
3rd NASA Symposium on VLSI Design 1991

N94-183'78
12.3.1

Improved Self Arbitrated VLSI Asynchronous
Circuits

P. Winterrowd

NASA Space Engineering Research

Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract- This paper introduces an improved method for designing the class

of CMOS VLSI asynchronous sequential circuits introduced in the paper by

Sterling R. Whitaker and Gary K. Maki_ "Self Arbitrated VLSI Asynchronous

Circuits."

1 Introduction

Synchronous sequential circuits are often the first choice in VLSI design. Races are avoided

by synchronizing the circuit with a common clock signal; however, the frequency of this

signal must be slow enough to allow signals to propagate through the slowest block re-

gardless of how often that block's output is actually used. Also, the RC delays introduced

in VLSI design make synchronizing the circuit with a clock signal increasingly difficult

as the circuit's complexity increases. Moreover, with CMOS circuits peak power usage is

attained during switching. If several blocks are synchronized by a clock signal and, thus,

switching at the same time then the peak power required by the chip is greatly increased.

These limitations can be avoided by designing with asynchronous circuits. The paper

by S. Whitaker, "Self Arbitrated VLSI Asynchronous Circuits", presents an asynchronous

circuit with some interesting qualities. Of main interest here is the simple design by

inspection rules that arise from this circuit. This paper presents a variation on Whitaker's

circuit which reduces the number of transistors required.

2 Circuit Model

The general model for this circuit is the same as that given in Whitaker's research. There

is an enable and disable block feeding into a buffer stage as shown in Figure 1.

Ij---_ ENABLEVYk("")

i_ oi
yl(...)

Figure 1: General Circuit Model

12.3.2

Where yl and :Y} are present and next state variables respectively, and Ij represents

input signals -: ___:z_ : :_

The variation on the original circuit presented here d_ffers in how the buffer, enable,

and disable blocks are implemented. Whitaker's buffer circuit consisted of two inverters

and two weak feedback transistors as shown in Figure 2:

Input

I

•LYi
Vw

1

Figure 2: Original Buffer Circuit

As shown, this buffer circuit provides not only Y_ but also _.

for this circuit is given in table one.

The buffer state table

Table 1: Original Buffer State Table

Yi

0

0

1

1

0

1

Input Yi

0 0

1 1

0 0

1 I

Z 0

Z 1

The buffer for the circuit presented in this paper is shown in Figure 3. Although it

only produces the Y_ variable and not it's complement, it saves two transistors and in the

design procedure for this circuit the complemented variable is not needed. The buffer state

table for this circuit is given in Table 2.

3rd NASA Syrnpositm2 or_ VLSI Design 1991 12.3.3

Input Yi

Figure 3: New Buffer Circuit

The enable and disable blocks are simple pass networks and their design is completely

specified by the design equations given later in this paper.

Table 2: New Buffer State Table

Yi

0

0

1

1

0

1

Input Yi

0 1

1 0

0 1

1 0

Z 0

Z 1

3 State Assignment

The state assignment for a flow table remains the same in this paper as in its predecessor,

a simple one-hot-code state assignment as shown in Table 3.

12.3.4

Table 3: Example Flow Table

I 1 12 13

A

B

C

D

E

F Bc

YYYYYY
abcdef

100000

010000

001000

000100

000010

000001

These circuits effect a non-normal transition. THUS, in order to show that the circuit

operates correctl$_ it is necessary to show that no transition path between two states

overlaps any transition path between two other states.

Definition 1: Let [yi] be the state with bit Yi set and let [y_ Yb Y¢...] be the binary

number with the appropriate number of bits with the y_, yb, yc... bits Jet.

Definition 2: By definition (to be shown later) let a proper transition path between

[yi] and [yj] be [Yi Yj]. Note that from the one hot code state assignment every state can

be ezpressed by [yk], where yk represents the one bit which should be set for any state.

Theorem 1: Given a one-hot-code state assignment with the above "proper" transition

path, no two transition paths will overlap.

Proof: Since the transition path for two states [yi] and [yj] is given by [y_ yj] this will

overlap with the transition [ya] and [Yb] given by [ya yb] only if y_ = Yi and Yb = Yj; thus,

the transition between two states only overlaps itself.

Therefore, to show that the circuit presented here correctly implements a flow table it

must simply be shown that it correctly implements the "proper" transition path referred

to above.

=

E

==

4 Design Procedure

This section starts with a definition.

Definition 3: Let a scale-of-two of loop in a flow table be defined by a any state A

under input Ik which goes to state B under input I_ where state B returns to state A under

input Ik.

The basic design equations for a circuit can be expressed as:

_(rj_y_(0)) + _y,(1) (1)

Enable Expr. + Disable Expr.

3rd NASA Symposium on VLSI Design 1991 12.3.5

Note that the disable expression form only holds in the absence of order-of-two loops.

Looking at an example flow table as given in Table 3 and reproduced here for conve-

nience:

Table 3: Example Flow Table

A

B

C

D

E

F B°® c

YYYYYY
abcdef

I00000

010000

001000

000100

000010

000001

I.

,

For each state the design procedure is simple:

For state [yl]:

Identify all input states I i under which [y_] is stable. These input states become the

Ij's in the basic equation.

For each I./ identify all unstable states [y_] in the same column and note the stable

state's row [Yk] under which they occur. Again, these [yk]'s become the y_'s in the

basic equation under the appropriate I_'s.

3. Thus, the enable equation can be written as:

_3(Ij_yk(O)) (2)

4. Identify all unstable states [yt] under the row for the stable state [yi].

5. The disable expressions for the state [yi] can be written as:

_y,(1) (3)

6. For each term in the disable expression determine if it is a member of a scale-of-two

loop. If so, include the input state under which this term occurs as part of the term,

For example, if yl(1) was under Ik and was a member of a scale-of-two loop, then

y,(1) would become Iky,(1).

As an example, the enable expression for state A, [ya], would be:

Ii(vb(0)+ vc(0)) (4)

12.3.6

0

Yb
1

[3

Yc
A_

r3

I i

k

[3

: ii :

Figure 4: Example Enable Block

And, the disable expression for state A would be:

y_(1)+yj(1)

Ye
k

Output

(5)

Yf
l

[3

Output

Figure 5: Example Disable Block

5 Circuit Operation

In order to show that this circuit operates correctly, it must be shown that the circuit

transitions properly. To do this it must be shown that in going from state [yi] to [yj] under

input Ij the transition path is [y, Yi]"

Theorem 2: Only positive and not complemented variables are used in the design

equations for this circuit.

Proof: This follows dircctly from the design procedurc and the basic design equation.

Theorem 3: The enable and disable equation_ for [yi] do not contain the pre_ent _tate

term Yi.

3rd NASA Symposium on VLSI Design 1991 12.3.7

Proof: The design equations for state [Yi] derive their terms from the unstable states

in row [y_] and the stable states in the other rows which contain unstable [y_] states. Since

every state [9_] in the row for the state [yl] is stable and every state [V_] not in the row for

state [y_] is unstable, then the y_ term never appears in the design equations for state [y_].

Theorem 4: For a reduced row flow table, for each unstable state [y_,] under input I,_

on the stable state [y,]'_ row that unstable state will contribute only the following terms to

the design equations for that table:

Vu(1) or/',_V,,(1) disable term for ii,

I_,9,(0) enable term for g,_

Proof: The proof follows directly from the design procedure.

Theorem 5: For a reduced row flow table that transitions from state [yJ to the state

[Yk] under input Ij then while the circuit is in state [Yl] under input Ij the only variable to

be affected is Yk which is set high.

Proof: If this theorem were not true then either 1) Yi would be set to 0 from this

state, or 2) Yk would not be changed, or 3) Some other variable (all of which are zero at

this point due to one-hot-code state assignment) would be raised to a 1.

First, for Y/ to be set to zero with all other state variables at zero then the design

equation would have to contain the term y_(1), which is invalid from Theorem 3, or 9-_-(1),

which is invalid from Theorem 2.

Second, Yk will be set high from Theorem 4 and the design procedure which state that

the enable expression for Yk will include Ijy_,(O). Note that a conflict could occur if the

design equation for Yk contained yi(1); however, this would be a scale-of-two loop and the

y_(1) term would be bye(l) where Ik is different from Ij. Thus, there would be no conflict

for a flow table properly designed and Y_, will be set high.

Finally, for another variable [ym] to be set high from the state [y_] under Ij then it's

enable equation would have to contain the term Ijyi(O) which would, from the design

procedure, mean that under the row for state [y,] under Ij would be state [Ym]; however,

by definition this location contains [yh].

Thus, the theorem must be true since all other alternatives are false.

Theorem 6: /f the circuit is in the state [y_ yk] under input Ij where state [yl] goes to

state [yk] under input Ij then the only variable to be affected is Y_ which is set low.

Proof: If this theorem were not true then either 1) Y/would stay high, or 2) Yk would

be set low, or 3) Some other variable would be set high (since all the other variables are,

by definition, low to begin with.)

First, from Theorem 4 and the design procedure the design equations for Yi contains

the term yk(1) or Ijyk(1); thus, it would remain only not go low if it also included Iiyi(O),

which is invalidated by Theorem 3, or Ij97(0), which is invalidated by Theorem 2, or

Ijyk(O) which can be invalidated by the following argument. If the enable expression for

12.3.8

Y_ contained any Ij terms then the position under Ij would have to contain [Vi] and, by

definition, it contains [yk]. Thus, Y_ is set low.

Second, for Yk to be set low it would contain the term y_(1) or Iiyk(1), which can

be invalidated frOm theorem-three, or _(1), which canbe invalldated by theorem two, or

yi(1) which can be invalidated by the following argument. If Yk did contain y_(1) then that

would be a scale-of-two loop and the y_(1) term would have to be Imy_(1) where Im is not

equal to Ii; thus_ Yk wiU not_ b_e set low. _ _ : _: =

Finally, for another variable [y,_] to be set high from the state [y_ Yi] under Ij, the

enable equation would have to contain either the term Ijv,(O) or I yj(O). The term Ijy,(O)
would, from the design procedure, mean that under the row for state Ivy] under I i would

be state [ym] which by definition contains [yk]. The term Ijyj(O) would, from the design

procedure, mean that under the row for state [yj] under Ij would be state [ym] which by

definition contains the stable state [yi]. Thus, no other variable will be set high.

Therefore, since all the other alternatives are proven false, this theorem must be true.

So from Theorems 5 and 6 the circuit created from the design procedure in the previous
section fulfills Theorem 1 and is critical-race free.

6 Transistor Count Comparison
- : : =

From the assignme_nt procedure if is obvious that we need one state variable from each

state. Also, from Figure 1, which shows the general circuit model for this circuit, it is

clear that for each state variabie we need four transistors (one buffer.) Moreover, from

Theorem 4 and the design procedure it can be shown that for each stable state [y_] in a

flow table one transistor is required if an unstable state [y_] is also in that column and for

every unstable state two transistors are required. Also, every scale-of-two loop contributes

an additional two transistors. Thus, the number of transistors needed for a reduced row

flow table is given by:

Total # of Transistors = 4S + B + 2U + 2L (6)

Where s = number of states, b = number of stable states in the low table with identical

unstable states in the same column, u = number of unstable states in flow table, and L

= number of scale-of-two loops that exist in the flow table. The number of transistors for

the design method in Whitaker's paper can be shown to be:

Total # of Transistors -'- 6S + 4U + 2L (7)

Thus, for the example flow table given in Table 3 where s=6, b-6, u=12, and L=0 the

total number of transistors for the improved design method is 54, and the total number

for the old method is 84; thus, a difference of 30 transistors.

Table 4 shows some typical values for reduced row flow tables and compares transistor

counts.

3rd NASA Symposium on VLSI Design 1991 12.3.9

Table 4: Transistor Count Comparison

Transistor Count

S B U L Old Method

6 6 12 0 84

8 9 15 1 110

7 10 18 2 118

9 10 17 0 122

New Method

54

73

78

8O

New/Old

0.643

0.664

0.661

0.656

Reset Feature

In any circuit, asynchronous or synchronous, it is advantageous to be able to preset the

circuit to some state. This is almost a necessity upon startup since a circuit often begins

in an unknown or undesirable state. The basic model for this circuit can be modified to

easily include a reset feature as shown in figure six:

Reset

1

Yo

ENABLE _ Yk (''")

1 -[BUFFE@

DISABLE___ _I

Yl(...)

Y,

!

Figure 6: Modified General Circuit Model

This feature only costs one transistor for each state; however, the design must insure

that all inputs are low while the reset is high.

Summary

The general circuit model for this paper and the one-hot-code state assignment lead to

an easily designed and implemented asynchronous circuit. Once an input is introduced

the circuit sets the new variable high which then sets the variable signifying the old state

low. This [yi];[y_ yj];[yi] non-normal mode transition insures that no two transition paths

overlap; thus, the circuit is critical-race free.

This improved design method reduces the transistor count from the old method by,

roughly, one third, decreasing the size of the overall circuit and increasing its usefulness.

Finally, although the circuit operates at 1/2 the speed of an STT state assignment

asynchronous circuit due to its non-normal mode operation it is very easy to design and

avoids the disadvantages of a synchronous circuit such as clock routing, power bussing,

and speed dependency upon slowest information path.

12.3.10

References

[1] S. Whitaker, S. Manjunath and G. Maki, Self Arbitrated VLSI Asynchronous Circuits,

NASA SERC 1990 Symposium on VLS[Design, pp. 87-103.

[2] S. Golpalakrishnan, G. Kim and G. Maki, Implications of Tracey's Theorem to Asyn-

chronous Sequential Circuit Design, NASA Symposium on VLSI Design, pp. 9.1.1-

9.1.11, Nov. 1990.

[3] S. Whltaker and G. Maki, Pass Transistor Asynchronous Sequential Circuits, IEEE

Journal of Solid State CircuitJ, pp. 71-78, Feb 1989.

This research was supported (or partially supported) by NASA under Space Engineer-

ing Research Center Grant NAGW-i406.

