
3rd NASA Symposium on VLSl Design IDDI

N94-1S3' 6
12.1.1

Asynchronous Sequential Circuit Design
Using Pass Transistor Iterative Logic Arrays

M. N. Liu, G. K. Maki and S. R. Whitaker

NASA Engineering Research Center

for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - The Iterative Logic Array (ILA) is introduced as a new architecture

for asynchronous sequential circuits. This is the first ILA architecture for

sequential circuits reported in the literature. The ILA architecture produces

a very regular circuit structure. Moreover, it is immune to both 1-1 and 0-0

crossovers and is free of hazards. This paper also presents a new critical race

free STT state assignment which produces a simple form of design equations

that greatly simplifies the ILA realizations.

1 Introduction

A major goal of modern Very Large Scale Integrated (VLSI) design is to produce a structure

that consists of similar, if not identical, modules. With such a structure only one module

needs to be designed and then can be replicated to realize the final circuit. Very few

design procedures have been advanced for sequential circuits that produce structures that

are easily realized for VLSI implementations.

This paper introduces an Iterative Logic Array (ILA) architecture for the realization of

asynchronous sequential circuits. With the ILA architecture, an asynchronous sequential

circuit can be built in a very regular form with a single type of ILA module as a build-

ing block. Furthermore, the ILA asynchronous circuits have some unique features, such

as immunity to both 1-1 overlapping and 0-0 crossing, tolerant of function hazards and

immunity to input bounce. The fundamental mode operation is still required in the ILA

asynchronous sequential circuits.

To further simplify the circuit of ILA module, a new state assignment has been devel-

oped to generate a new form of design equations (the simple term equation). In the simple

term design equations, each coefficient is simply a state variable or a constant, instead

of the random sum-of-product expression found in a traditional design equation. That

simplifies the basic ILA module to a simple pass logic multiplexer.

2 ILA Architecture

Iterative Logic Arrays (ILA) has been described in the literature for quite some time [1,2].

An ILA circuit consists of an array of identical cells. Generally, as shown in Figure 1, each

ILA cell contains two sets of input signals. One set of inputs are applied in parallel, while

12.1.2

Serial
Input

Parallel Input

II'-'l

Cell 1

, t Serial

! ,• Cell n Outputz CeU_ i ' ! -I
!

Figure 1: A slice of ILA circuit

Present state
output

BufferQ

State Variables

!

11 Ix /_ 12 I. A
Next state i /

....... , r - " - r i

1_y' s 0U/--_ s s_ 0_A_......_ s sN 0_2

d r Q 2t°lmux 1__:: ilO ,_::::1Q 2t°lmux [i:'

i

ISt_e I ', ISt|ie I ', : ,,

IL°'ieI i IL°ie[i , ,
. j ., -- ,!: ,l '

............. '' , :" _.--' "1
I I

Figure 2: The overall I L A architecture. .

the other set of inputs are driven by adjacent cells. Signals normally propagate in only

one direction between cells, and outputs are derived only from the seriM outputs of the

last cell. This paper presents an ILA architecture for sequential circuits in which the next

state of each state variable is generated by a slice of concatenated ILA cells. A sequentiM

networ_]s t_aen constructed by piaclng the I LA. slices side by side. The function of a flow

table is implemented by interconnecting ILA cells and the input states.

The basic ce_ of an ILA sequent_a/network consists of a 2-to-1 multiplexer (MUX) and

a next state forming logic. A MUX cell has a select llne S, its complement _ and two data

inputs I0 and 11, such that Q= $*!l+S.Io--

The simplest way to implement the iVIUX _nction is to use a pass transistor circuit.

Basically, the pass transistor MUX, excluding level restoration logic, is a module of two

pass transistors, which functions as two simple switches. Design considerations, such as

level restoration, are assumed to be handled by the output buffers. The circuit design

considerations havebeen discussed in [3,4,5].

The overall architecture for the ILA sequential circuit is shown in Figure 2 wl_ich

implements the next state equation

Y_= £1Ix +/_2h +... +/,,I,,. (1)

E

m

=

3rd NASA Symposium on VLSI Design 1991 12.1.3

Theorem 1 The architecture depicted in Figure _ is a proper model for an asynchronous

sequential circuit.

Proofi It is assumed that an STT assignment is used and the logic equations are defined

in Equation 1. Let the present input be Ip, which means that only MUX cell p passes

the next logic state f_p to the buffer. Therefore, Y_ = f_pIp for each y_. When input Iq is

present (Ip = 0,/q = 1), the only MUX that passes next logic state is cell q. Therefore

Y_ = fiqIq for each yl. Clearly, the architecture realizes Equation 1. yl

The present state is depicted by the state variables and is fed back to each ILA cell.

The logic for each state variable Yi consists of n ILA cells as defined in Figure 2. The set

of n cells is described as a slice that realizes a next state variable. Referring to Figure 2,

all ILA cells that are driven by the same input state It belong to the same level. With n

input states and m state variables, there are n levels of ILA cells and m slices.

3 Design Procedure for Asynchronous ILA Sequen-

tial Network

As a general architecture, the ILA architecture can be used to realize the asynchronous

design equations of any STT assignment. This section compares the ILA circuits for

traditional STT assignments and proposes a new state assignment which minimizes the

next state forming logic in the ILA cell.

3.1 Simple Term Design Equations

The set of next state equations provides a mathematical model of a sequential circuit. For

example, the design equations using Liu's assignment for Table 1 are:

Yl = ylI, + (yl + y2y,)r2 + y r3
]I2 = _/111 -4- y212 + y313

Y3 = 0 + _I_ + y313

Y4 = 0 + y_y412 + y313

If an ILA network is utilized to implement each next state equation, then the next state

forming logic lip in Equation 1 would be a random logic function in sum of products form.

For example, f12 would be yl_-_ + Y2Y4. A circuit to realize the next state forming logic is

simply combinational logic and can be formed from NAND gates, NOR gates or from pass

transistors.

Some research has been conducted to simplify the next state logic. One such effort

was made by Chung-jen Tan [6]. The Tan assignment will produce equations in a form of

so called simple product term equation in which each coefficient f_v is simplified to an OR

expression, instead of a random sum of products expression.

With traditional state assignments, each fir term in resulting design equations is a

function of the partitioning variables of input I v [7] and the number of partitioning variables

12.1.4

A A B C

B A B G

C D E C

D D F C

E D E G

F A F C

G k II G

H D II C

Yl Y2 Y3 Y4
0 0 0 0

0 0 1 0

1 0 0 0

1 1 0

1 0 1

0 1 0

0 i 1

1 i 0

0

0

0

1

1 "

Table 1: A flow table and traditionM Liu's assignment.

is equal to the number of k-sets in Ip, the maximum number of inputs to fir, logic is equal

to the number of k-sets. Therefore, a completely regular ILA circuit for a traditional

assignment wouJd contain a k-input next state forming logic for each lip where k-"number

of k-sets in input Ip".

A goal of the new design procedure is to minimize the amount of hardware required by

the lip logic. Physically, the minimal form of flp logic is a wire. The design equation in

which all fir terms are in minimum logic is called a simple term equation.

Definition 1 A simple term nezt state equation is a design equation in which each lip

coefficient is a single state variable (or its complement} or a constant.

In a simple term equation, each coefficient depends on at most one state variable.

This feature has significant impact on the hardware implementation. With a simple term

equation, only a wire is required to generate each fly coefficient. With a procedure discussed

in later sections, the simple teim equations for Table I can be derived as follows,

Y1 = yl rl q-y312-l-y213

If2 = I_ +y412"4-y213

Y3 = I1 +y3-q+o
Y4 = _-iII + yJz+ _SI3

As all coefficients are simple terms, no extra logic is required to generate each fin.

3.2 New State Assignment

In this research, partition algebra is used to derive simple term equations and synthesize

asynchronous circuits. The new state assignment, called r/ assignment, is proposed to

produce the simple term design equations. A relationship between r/_' partitions and lip

coefficients has been presented in the literature [8]. Theorem 2 in [8] shows part of the

discovery and has been used to analyze state assignments in predicting hardware.

Theorem 2 (1) If rl[= vj, then flp = Yj or _-_. (_) If all the states of _ are in one block,

then lip = 0 or 1.

m

m_

3rd NASA Symposium on VLSI Design 1991 12.1.5

If all lip of the design equations meet the conditions of Theorem 2, then the coefficients

will be simple terms. A sufficlent condition of r/-partitions for simple term flp is listed in

Corollary 1.

Corollary 1 If all rl_ partitions satisfy one of the following conditions:

1. r/_' = ,r_

e. = (s; ¢}

s. = (¢;s}

then the design will yield simple terms, where S is a set of all flow table states.

Proof." The proof follows directly from satisfying Theorem 2.

[]

Most STT assignments do not meet the conditions of Corollary 1. However, if an

assignment can be generated such that for each r/-partition r/_ under input Ip where r/_

does not satisfy the conditions from Corollary 1, a new ,r-partition .r_ will be created

where -rk = r/e to allow fjp = y_ and produce a simple term equation for Yj.

For example, the flow table shown in Table 1 has eight k-sets:

{ABFG}, (AB}, {ACDFH}, {CDEH}, {CE}, (DF}, (BEG}, (OH}.

A set of.r-partitions can be formed to partition each k-set from the rest of states and the

results are -rl through -rs in Table 2 (a). Then from the corresponding r/-partitions, it can

be found that some r/-partitions, such as r/_, r/32,7742and r/g, are not equal to any ,r-partitions

or a constant. A new ,r-partition needs to be formed for each of r/-partitions which do

not meet the conditions of Corollary 1. For each newly created ,r-partitlon, corresponding

r/-partitions need to be formed. The new ,r-partitions may generate new r/-partitions which

do not meet any conditions of Corollary 1. Additional v-partitions would then be required.

The partitioning procedure will continue until the conditions of Corollary 1 are met. In

the case of assignment for Table 1, ,rg,r10, ru,,r12 are formed which in turn generate 12

corresponding r/ partitions. The results are shown in Table 2 where all r/-partitions are

equal to a r-partition or a constant.

Simple term equations can be generated once all r/-partitions satisfy Corollary 1. In

most cases, however, more .r-partitions (state variables) than necessary have been intro-

duced and can be removed without jeopardizing the simple term feature.

Definition 2 A .r-partition ,rl is redundant if ,ri and rl[for all Ip can be eliminated while the

resulting nezt state equations remain the simple term equations and the state assignment

remains a critical race free STT assignment.

Theorem 3 In the set of ,r-partitions resulting from the 71 assignment, if a rl, which

partitions a k.set Kt in Ip from other states is not equal to any _ or its logical complement,

where i _ j, then ,rl is redundant.

12+!.6

n = {ABFG;CDEH}
T4 = {CDEH; ABFG}

_-7 = {BEG; ACDFH}

rio = {ABDF;CEGH}

? = {ABFG; CDEH}

_ = {ABFG; CDEH}

T]] = {ABFGCDEH;-}

7114= {CDEH;ABFG}

_ = {-;ABFGCDEH}

77_ = {CDEH;ABFG}

T]_ = {-;ABFGCDEH}

7 = {-;ABFGCDEH}

_ = {ABFG;CDEH}

_o = {ABCDEFGH;-}

_ = {-;ABCDEFGH}

_2 = {CDEH;ABFG}

v2 = {AB; CDEFGH}

r5 = {CE;ABDFGH}

r8 = {GH; ABCDEF}

rn = {CEGH;ABDF}

(a) r-partitions

ri_ = {ABDF; CEGH}

? = {AB; CDEFGH}

,723= {DFGH; ABCE}

r]_ = {CEGH;ABDF}

,]_ = {CE;ABDFGH}

r]_ = {DF;ABCEGH}

77_ {ABCE;DFGH}

7 = {GH; ABCDEF}

_ = {ABCE;DFGH}

72_o= {ABDF;CEGH}

7 = {CEGH;ABDF}

7]_2 = {DFGH; ABCE}

(b) _/-partitions

r3 = {ACDFH;BEG}

r6 = {DF; ABCEGH}

v9 = {ABCE; DFGH}

rn = {DFGH; ABCE}

_ = {BEG; ACDFH}

7 = {'; ABCDEFGH}

,733= {ACDFH; BEG}

_ = {ACDFH; BEG}

] = {ACDFH; BEG}

7]_ = {-;ABCDEFGH}

7737= {BEG; ACDFH}

T]_ = {BEG; ACDFH}

7739= {ACDFH; BEG}

r]_0 = {-; ABCDEFGH}

rl_, = {ABCDEFGH;-}

r]_2 = {BEG;ACDFH}

Table 2: The r and 77partitions

Proof: If the k-set Kt in I,, is the left block of n and then is not equal to any _]_ or

its logical complement, for all i #], then for every Iq, q # p, there must exist a k-set K_

under Ip in the right block of r_ such that the stable state of Kt and the stable state of Kj,

are in the same=]_fset in/'_. Hence"t[_e]_iset_Kt ¢{oes not need to be partitioned fr0mk-Set

K;, for the input transition I v to Iq. Moreover, the partitioning variable yl is not needed

to generate any simple term equation Yj. Therefore, rl is redundant.
[]

For example, in Table 2, "r2,rs,r6 and Ts do not appear in rl-partition set except for

:+ 77s,_6,and r]_. Those r-partitions are redundant according to Theorem 3. Another way

of I00king at this is that Y2 only appears in the equation for Y2 and no other - same for y._,

Y6 and ys. Therefore, they are redundant.

Theorem 4 If r_ is a logical complement of Tj, then Yl can be replaced by 97 in all design

equations.

Proof: If "ri is the logical complement of "G, then n and rj partition the same k-sets.

Only one of them is needed to meet the partitioning condition for a critical race free STT

assignment. Moreover, according to the Rule 2 in Theorem 7, all coefficients where f_ = y+

can be replaced by f_ = 97.
[3

3rd NASA Symposium on VLSI Design 1991 12.1.7

rl = {ABFG;CDEH} r3 = {ACDFH;BEG}

rio = {ABDF; CEGH} "q2 = {DFGH; ABCE}

(a) v-partitions

= n = rio = r7

= i = rx0 = 0
= T4 = T12 = r7

(b) r/-partitions

Table 3: The reduced r and 77 partitions

Theorem 4 provides the condition for removing another type of redundancy. For ex-

ample, r4 in Table 2 is the logical complement of rl. Therefore, equation Y4 is redundant

equation and all coefficients y4 in the simple term equations can be replaced by yi. Sim-

ilarly, equation Yz is also a redundant equation and all coefficients y7 in the simple term

equations can be replaced by _--5.

Theorem 4 does not specify which v-partition should be removed if ri is a logical com-

plement of rj. The final result may be quite different if rl or rj is removed because removing

such a v-partltlon may make more v-partitions become redundant with the condition of

Theorem 3. In order to obtain a better result, the redundancy specified by Theorem 3

first needs to be removed. That will allow the designer to make a better choice by check-

ing fewer r and r/-partitions. For example, r9 and vii become redundant partitions after

removing r4, rz and corresponding r/-partitions 7/4p, 77g,Vp = 1,2, 3.

By eliminating redundant r-partitions and r/-partitions, the number of partitions is

significantly reduced. In the example above, 8 out of 12 r partitions are removed. Table 3

(a) and (b) show the results.

By using Theorem 3, two stable states under the same input state may have an identical

state assignment if they have the same next states under all inputs. To have identical

assignment for two stable states is equivalent to merge two corresponding rows in the flow

table. However, if the outputs associated with these two stable states are not compatible,

such a merging is invalid. A unique state has to be assigned to each stable state so that

two outputs can be distinguished.

A partitioning chart is introduced to facilitate state assignment reduction and avoid

such invalid merging. The chart has intersection for each pair of k-sets in an input. For

each r-partltion rl introduced by the state assignment, ri will be placed in the intersec-

tions where a pair of k-sets are partitioned by rl. When a rj is removed by the state

assignment reduction procedure in accordance with Theorem 3, rj must be removed from

all intersections in the partitioning chart.

If a blank intersection in a partitioning chart was left once "rj was removed, then the

compatibility of two corresponding rows in the flow table would have to be checked. If

i_.i.8

CDBH

CE

DF

GH

BEG

rl

_0

rl 2

rlO '7"12

rio r12

-7-12 rlO

r3

ABFG AB CE DF ACDFH

Figure 3: The partitioning chart for the final r partitions

two outputs are not compatible, rj should not be removed even though rj is redundant

according to Theorem 3. The partitioning chart for the final 77 assignment is shown in

Figure 3. There is at least one r-partition at each intersection.

The following procedure formalizes the N asslgnmen_ass]gnment,

Procedure 1 ,7 assignment generation:

Step 1. Select an initial set of r-partition ri that partition each k-set Ki from the rest of

states. Create a partitioning chart for k-sets.

Step 2. Generate all rl-partitions rl_ for each input Ip.

Step 3. For any rl_ that do not meet the conditions of Corollary 1, generate a new r-

partition .rk such that rk = rl_. Add rk to the partitioning chart. Return to step _.

The state assignment process is complete when every rl_ satisfies the conditions of

Corollary 1.

Step 4. Remove each r,partition ri that meets the conditions of Theorem 3 if there are no

merging problem in the partitioning chart by removing ri. Also, for each rl removed,

remove rl_ under all Ip. Repeat Step 4 until all such ri have been eliminated.

Step 5. For each pair o] r-partitions ri and .rj that are logical complements, remove ri

and o-partitions rl_ under all Ip. Once such a rl is removed, return to Step 4.

Since Procedure 1 involves iterations of step 2 and step 3, it is useful to know if the

niimber of r-partltlons is finite. The following theorem shows closure of Procedure 1.

Theorem 5 The humbert o[r-partitions needed to generate any arbitrary _1 a.,si.qnment is

finite.

z

3rd NASA Symposium on VLSI Design 1991 12.1.9

A

B

C
D

E

F

G

H

/1 I_ /3 yl ys yl0 y12

A B C 1 1 1 0

A B G 1 0 1 0

D E C 0 1 0 0

D F C 0 1 1 1

D E G 0 0 0 0

A F C 1 1 1 1

A tt G 1 0 0 1

D H C 0 1 0 1

Table 4: The result of ri assignment

Proof." If there are k k-sets in a column of Ip, the maximum number of r-partitions that

could be generated is

(0_1 + (_1 + (_1 +"" + (11 = 2_.

This is finite.

[]

Corollary 2 A simple term r1 assignment ezists.

Proof: A flow table must have at least one input state with more than one k-set, otherwise

the circuit is purely combinational. With k k-set (k > 2), Theorem 5 shows that the

maximum of v-partitions is 2 k. Therefore, an assignment exists because a set of v-partltions

can be constructed.

[]

Theorem 6 The rI assignment is a valid STT assignment.

Proof: A Liu assignment will produce v-partitions which partition the k-sets. The v-

partitions in this assignment consists of two sets of partitions. The first consists of the

initial set of v-partitlons that partitions individual k-sets. The second set consists of the

r-partitions that are created from r/-partitions that do not meet conditions of Corollary 1.

Hence, both type of v-partitions are elements of a valid Liu assignment and therefore the

overall assignment meets the conditions of an STT assignment.
[]

The result of r1 assignment for flow table Table 1 is given in Table 4.

3.3 Design Equation Generation

With the 7/assignment, the next design step is to associate a unique state variable Yi with

each T-partition vi and determine each flp term.

Theorem 7 The nezt state equations can be derived _om the rl-partitions with the follow-

ing roles:

!2.1.10

!. y ,7';= rj, then f,,, = yj.

_. If the states in the left block of _7_ are the same as states in the right block oJ rj

and vice versa, then fly = 9"j.

3. If all the states of 71_ are in the left block, then flp = 1.

4. If all the states of 17_ are in the right block, then lip = O.

Proof: The proof follows directly from Theorem 2 since the r/ assignment assigns state

variable yj = 1 to states in the ieft block and y¢ = 0 to states in the right block of r-

partition -rj.

[]

The following example gives the next state equations by applying Theorem 7 to the

result of r/assignment in Table 3,

Example 1 Applying the revised conditions of Theorem 7 to each rl-partition rl[in Table $,

the nezt state equations can be derived as follows:

I"I = y:l:+ yioI2 + _13

3 = 11 "-Y12]'2-_-Y32T3

Y_o = I_ +y_oI2+O

_12"- ffl-I1 -J-Y12/2 "JI-y'313

The r/ assignment guarantees to produce the simple term equat_i0nslin which all co-

efflcients are single variables or constants. The general form for the next state equation
is

n

p=l

It has been shown :n [10] that this equation can be represented as a pass logic expression.

Since only one Ip = 1 at a time and the case when all Ii = 0 is an undefined situation in

an asynchronous flow table, an ILA network will let yi be passed to Y_ if the term In(v_) is

added The equation of Y; then becomes

Y, = I,(t',) + r,,(/,,,)+ ••(to(f,.) + K(y,)...). (2)

The advantage of this equation is to allow Yi to maintain the same state when all Ii = 0,

which can happen during an input transition. For example, the simple term equation for

Y1 in Example 1 is

Y1 = Yl-/'I -1- Y10-/'2 -l- _-313

Putting this into the form of Equation 2, the expression can then be converted into

Yl :/l(yl) Ji- _ll(/2(ylo) -3t- _22(/'3(y-3) + _33(yl)))

Similarly, all other equations can be converted to the pass logic expressions in the same

way. The results are as follows:

3rd NASA Symposium on VLSI Design 1991 12.1.11

-- w

Ii Ii /2 4 /3 /3

Figure 4: ILA realization of state variable Y1

Y, = z,(y,)+T,(z_(y,o)+T_(z_(_)+T_(y,)))
Y3= II(I) -II-T1(_(y12)-[-T2(I3(y3)aI--T3(y3)))
Y_o=/I(1) +T_(I:(y,o)-FT=(I3(O)-FT3(y,o)))
Y,:= X,(_) +T,(_:(m_)+T:(_(_)+T_(m:))).

Obviously, the next state logic fly is minimized to a wire if the set of next state equations

are all simple term equations. It is straightforward then to map the design equations to

an ILA network. Figure 4 shows an ILA realization of state variable Y1.

4 Input and Hazard Characteristics

In addition to the regularity of the ILA network with the _? assignment, an ILA realization

has other features such as (1) immunity to input 1-1 overlapping and 0-0 crossing, (2)

immunity to input bounce while 1-1 overlapping is not present, and (3) free of transition

path hazards and input state transition hazards.

Potential conflicts arise in asynchronous sequential networks when more than one input

state is present at a time (1-1 overlapping), or when none of the input states are active

(0-0 crossing). The overlapping and crossing situations occur because two input states

rarely switch at exactly the same time due to differences in delay through forming logic.

Most design procedures avoid such uncertainties by setting a constraint either to forbid

1-1 overlapping or to forbid 0-0 crossing of input states. Another form of hazard on an

input signal which may cause the circuit to malfunction is the dynamic hazard when input

transitions.

Theorem 8 The ILA architecture tolerates 1-1 input overlapping.

Proof." In Equation 2, assume the input state Ip have higher priority relative to input

state Iq. In the other words, Ip is the control variable of an ILA cell which is closer to the

output than the ILA cell with the control variable Iq. If both Ip and Iq are asserted 1,

then Y_ will assume value specified by f_p rather than fiq.

In the case where the input switches from Ip to Iq, when Ip is 1, it passes f_p to Y_ and

meanwhile cuts off the path of fig to Y_, no matter if Iq is set to 1 or 0. With such an

12.1.12

architecture, the 1-1 overlapping of input Ip and Iq has the same effect on the output Yi

as lp = l, Iq "- O.

In the case where the input switches from Iq to Ip, when Iq = 1, all Y_ are determined

by the f_ values which are propagated through the ILA. Once Ip = 1, the f_p values are

passed through the ILA independent of whether I_ is 0 or 1. Hence the circuit assumes

the proper next state value.
[]

For example, in Figure 4, if/1 and/2 are active, the circuit for all next state variables

will be under the control of/1 only, and Yx will assume the value of yl- yl0 can be passed

to Y1 only if I! = 0 while/2 is active. Once/1 is set to 1 again, the value of Yl0 at Y1 will

become Yl immediately (assuming _ is set to 0 simultaneously).

The 0-0 crossing happens when all input states are 0. Let the input change from Ip to

Iq. if input lp goes to 0 before I_ goes to 1, there will be a period that all input lines are 0.

in traditional design, the outputs of the design equations could assume an undeterminant

state when all inputs are 0. The ILA architecture soives the problem by providing a path

for each state variable to pass yi to Yi. When all inputs are 0, it allows Yi to maintain its

current value y/.

Again, Figure 4 can be used to show the feature of 0-0 crossing tolerance. For example,

assuming the input transition is from I2 to /'3, when/2 = 1, yl0 is passed to Y1, and yl

is fed back into the last ILA cell under 1-33. Once the network is stable, the level of Yl0 is

passed to Y1- When I2 is set to 0, the path provided by/1, /2 and /3 will still maintain

the level of Y1 at the current value of Yl. The output of the network remains unchanged

during the period when all inputs are 0 until/3 is set to 1. Then a new level of yr will be

passed to Yl and the network assumes a new state.

An input bounce can be considered a dynamic hazard during the transition of input

states. With the ability to tolerate input bounce, the ILA network allows extra input

transitions to occur before the circuit is stablized. However, the input bounce can be

tolerated only if it is not necessary to also tolerate 1-1 overlapping. If an input Iq bounce

occurs when two input states Ip and Iq are overlapping, an ambiguity is created regarding

the interpreration of the transition; it could be one transition from Ip to Iq or three

transitions from Ip to Iq then to Ip back to Iq. In order to avoid the ambiguity, it is

assumed that during the input state transition from Ip to Iq the circuit tolerates either the

bounce condition or the 1-1 overlapping, but not both.

Theorem 9 For the simple term equations derived from an r1 assignment, all partitioning

variables under input Ip do not change as the circuit transitions from one Jtate to another

under I v .

Proof_ The r/assignment produces the simple term equations of the form

= ... +yJp + ...

where yi is the partitioning variable of Ip. yl is the only partitioning variable for all

transition paths in the 7/assignment. According to Theorem 2 in [7], yl will not change in

3rd NASA Symposium on VLS[Desisn 1991 12.1.13

I1 _ Buffer

YJ _ I D Q

Is

YS A /2

1 0 S lSi1 1 ss s, ss

Figure 5: A traditional realization of a partial flow table

any transition under Ip. Hence, the partitioning variables of the simple term equations do

not change during the input transitions.

[]

From Theorem 9, the partitioning variables do not change when an input signal Ip

undergoes a bounce. In the case that a dynamic hazard presents when Ip transitions from

0 to 1, the circuit begins to transition to the new state when arp goes to 1. Meanwhile, the

partitioning variables of Ip remain stable. Since the partitioning variables determine all

lip values [7] and since the partitioning variables are uneffected by the input bounce, the

circuit will assume the proper next state value when Ip is stablized.

In the case that a dynamic hazard presents when Ip transitions from 1 to 0, the present

state is simply passed to the next state once Ip goes to 0, as this represents a 0-0 crossover

condition. The circuit does not transition. When Ip returns to 1 on the bounce condition,

again from Theorem 9, there will be no transition in partitioning next state variables.

Since the circuit is a function only of the partitioning variables [7], output of the circuit

remains unchanged.

A critical race free asynchronous sequential network may still malfunction due to un-

wanted switching transients in the combinational circuit. A transition path hazard is one

that is present within the states of a transition path. The simple term equations for the
next state variables have the form

= ... + yJp +...

where Yl is the partitioning variable of Ip. From Theorem 9, partition variable yi does

not change as the circuit transitions from one state to another in Ip. In general, since the

partitioning variables of the simple term equations do not change during the transition,

it is impossible for a hazard of any kind to occur. Therefore, there cannot be any static,

dynamic and function hazards that occur during the transition between unstable and stable

states.

A circuit free of static and dynamic hazard may have a hazard problem caused by the

change of more than one variable in the design equation. One type of such multi-variable

change hazard is a function hazard. The problem can be illustrated by the partial flow

12.i.14

table in Figure 5 where design equations for Y_, Y/ and a schematic for Y_ are shown. A

hazard exists when an input changes from/2 to/1. If the delay of AND gate-1 is longer

than the total delays of AND gate-2, the OR gate and the buffer, then the output of gate-1

will remain 0 after the input changes to I1 = 1 and I2 = 0. That will in turn cause yl

to remain at 0 and lock the output of gate-1 to 0. The result is that state variables yiyj

are set to 00 instead of intended value i0. Moreover, the circuit is locked up in the wrong

state until a reset line is provided.

The a problem occurs in a traditional design where a slow gate has the same effect as

a 0-0 crossover. Input I v = 0 will set the product term to 0. The ILA circuit solves the

problem by maintaining the same state when all inputs go to 0. Also, the 1-1 overlapping

problem which may arise in the traditional design due to a slow gate can be tolerated

by ILA circuit. The 1-1 overlapping and 0-0 crossover properties of the ILA architecture

prevents the circuit from malfunction due to such input state transition hazards.

References

[i]

[2]

[3]

C. Roth, Fundamentals of Logic Design, 3rd Ed,. St. Paul, Minn., West Publishing,

1985.

D. Givone, Introduction to Switching Circuit Theory, McGraw-Hill, inc., 1970.

S. Whitaker, "Design of Asynchronous Sequential Circuits Using Pass transistors,"

Ph.D Dissertation, University 0f idaho, Feb. i988.

[4] S. K. Gopalakrishnan and G. K. Maki, "VLSI Asynchronous Sequential Circuit De-

sign", ICCD, Sept, 1990, pp. 238-242.

[5] S. Whitaker and G. Maki, "Pass-Transistor Asynchronous Sequential Circuits", IEEE

JSSC, Vol.24, No.l, Feb. 1989, pp. 71-78.

[6] C. Tan, "State Assignments for Asynchronous Sequential Machines", IEEE Transac-

tions on Computers, Vol. C-20, No. 4, April 1971, pp. 382-391.

[7]

[s]

[9]

S. Gopalakrishnan, G. Kim and G. Maki, "Implications of Tracey's Theorem to Asyn-

chronous Sequential Circuit Design", The 2nd NASA SERC Symposium on VLSI

Design, November, 1990, pp. 9.1.1-9.1.11.

G. Maki, D.Sawin and B. Jeng, "Improved State Assignment Selection Tests", IEEE

Transactions on Computer, Dec. 1972, pp.i443-i449.

3. Tracey, "Internal State Assignment for Asynchronous Sequential Machines", IEEE

Transactions on Electronic Computers, Vol. EC-15, Aug. 1966, pp. 551-560.

[10] S. K. Gopa/akrishnan, C_Design of VLSI Asynchronous Sequential Machines," Ph.D

Dissertation, University of Idaho, December, 1989.

