that the output of the pass-transistor dominate

the resistive strength output of INV2 and the pass-transistor is not an amplifier: there is a

validity condition that the signal applied to input d must be stronger than resistive. This

condition is required for proper circuit operation and is not simply_ Veri_c_at_o_n _tif_Ct.

Valid! (d)

! t.

(d t = laa ) \/ (d t = 0aa)

BecausethebehaveroftheceUis forAo-o-leanva- e-   nas-at-thegate,
there is a validity condition for the gate that it be either a True or False state. This

condition yields a 12 way case analysis in the proof, but is easily reduced to needing to

consider only the two cases of writing and storing.

Valid2 (g) =

! t.

(g t = laa) \/ (g t = lar) \/ (g t = irr) \/

(g t _ !af) \/ (g t = lrf) \/ (g t = lff) \/

(g t = 0aa) \/ (g t ,, Oar) \/ (g t = 0rr) \/

(g t " Oaf) \/ (g t = 0rf) \1 (g t = Off)

The verification of the cell entails proving that the cell structural description and

validity conditions logically imply the behavioral specification. The theorem proven is:

1- (Valid! (d) /\ Valid2 (g) /\ cell_IMP(d,g,q)) ==>

celI_SPEC(STATES_ABS o d, STATES_ABS o g,STATES_ABS o q)

7 Future Work

The theory of signal lattices presented in this paper is an important first step in linking

BOLT and HOL. Future steps include:

!. Developing and validating a set of HOL theories corresponding to the primitive com-

ponents in the NOVA library.

2. Writing a formal semantics for BOLT.

3. Embedding BOLT's formal se__m_antics in HOL.

These steps do not include work on translating NOVA behavioral models to HOL, a diffi-

cult, but necessary task.
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8 Conclusion

The first step in the integration of CAD VLSI design tools with a verification tool is the

translation of the HDL representations into the verification logic. A verification logic the-

ory has been presented for reasoning about an indeterministic signal value representation

based on a lattice approach. This work is necessary because the previous algorithm for

joining indeterministic signal values is not suitable for a verification logic environment.

The suitability of the lattice approach is demonstrated through the verification of a static

memory cell. The lattice diagram presented also quickly provides to users the result of

combining different valued indeterminate signals.
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Abstract - A formal specification of VLSI state machines based on a sequence

invariant architecture is presented. The behavioral description represents a

logical description of any synchronous state machine. The structural specifica-

tion represents an adoptive architecture developed using VLSI technology to

implement the state machine. This specification becomes a tool for future ver-

ification and specification of state machines using dedicated machines and/or

alternative technologies. The verification of the state machine is done in HOL_

a theorem proving system. Using HOL_ the verification shows analytically that

the circuit structure has the desired behavior.

1 Introduction

With the advancement of integrated circuit technology, the need for new methods of en-

suring design correctness is becoming more prominent. Simulation remains the dominant

method in use, but, recently, interest has grown in using formal logical analysis to show

the correctness of digital systems.

Formal verification of hardware involves using theorem-proving techniques to verify

that a stated behavioral definition of a circuit is a logical consequence of the structural

description of the circuit, i.e., proving that the structure of the circuit forces it to behave

as stated. This paper presents a formal specification and verification of a general state

machine. The specification describes the behavior and structure of the state machine. The

behavioral specification is a logical representation of a state machine. Using a particular

design in VLSI technology, a structural description based on the Sequence Invariant Ar-

chitecture is described. The structure clearly specifies how components are connected and

built to achieve the operation of the state machine. The verification shows, by analysis,

that the structural specification implies the behavioral specification using a theorem prov-

ing system known as HOL [1]. Hence, the VLSI architecture is capable of implementing

any state machine.

2 The HOL System

As described by Birtwistle and Subrahmanyam [3], the HOL system ('HOL' standing for

_higher order logic') is designed to facilitate the interactive generation of formal proofs. A

logic in which problems can be expressed is interfaced to a programndng language in which
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proof procedures and strategiescan be encoded. The combination enables deduction in

logic (in the sense of chains ofpfimitiveinference steps) to be produced by invocation of

programming constructs at a higher level of abs_iacthess.

The logic part of HOL is conventional hlgher-order logic. New types, constants and

axioms can be introduced by the user, and organized in logic theories. The programming

language of HOL is ML (for'recta-language').The type disciplineof ML ensures that the

only way to create theorems in the object logic is by performing proofs; theorems have

the ML type thin,objects of which can only be constructed by the application of interface

rules to other theorems or axioms.

3 Sequential Circuits Overview

Sequential circuits are categorized as either synchronous or asynchronous, depending Upon

whether or not the behavior of the circuit is clocked at discrete instants of times. The

operation of synchronous Sequenilal circuits (the topic of this paper) is controlled bya

synchronizing pulse signal called a clock puls e or simply a cloc_k. _ _ .....

Sequential machines are usually represented by state diagrams or state tables (flow

tables). A flow table has a row corresponding to every internal state of the machine and

a column corresponding to every possible input. The entry in row qi and column I,_

represents the next state produced if Im is applied when the machine is in state ql. Table

I shows a flow table for an arbitrary circuit with six-states and three inputs. Once the

flow table is constructed for a given circuit, a state assignment is performed. A state

assignment is the encoding of the states of the flow table with the internal state variables

(Y_,Y2, .... ,y,,). Table 2 shows the state assignment and the next state entries assignment

for Table 1. Finally, the next state equations are derived from the state assignment using

Karnaugh map techniques. We can also derive an equation that describes the output

behavior from the flow table.

3.1 SISM Overview

An adaptive hardware architecture has been developed [2],that enables the designer to

design any sequential circuitbased on the width of the machine w, and the number of con-

trolinputs 2",without a knowledge about the sequence to be incorporated. This adaptive

architectureis calleda Sequence Invariant State Machine (SISM) design.

With the $iSM realization,any flow table can be implemented without a change in the

hardware configuration. That isgiven _0,and I, a hardware circuitis easilyderived, that

can implement any state machine that has a maximum of 2-control inputs, and 2`0internal

states.

3.2 Architecture And Operation
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I1 12 I3

A C, 1]B,I A, 0

B D, 0 C, 1 B, 0

C E, 0 D, 0 C, 0

D F, 1 E,I D, 1

E A, 0 F, 0 E, 1

F B, 0 A,I '_ I

Table 1: General 6-states, 3-input flow table.

yl y2 y3
0 0 0 A

0 0 1 B

0 1 0 C

0 1 1 D

1 0 0 E

1 0 1 F

1 1 0 G

1 1 1 H

Table 2:

I, I_ 13

0 1 0, 1

0 1 1,0

1 0 0,0

1 0 I,I

0 0 0, 0

0 0 1,0

0 0 0, 0

0 0 0, 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

0 0 0

0 0 0

0 0 0

1 0 0

1 0 0

0 0 1

1 0 1

0 1 0

1 1 0

0 0 0

0 0 0

State Assignment for Table 1.

0 0

10

00

1 1

0 1

1 1

0 0

0, 0

Figure 1 shows a general SISM architecture, this architecture can be used to implement

one of the next state variables in Table 2.

I Y

Destination

State
Codes i

i
Input

Switch
Matrix

All

Next

States

I

]
Next Yi

...._-'-][ StateLogic

yi

Figure 1: General SISM Architecture.

The architecture contains the following components:

• The destination state codes are derived from the next state entries in the state

assignment table by inspection. For example, the destination state codes for state B

and state variable y_ are the next state bits Yi associated with state B. Therefore, the

destination state codes for state B are (000,110,101) under control inputs (/1; 12; I3)

and variables (yl;y2;y3) respectively. One way to implement those codes is to use

constants, that is, presenting ones and zeros at the input of the structure. Also, they

could be programmed into the structure using various memory devices [3].
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* The input switch matrix is combinational logic that produces all the possible next

state entries for each current control input.

• The next state logic consists of an independent path for each of the present states in

the state assignment flow table.

• The storage element is a D-FF that preserves the present state.

The operation of the architecture is as follows. The current control input selects the set

of potential next states that the circuit can assume (input column in the flow table). The

present state variables select the exact next state (row in the iiow table) that the circuit

will assume at the next clock pulse.

4 Formal Specification

The previous section presentecl a_description of the S_IVI architecture and operation. This

section presents the formal specii_cation of the SISM architecture. The behavioral specifi-
cation is introduced first and then a structural implementation is described.

W C CS(T)

DATA

SM DEVICE

CS(T+I)

T
CLR LD

Figure 2: General state machine device

4.1 The Behavioral Specification

A general behavioral description of all state machines can be specified by defining a pred_

icate that relates the inputs and outputs and defines the state transition. Figure 2 shows

a general state machine device. The behavior of the state machine device can be specified

by a predicate 5ism-spec, that is true only when the combination of the values of the

variables w, g, data, cir, ld; and the state variable cs is one that could occur on the cor-

responding input and output signals of the device. The variables are references to actual

signals and data as explained below.
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'w', "(:num)".
This represents the width of the state machine, i.e., the number of next state vari-

ables.

'g', "(: time --4 hum)".

This is the control input to the state machine. It is represented as function associated

to time. That is at time (t), the input (g) is the control input which is a number

from zero to I. Where I is the maximum number of control inputs.

'data', "(: hum ---+hum -_ hum ---+boot)".
This is the destination state codes for the entire state machine. It is represented as a

function associated with the width of the state machine and the llst of data for each

of the next state variables.

• 'clr',"(: time _ bool)".

This signal when enabled will forces the output values to be cleared to low.

'ld', "(: time ---* bool)".

This signal when enabled will load the input data to the D-ff and present it to the

output.

'cs', "(: time --* num ---* boot)".

This is the current state value. It is represented as function associated to time. That

is at time (t) this value will enable one path from the input to the output.

The overall behavior of the state machine is given by the following logic term:

sism--spec =

l-de! sisn_spec v g data elr Id
(es :num-->num-->bool) :

(V t:num, es (t+l) : (¢1r t -_ ZEROS ,,[

ld t -_ data (g t) (val . (cs t)) I

cs t))"

The predicates sism-spec asserts that the relationship between those values corresponds

to the way the state machine works in practice. That is, the next state of the machine at

time (t+l) is a function of the value of the data input and the current state at time (t).

4.2 The Structural Specification

An implementation of state machines based on the sequence invariant architecture is pre-

sented. Using tools available in HOL the structure of the SISM can be described by

specifying high level descriptions of the major pieces of the SISM device and combining

them so that they correspond to the actual structure. The structure of the SISM can be

represented by a predicate sism-imp with a definition as follows:
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(sisa_imp=

sism_imp w g data clx ldcs = (sism_inrp_re¢ w w g data clr idcs)"

The predicate sism-±mp-rec defines the structure of the circuit. The predicate is de-

fiued recurslvely on its width indicating the iterative structure of the circuit. The predicate
is defined as follows:

(sism_imp_rec =

"(sism_imp_rec 0 w g data clr ldcs = block 0 w g data

clr ldcs)

A

(sism_$mp_rec (n+l) w g data clr ldcs =

((sisaimprec n w g data clr ldcs) A

(block (n+l) w g data clr ldcs )))"

The predicate block gives the structure of a single slice of the circuit_Block is defined

by conjoln_ng t_he predicates that speedy the behaviors of each component with t_e logical

connective (A) and using existential quantification (3) to hide the internal signals. The

following logic term describes block:

block =

Fd,! block id w g data clr ld cs =
(3 outl out2.

(sel id w g data outl ) A

(mux v outl cs out2 ) A

(d_ff out2 ld clr (cs id)))"

In this definition the two internal lines (outl; out2) are hidden from the external

environment using the existential quantifier (3). The definition of block states that the

values which can appear on the external inputs and outputs of the SISM device are precisely

those which satisfy the constraints imposed by the predicates modeling the three modules

from which it is built. The modules that are used to define the predicate block are explained

next.

The Selector module The selector module is defined using predicates as a function.

The predicates that defines the behavior specification is a function as shown below,

SOl=

sol id w g data out =

V (t:time) line.

(line < (2 EXP (SUC w)))

(out line t) = (data id line (g t])");;
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WID G CS W CLR

D

OUT1

: -- SEL [ MUX

(CS ID)

LD

Figure 3: A block representing the SISM device

The selector is a device that is controlled by the control inputs. For each block there

are 2 _' selectors. Hence, 2_° outputs axe presented to the next device. The data input

to the selector are the destination state codes. The outputs are all the data selected by

the current control input. Referring to the definition and to Figure 3, the selector has

three external inputs and one internal output. Some of the variables are described earlier,

however the new variables are described as follow.

'id', "(:hum)".

This represents the current block of the state machine, i.e. if w=3 and id=l then

the current next state variable is the first variable in the SISM block.

• 'out', "(: hum -_ time --_ bool)".

This function represents all possible outputs for each next state variable under the

current control input.

The MUX Module The MUX module is a function that takes 2_' inputs and present

one value to the output based on the current state. The following predicate describes the

behavior of MUX:

IIIllX-"

I-d,! mux w input cs out :

(V t:time. (out t) : (input (val w ((ABS w cs) t)) t))"

);;

Referring to the definition and to Figure 3, the MUX module has two external inputs, one

internal input, and one internal output. The internal inputs and outpus are described as

follows.
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'input', "(: num _ time _ bool)".

This is the data provided by the previous module. It is a bit vector of length 2 _,

which represent all possible next state entries.

'outpt!t', "(: time _ bool)".

Thj's_ i_ the value selected by the current state as one of the next state variable at t_e
next clock pulse.

The D-ff Module The D-ff module is a memory device that present the input to the

output at the next dock pulse. The predicate that describes the behavior specification is

as follows:

d-ff=

kde ! d_ff _ ld clr q =

(V t:time . q(t+l) = ((c!r t) -_ F I

(1at) _ £nt I ql;))
A (q 0 = F)"

);;

Referring to the definition and to Figure 3, the following variables are defined,

a 'in',"(: time _ bool)".

This is the next state variab!e provided by the previous module to be presented to

the outpu_ at the next clock pulse.

'q', "(: time _ bool)". .....

This is the output v_ue wlfi_ch constitute one of the variables that when combined

with the other outputs from the other blocks, result in the current state.

5 Verification

The goal of the verificationisstated in logic as follows:

"V w g data car ld c,.

Sism_imp w g data clr ldcs

sism_spec e g (DATI_ABS e data) clr !d (ABS e ca)"

The goal states that the structured implementation implies the behavioral description of

the circuit, or, that the behavior follows from the structure. In the goal, D,tTA-ABS and

_B$ a,re two functions used to abstxact the signals w, data and cs which are defined at the

structural level to behavioral level signals.

The verification is approximately 60% done. The proof is carried out using induction

9_g the width of the SISM. HOL provides mechanical support for induction, rewriting, case

analysis and other necessary proof techniques.
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6 Conclusion

This paper presents the design for a SISM that is being proven to work correctly. This

is especially significant because the design of the SISM is very general. Future work will

entail tying the structural specification to the actual circuit and using this work to verify

specific state machines based on the SISM design.
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