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Abstract - There is recently an increased interest in logic synthesis using EXOR

gates. The paper introduces the fundamental concept of OrthogonaI Ezpansion,

which generalizes the ring form of the Shannon expansion to the logic with

multiple-valued (mv) inputs. Based on this concept we are able to define a

family of canonical tree circuits. Such circuits can be considered for binary

and multiple-valued input cases. They can he multi-level (trees and DAGs)

or flattened to two-level AND-EXOR circuits. Input decoders similar to those

used in Sum of Products (SOP) PLAs are used in realizations of multiple-

valued input functions. In the case of the binary logic the family of flattened

AND-EXOR circuits includes several forms discussed by Davio and Green. For

the case of the logic with multiple-valued inputs, the family of the flattened

my AND-EXOR circuits includes three expansions known from literature and

two new expansions.

1 Introduction

Although the EXOR gate exists in most VLSI cell libraries, there are no logic synthesis

systems that find optimized multi-level circuits using EXORs. The recently developed PLD

devices, such as Programmable Gate Arrays (Xilinx LCA 3000) [33], Signetics LHS501 [32],

Actel [7] or other [13], either include EXOR gates, or allow to realize them in the "universal

logic modules". Since the five input EXOR gate in Xilinx device has the same speed and

cost as, for instance, a five input OR gate [5], the new design methods are neeeded for

such technologies that win assume the usage of EXOR gates on the same full rights as

the AND and OR gates. Particularly, if a Reed-Muller [15,22] form has less terms than

a two-level AND-OR expression, this form should be used for Xilinx realization, and not

the SOP expression, as it is done nowadays.

The problem of finding the minimal generalized Reed-Muner (GRM) canonical form of

optimal polarity [14] (called also fixed-polarity Reed-Muller [9]), as well as the problem of

finding the minimal Exclusive Sum of Products (ESOP) of a Boolean function [2,10,27,28],

are the classical ones in logic synthesis theory, but exact solutions to them have been

proposed for only small functions [16,17].

Solving the above two problems, and creating other new methods of multi-level EXOR

circuits design is practically important for several reasons: (1) It has long been the ex-

perience of logic designers, that the EXOR circuits can be more economical than the

1This research was supported in part by the NSF Research Initiation Award for the first author
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conventional inclusive (AND-OR) normal circuits. This was also confirmed practically on

many practical examples, especially on arithmetic and telecommunication circuits [1,12].

It was also proven theoretically [26] on worst case and arithmetic functions. (2) The struc-

ture of EXOR circuits implementations is especially suitable for VLSI, optical, and some

other recent technologies. The RM and GRM forms have absolutely superior design-for-

test properties [6,11,21,23], unmatched by other realizations. This was not used in the

past since the EXOR gate realizations Were slow and area-expensive. With the arrival of

PGA devices this deficiency no longer holds and the theories developed for instance in

[6,11,21,23] should be practically used. (3) Currently, the widely used logic minimization

programs such as Espresso [3] and MIS II do not take into account EXOR gates in their

minimization processes which often causes nonminimal results. There is a growing indus-

trim interest among CAD logic synthesis tools users community to have a program that

would generate optimized circuits including EXOR gates [12], and such tools start to be

introduced to CAE market (for instance by Mentor Graphics Inc.). (4) The new tools for

ESOP synthesis are either heuristic [2,10,18,27,28] or produce exact solutions for general

ESOPs [16,17,20], but are so slow that can be applied only to small functions. For few

canonical forms included in ESOPs optimal programs exist for functions of about 10 vari-

ables [29,30,31]. It is therefore important to construct programs that will be faster than

the current exact minimizers and still be able to produce quasi-minimal sol uti0_ns.

A book by Davio [4] and a paper by Green [9] give information on the numbers and

properties of various canonical forms being specializations of binary ESOPs, which may

be useful to create efficient algorithms for them. In [19] we presented a family of multiple-

valued input ezpansions. In this paper we will present a subset of the family from [19], but

we will present the material in a more complete and systematic way. We will introduce

new canonical binary and multiple-valued forms and expressions. Forms, Directed Acyclic

Graphs (DAGs), Trees and expressions obtained by the introduced here tree searching

methods will be all called ezpansions. The ultimate goal of the research reported here is

to create synthesis programs, exact and approximate, for all known and some new forms

being subsets of binary and multiple-valued input ESOPs.

2 Binary Generalizations of Reed-Muller Forms

A Reed-Muller (RM) ezpression (for binary logic) is an exclusive sum of products of pos.

itive (non'compqemented) input variables. A Negative Reed: Muiler (NRM) ezpress'ion is

an exclusive sum of products of negative (complemented) input variables. Both these

expansions are called Single Polarity Reed-Muller Forms.

Definition $.1. The literal zi c is a variable z; in either positive ( z_ ) or comple-

mented ( _ ) form.

Let us consider the foUowing form:

where: gl =0or 1, andzi ¢ = zi or Zi.
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Definition _._. By a Generalized Reed-Muller Form (GRM) one understands a form

1 in which each variable can be complemented (negative) or not complemented (positive),

but can not stand in both forms.

Such forms are canonical, which means that only one such form exists for every polarity

of variables (there are 2 '_ such polarities for a Boolean function of n binary inputs, which

means that there are 2" corresponding GRM forms). Applying the principle of duality to

all presented forms one gets the dual forms: the system (@, .) is replaced with the dual

system (®, +). All results of this paper, after applying the principle of duality to them,

hold in the dual system as well. Let us observe that the circuits generated for both systems

can be implemented using EXOR and NOR gates or EXOR and NAND gates.

By "flattening" we understand applying the Boolean rule, a(b (9 c) = a b _ a c.

Flattening is used to convert trees and multi-level expressions to two-level expressions,

such as Reed-Muller forms, or ESOPs.

The well-known Shannon expansion for the case of ESOP expansion is as follows:

f(Xl,...,Zl,...,Xn) :

e, f(_,,...,_,=0,...,_.) • _,. f(_,,...,_,= 1,...,_,) (9.)

By applying laws_ - 1 _ aanda = 1 _ aonegets:

1(_,,...,_,, ...,_.) :

f(_,,...,_, = 0,...,_,) • _,.[/(_,,...,_, = o,...,_,,) • f(_l,...,_, = 1,...,_,)] (a)

and

f(_,,...,_, ...,_,,) =

f(;gl,...,;gi : 1,...,X,_) • _i'[f(_Cl,...,;gi =O,...,Xn) e f(xx,...,xi = 1,...,z,)] (4)

In the short form:

f = _,. f., • e,. f,, (5)

f = f,, • _, [/., • f,,] (o)

f = f., • e,. [/., • /_,] (7)

Let us observe that these expansion formulas have been applied by several authors for

the synthesis of GRM forms for completely specified functions [4]. Davio [4] and Green

[9]use them as a base of Kronecker Reed-Muller (KRM), P_eudo-Kronecker Reed-Mutter
(PKRM), and Qua_i-KroneckerR_ed-Muner (QKRM) forms (Green uses also trees for
better explanation). If only rule 6 is used repeatedly for some fixed order of expansion

variables, the RM Trees are created, which correspond to RM forms after their flattening.

If for every variable one uses either rule 6 or rule 7, the GRM Trees are created, from

which GRMs are obtained by flattening (which proves in other way why there is 2'_ of such

forms). If for every variable one uses either rule 5, rule 6, or rule 7, the KRM Trees are

created, from which KRMs are obtained by flattening (which proves in other way why there

is 3" of such forms). If rules 5, 6 and 7 are used, but in each subtree there is a choice of a
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rule, the PKRM Trees are generated from which PKRM forms are obtained by flattening.

Now, if additionally we allow the expansion variables to have various orders (but the same

in the entire tree), one obtains the QKRM Trees, and PKRM flattened forms, respectively.

One can now see that a further natural generalization..... is to allow various orders of variables

in subtrees of QKRM trees to create an even wider family of trees. There are two ways of

generalizing those forms for the logic with multiple-valued inputs. One was shown in [19].
The other one will be presented here.

3 Generalizations of Reed-Muller Forms for the Logic

with Multlple-Valued Inputs

Definition $.I. A multiple-valued input I two-valued output, completely specified switch-

ing function f (multiple-valued function, for short) is a mapping: f(Xl, X2, ... , X,):

P, x P2 x ... P, _ {0,1}, where X_ is a multiple-valued variable, P_ = {0, 1, ... , Pi

- 1} is a set of truth values that this variable may assume. This is a generalization of an

ordinary n-input switching function f: {0, 1} n --, {0,1}.

Definition $._. For any subset Si C_ Pi, Xi s_ is a literal of Xi. The set of values Si will

be called the polarity o] literal Xi s_. The literal Xi s_, where Si E Pi is defined as follows:

Xi s_ = 1 if Xi E Si; and Xi s_ = 0 otherwise.

Ezample g.1. For values 0,1 or 2 of a 5-valued variable X, the literal X °,xa equals 1.

For values 3 or 4 of a 5-valued variable X, the value of the literal X °an equals 0.

Definition 3.$. A product ofliterals, X1 s' X2 s2 ... X,, s" , is referred to as a product term

(also called term or product for short). A sum of products is denoted as a (multi-valued

input) sum-o/-products ezpression (SOPE).

Ezample 8._. 2-bit decoders have pairs of primary inputs of the function as their inputs.

Assume pairing of variables X1 = (zi, z_). The corresponding 2-bit decoder has two input

variables; zi and zj, and 22 = 4 outputs: zi + z-j, zi + zj, zi + i_, Zi_ 2 zj. Those

outputs correspond to the following literals of variable XI : X1 °'I'2, Xx °'a'3' X1 °'2'3, Xa x'2,3,

respectively. :: : :

Switching functions with multiple-valued inputs, two-valued outputs, find several ap-

plications in logic design, pattern recognition, and other areas. In logic design, they axe

primarily used for the minimization of PLAs that have 2:bit decoders on the inputs. A

Programmable Logic Array (PLA) with r-bit input decoders directly realizes a SOPE of

a 2"-valued input, two-valued output, function [25]. Such decoders can be also used in

any other realization of the logic with multiple-valued inputs, like multiple-valued input

ESOPs [18,27]. A simplified form of such decoders was used in [29,30,31] in the realization

of Multiple. Valued Input Kronecker Reed-Muller Forms (MIKRMs). ItwiU be als0 used

in the "fixed-polarity" Multi-Valued Input Kronecker Reed-Muller Trees (MIKRMTs) that

will be introduced here. This simplification consists in creating a simplified decoder with

2" - 1 outputs for r input signals. The set of outputs of the simplified decoder is a subset of

functions (all but one) realized by a standard decoder. For instance, for a 4-valued input

signal X one needs arty three outputs of a standard decoder from Example 3.2.
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In the case of binary-input logic, each variable zl from a GRM form can have one of

two possible polarities, 0 or 1. The notation used for binary functions is: zl ° = £i, zi 1 =

zi. Let us observe that if two polarities were available for even a single variable, then the

ESOP expression including llterals of both polarities would be not canonical, for instance

z and 1 $ _: would represent two different expressions for the same function f(z) = z.

The question arises, how to create canonical generalized Reed-Muller forms for multiple-

valued input logic. Methods were shown in [19,29,30,31]. Here we win present another

method, that allows for more general interpretations. It is next used to create the faro-

fly of canonical forms and trees. Let us first observe that in a logic with a pl-valued

input Xi there exists pi different single logic values: for variable Xi one can create pi

different literals with arbitrary single-value polarities. It is obvious that if we will take

all those literals to the ESOP expression, then there will be more that one way to de-

scribe any Boolean variable function of a single variable. If a single literal from this set

of literals is removed, then the remaining literals describe any single-input function in an

univocal (canonical) way. For instance, for a p-valued variable X one has the literals:

Xi0, X h, Xi2, ... , Xip -_. Removing any one of them, say X 2, one gets the following

llterals: X °, X 1 , X 3 , X 4 ,..., X p-l- Such literals will be called allowed literals. Literal

X 2 is univocally created as 1 _ X ° _ X 1 @ X _ • ... _) XP-1. It can be proven [29,30,31]

that for a GRM expansion one can take any p-1 single-valued literals, and moreover, any

p-1 literals that form an orthogonal polarity matriz. For instance for p=4 one can have the

following set of allowed literals: {X °'1'2, X °'1'3, X°'2'3}, which is described by a polarity

matrix:

PM(X) = 1 1 0 1 = X °'_'3 (8)
1 0 1 1 X °'2'3

It is assumed that logic value 1 (universe) is available. This corresponds to a literal with all

possible values, which in turn means a row of all ones in the "expanded" polarity matrix.

The orthogonal expanded polarity matrix includes also a row of ones which corresponds

to the universe 1. For the above example the expanded polarity matrix is:

EPM(X) =
1110]

1101

1011

1111

XO,1,2

XO,1,3

XO,2,3

XO,1,2,3

X°'l'2 1

XO,l,3

X0,2,3

1

(9)

Let us observe that all possible literals can be created by exoring rows of this matrix.

The Ezpanded Polarity Matriz of variable Xi is also called polarity of this variable. Let us

observe that there are the following expanded polarity matrices of binary variables:

POLARITY-2-1-A: EPM(X)= XO = 1 0

lPOLARITY-2-1-B: EPM(X) = X_ = 0 1

1POLARITY-2-2: EPM(X)= X_ = 0 1
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Let us observe that when all variables are in polarity POLARITY-2-1-B the function is

in the binary Reed-Muller form. When all variables are in polarity POLARITY-2-1-A the

function is in the binary Negative Recd-MuUcr form. When all variables are in polarity

POLARITY-2-2 the function is in the binary canonical AND-EXOR minterm form: When

each variabie is either in polarity POLARITY-2-1-A or in polarity POLARITY-2-1-B, the

function is in a GRM form. Applying expansions of variables according to POLAI:tITY-2-1-

A or polarity POLARITY-2-2, we obtain a new (mixed polarity) canonical form. Similarly,

applying expansions of variables according to POLARITY-2-1-B or polarity POLARITY-

2-2, we obtain another new (mixed polarity) canonical form. Applying expansions of

variables according to POLARITY-2-1-A, POLARITY-2-1-B or polarity POLARITY-2-2,

we obtain the Kronecker Reed-Muller canonical form [4,8]. The concept of the polarity

matrix will allow now to generalize the concept of canonical trees and forms to the logic
with multiple-valued inputs. _ _ ...... :: ..........

Any form in which a_ variables are in the same polarity is called a Multiple-Valued

Input, Binary Output Restricted GRMs (MIRGRM) form. Such form is canonical since the

expansion is Unique for each of its variables. It can be shown that for a logic with 3-valued

inputs there are 29 various polarities, and 29 MIRGRMs. The number of MIRGRM forms

for a logic with p-valued inputs can be calculated from the known mathematical results on

the number of orthogonal zero-one matrices. Assuming that universe 1 is available (which

is reasonable for practical reasons), expansions that use row of ones in expanded polarity

matrix are more interesting. Under such assumption, some examples of sets of allowed

literals for a 4-valued input variable X are: (X °,a,2, X°,l, 3, X',2,3}, {X1,3, X2,3, X3},

{X °'2, X °'a, X°'1'2}, {X l's, X _'s, Xl'_'s}. It can be easily checked that for all those sets

a complete set of all literal values can be obtained from other allowed literals by exoring

rows of the expanded polarity matrix. There are examples of using switching functions

with such literals for practical circuits such as adders [29,30,31].

Reed-Muller forms are extremely easily testable [6,21,23]. We have proved in a forth-

coming paper that also all the generalized binary (and even multiple-valued) Reed-Muller

forms discussed here have very good testability properties. Among MIRGRMs for 4-valued

logic especially preferable is the form which corresponds to the set of allowed literals:

{X l's, X 2's, Xl'2's}, since the decoder is very simple - a single OR gate: zl = X l's, z_ =

X 2,s, z1 + z2 = X 1'2'3. The test generation for this form is easy (it uses an adaptation

of methods from the literature). It minimizes the total layout area comparing to other

decoders, because of small area of the OR gate.

Definition $.4. The set of allowed literals for a p-valued variable X is a set with p - 1

elements whose corresponding polarity matrix is orthogonal.

Definition $.5. Allowed literal is a literal with the set of values corresponding to a row
of an orthogonal polarity matrix.

Definition $.6. Polarity vector PV = [PM1, PM_, ...,PMn] is a vector of polarity
matrices of input variables.

Definition $. 7. By a Multiple-Valued Input Kronecker Reed-Muller (MIKRM} EzpreJ-

sion for a polarity vector one understands an exclusive sum of products in which all

(multiple-valued) literals are allowed Iiterais for this polarity vector.
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It can be proven [31] that MIKRM expression is canonical (which means that if for each

variable a single polarity is selected, then there exists only one MIKRM expression for this

set of variables and their corresponding polarities). It results directly from the fact that

for each of its input variables there exists a unique expansion. Therefore we will refer from

now on to a MIKRM form, remembering that there are many such forms for a function.

Since for ternary variables there are 29 polarities, there are 29" MIKRMs for a function of

n ternary variables. If the universe is not a row of an EPM(X) then all terms of MIKRM

need to include literals of variable X. This is of course of only theoretical interest, since in

the existing technologies the universe (logic constant 1) is available at no cost.

As we can see, the MIKRM form is a generalization of the concepts of GRM and KRM

forms. It can be observed that there are no separate generalizations of GRMs and KRMs

for the logic with multiple-valued inputs.

It results from the above definitions that the MIKRM class is properly included in the

ESOP class. The introduced above concepts and definitions will be now illustrated with

an example.

Ezample 3.3. Assuming 4-valued input variables X and Y, the expression:

f(X,Y) = 1 @ X °'1'2 yO,1,2 (3 X °'1'3 y2,3 (3 X1,2,3 y2,3 (3 xO,2,3 y1,2,3

is an ESOP but it is not a MIKRM form because there exists the variable X that has

four different polarities, while only three polarities are allowed for it. The equivalent

MIKRM can be obtained by the replacement of the fourth literal of variable X by an

EXOR combination of its another literals:

f(X, Y) = 1 (3 (1 (3 X °'''3 (3 X ''='3 (3X °'2'3) V °'''2 (3 X °'''3 y2,Z (3 XX,_,3 y2,3 (3 X0,2,3 V,,2,s.

The rule X °'1'2 = 1 (3 X °'1'3 (3 X 1'2'3 (3X 0'2'3 can be written as: 1111(31101(30111(31011 =

1110. By using the "flattening" Boolean rule the expression f(X, Y) can be now converted

to the exor of products form:

f(X,Y) = 1 (3 yO,1,2 (3 X °'1'3 yO,1,2 (3 X 1'2'3 yO,1,2 (3

X0,2,3 y0,_,2 (3 X0,X,3 y2,3 $ X1,2,3 y2,3 (3 X0,2,3 y1,2,s.

As we can easily verify, this last form is a MIKRM, since all literals are now allowed, and

PM(X) = 0 1 1 1 , PM(Y) = 0 0 1 1 .

1 0 1 1 0 1 1 1

4 The Orthogonal Expansion for Multiple-Valued In-

put Switching Functions

Let us assume that a Boolean function in a form of ESOP is represented as a list of terms

called ARESOP. In particular, it can be a set of minterms, or a set of disjoint cubes
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representing both a SOP and an ESOP. Our algorithms, however, can assume arbitrary

ESOP, for any kind of orthogonal expansion.

Let us assume that given :is a vector of ezpanded polarity matrices:

PV= [PMI,PM2,...,PM,].

To performan e ansion of an  SOV AaESOP respect to an exp=aed polarity
matrix PM(X_) of variabie X_, one has _o convert every literal of variable X_ in all cubes

from the ARESOP to an EXOR combination of literals that are allowed for this polarity

(a universe (a vector of ones) is treated as an  0wed literal as well). If a cube CUB of
ARESOP has no literM Xl s and the universe is absent from the expanded polarity matrix,

cube CUB should be first represented as 1 • CUB, and next the universe 1 from it should

be converted to the EXOR combination of literMs allowed for variable Xi. (This is a

gener_zati0n of a binary rule a = _ _) ab). It results from the orthogonal properties

::0_ the expanded polarity matrix that such conversion for variable Xi exists and is unique.

Next a one level of flattening is executed and the expression is rearranged to the form with

all allowed literals factorized. Below we will illustrate the expansion on an example of a

function with ternary variables.

Ezample _.i.

1. Given is a llst ARESOP of disjoint cubes corresponding to expression:

X°,IY ° @ X1Y x,2 _ X2y 2.

2. One has to find expansion with respect to variable X, with allowed literals 1, X °,1,

X °'2. The result of conversion (substitution)is: X°,iY ° (3 (1 _ X°'2)Y _,2 _ (1 @

X°a)y 2.

3. After flattening: X°aY ° @ yL_ @ XO,2yl,_ (_ y2 _ Xo,iy2.

4. After factorizing the allowed literals: X°,'(Y ° (9 y2) @ XO,2(y,,2) _ l(y,.2 @y2).

In the next stage similar expansion is done for variable Y. The expansion uses the

respective expanded polarity matrix EPM(Y).

Two computer-oriented efficient algorithms to perform this kind of expansion for flat

forms are given in [29,30,31] and illustrated with examples there. They do not use flattening

and factorizing, however, they cannot be also applied to create tree expansions."

Below we will introduce the basic concept of EXOR type Shannon expansion for the

my logic. As it is well-known, the _hannon expansion theorem has been generalized by

Rudell [24] for the my logic. His expansion is of AND-OR type, to be used for my SOP

synthesis. On the other hand, three generalizations of Shannon theorem for Boolean rings

are known [4,9] (rules 5,6 and 7 in section 2). ttere we =will formulate an expansion that

generalizes both Rudell's and Davio's expansions: it is in terms of AND-EXOR expansion,

and it is for my logic.
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It can be derived that the orthogonal expansion of function f with respect to multiple-

valued input variable Xi of expanded polarity matrix EPM(Xi) can be expressed by the

following formula:

f = _ f_,s_ X, s_ (10)

Xi s_ E EPM(X,)

where the values of fx, s¢ are calculated as follows: [fxs,] T = [fx,.j] T [NP]-';

[fxS,] is a vector of single-llteral orthogonal expansions of literal X_ sj, j = O, ...,p -

1; [fxi.j] is a vector of single-literal standard expansions of single-value literal

Xi, (Xi = j), j = 0,...,p- 1; [A] r means matrix [A] transpose; [A] -1

means matrix [A] inverse; [NP] is a normalized polarity matrix, which relates polari-

ties of multiple-valued input literals to single-value literals.

Instead of proving this expansion for a general case we will sketch the proof using

another example.

Ezample 4.f2. The expanded polarity matrix for ternary variable Xi is:

ix0][101]EPM(X,) = X °'' = 1 1 0 (11)
X 2 0 0 1

According to formula 10 the orthogonal expansion for EPM(Xi) is:

f = fx,°. 2 Xi °'2 @ fx?.' Xi °'1 $ fx, 2 Xi 2. (12)

We will derive the values of fx,o.2 , fx, o., , and fx_2. It holds for non-overlapping literals

[24]: f - fX,.o X_ ° + fx,., X_ x + fx,.2 X_ 2 which, with respect to the disjointness

ofX_', Xd, s#r, gives: f = fX,.o X_ ° • fx,., X_ _ @ fx,._ X_ _. Then:

f = fx,.o X, ° • fx,., X, 1 $ fx,., X, 2 = fx, o._ X, °'2 • fx, o., X, °'' • fx,, X, 2 (13)

f = (fx, o,, X, ° • fx?. 2 X, 2) • (fx, o., X, ° @ fx,o. , X, _) @ fx,* X, 2 = (14)

= (fx,o,2• fx,o,,)x, ° • x,' (fx,o,, • fx,,)x?
In matrix form, the equation 13 becomes:

[fx,.o Ix,., fx,., ] Xi _ = [fx,*,' fx, o., fx, 2 ] X, °'' (15)

Xi 2 Xi _

The relation between the disjoint and non-disjoint literals is given be the equation:

Substituting

[fxi,0

Xi0, 2
X_ °'1 = [NP]

X_ 2

16 to 15 one obtains:

fx,,, fx,,, ] x,' =
Xi 2

x,°]X_ _

Xi 2
,oi][x o1 1 0 Xi _

0 0 1 Xi 2

I/x/0, f xio, f x_ ]

1 0 1

1 1 0

0 0 1
x,0]
Xi 2

(16)

(17)
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/,From there:

[/x,°., /x,°., /x,2 ] = Ix,., /x,.2 ]

1 0 1

= [fx,,. fx,,l .fx_,2l 111 =
001

Formula 18 gives the values fx.°,_ ,

:: (

101
110

001

-i

[ /X,,oe /X,,, /x,,, /x,,°m/x,,, $ /x,,2] (is)

fx, o.l , and fx,2 to be substituted to formula

12 in order to calculate the orthogonal expansion (End o[ Ezample).

It can be easily checked by substltuting respective expanded polarity matrices to for-

mula 10 that the expansions 5 - 7 and the RudeU's expansion are particular cases of

this new expansion. This method can be also easily generalized for incompletely specified

functions ...................... - : ::

. The orthogonal expansion applied in some restricted way to a multiple-valued input

ESOP creates a family of canonical tree expansions analogous to those for binary

logic.

, Applying the expansion uniformly in a tree for a fixed order of expansion variables

of the same polarity one obtains the MIRGRM Trees that are the mv counterparts

of binary Single Polarity Reed-Muller Trees.

o Applying the expansion uniformly in a tree for a fixed order of expansion variables

0f various polarities one obtains the Multiple-Valued Kronecker Reed-Muller Trees

(MIKRM Trees) that are the my counterparts of binary GRM Trees and Kronecker

Reed'Muller Trees.

4. Applying the expansion in a tree for a fixed order of expansion variables, but having

various variable polarities in different sub-expressions (sub-trees) one obtains the

Multiple- Valued Pseudo-Kronecker Reed-Muller Trees (MIPKRM Trees) that are the

my counterparts of binary Pseudo-KroneckerReed-Muller Trees.

5. Applying the expansion in a tree for all possible but fixed orders of expansion vari-

ables, and having various variable polarities in different sub-expressions (sub-trees)

one obtains the Multiple- Valued Quasi-Kronecker Reed-Muller Trees (MIQKRM Trees)

that are the mv counterparts of binary Quasi-Kronecker Reed-Muller Trees.

6. Applying the expansion in a tree for all possible orders of expansion variables, having

various orders in various sub-trees, and having various variable polarities in different

sub-expressions (sub-trees) one obtains a new family of canonical trees.

7. The method can be apphea with little modification to multi-output functions: it

is applied to each function separately. The logically equivalent sub-trees are be

combined, which leads to DAG circuits. This transformation preserves the canonicity

of the tree circuits.

z
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8. The trees from all above new families of canonical trees can be flattened to respective

canonical mv forms. This leads to MIRGRM forms, MIKRM forms, MIPKRM forms,

MIQKRM forms, and new mv canonical forms, respectively.

A more detailed characteristics of the above expansions, new mv expansions and com-

puter algorithms to create them will be included in our forthcoming paper.

5 Conclusion

In this paper several well-known canonical forms have been generalized for the logic with

multiple-valued inputs. An Orthogonal Expansion Theorem has been also formulated,

which plays that fundamental a role in those expansions as one played by the Shannon

Theorem in inclusive logic and the three Boolean ring expansions for the binary forms.

Since the Shannon theorem has several important application in tautology, complementa-

tion, implicants generation and many other areas, and the ring expansions are fundamental

to EXOR circuits theories, we expect this theorem to play also a fundamental role in the

multiple-valued logic.
The reader must bear in mind that the expansions proposed here relate to trees and

not "flat" forms. For instance, the GRM forms are independent on the order of variables,

but the respective GRM trees do depend on this order. Therefore, investigating expansions

with changing the order of variables has practical sense only for some types of expansions.

Since several expansions obtained by changing the order of variables produce the same

"flat" form, counting of several forms can be difficult, as already observed for Quasi-

Kronecker forms by Green [4]. It is even more so for our forms, where different orders of

variables in subtrees are possible.
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