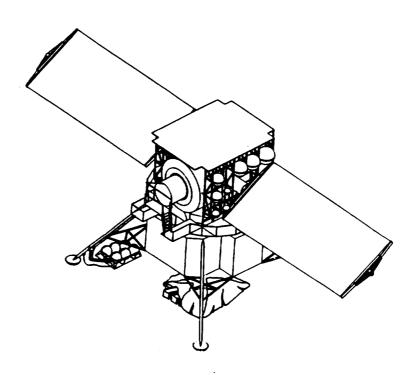
(NASA-CR-193876) SPACE TRANSFER CONCEPTS AND ANALYSES FOR EXPLORATION MISSIONS Final Report (Boeing Defense and Space Group)

N94-18820


Unclas

G3/16 0195130

Phy J W B

Space Transfer Concepts and Analyses for Exploration Missions

Final Report
Technical Directive 14
September 1993

Boeing Defense and Space Group Advanced Civil Space Systems Huntsville, Alabama

Contract NAS8-37857

Space Transfer Concepts and Analyses for Exploration Missions

Final Report
Technical Directive 14
September 1993

Gordon R. Woodcock
Program Manager

Boeing Defense and Space Group Advanced Civil Space Systems Huntsville, Alabama

Contract NAS8-37857

THIS DOCUMENT IS:

CONTROLLED BY		TO THIS DOCUMENT : ORGANIZATION PRIOR	SHALL BE APPROVED	
PREPARED UNDER	CONTRACT IR&D OTHER	NO. NAS8-3	37857	
PREPARED ON		FIL	ED UNDER	
DOCUMENT NO.	D615-10072	M	ODEL	
11166	ansfer Concepts a Technical Direc			Missions
ORIGINA	AL RELEASE DATE	93-09-16,	Im Dougitt	i,eru
ISSUE NO.	то		DATE	
THE INFORMATI	ON CONTAINED HEREIN IS	NOT PROPRIETARY.		
AND SHALL NOT ANY DESIGN OR	ON CONTAINED HEREIN IS BE REPRODUCED OR DISC MANUFACTURE EXCEPT W N FROM THE BOEING C	LOSED IN WHOLE OR WHEN SUCH USER POS	IN PART OR USED FOR	

ANY ADDITIONAL LIMITATIONS IMPOSED ON THIS DOCUMENT WILL BE FOUND ON A SEPARATE LIMITATIONS PAGE.

	Allegener	√ √./220 ORGN	9.11.9
APPROVED BY	J. E. Kingsbury	2-1220	93-09-14
SUPERVISED BY	Gordon R. Woodcock	2-1222	93-09-14
CHECKED BY	Irwin E. Vas	2-1222	93-09-14
PREPARED BY	STCAEM	2-1222	93-09-14

REV LTR D0 6000 4540 REV. 1/91 PAGE NO.

FOREW0RD

The study entitled "Space Transfer Concepts and Analyses for Exploration Missions" (STCAEM) was performed by Boeing Missiles and Space, Huntsville, for the George C. Marshall Space Flight Center (MSFC). The current activities were carried out under Technical Directive 14 during the period July 1992 through December 1992. The Boeing program manager was Gordon Woodcock, and the MSFC Contracting Officer's Technical Representative was Alan Adams. Support for the cost studies was provided by Rob Fowler and Theron Ruff. In addition, Hollis Black and Gene Albin from Parametric Estimating (Boeing) supported this costing activity.

CONTENTS

	Page
COST ANALYSES	1
Introduction	1
FLO Cost Analyses	1
Trade Studies	2
REFERENCES	12

FIGURES

		Page
1	Space Station Mass and Cost Elements	5
2	FLO Baseline Mass and Cost Elements	6
3	Comparison of FLO Baseline With Aluminum-Lithium Structure	7
4	Comparison of FLO Baseline With Ellipsoidal Structure	8
5	First Lunar Outpost	9
6	FLO Ellipsoidal Habitat Option	9
7	Alternative FLO Airlock	10
8	FLO Baseline and FLOlock	11

ABBREVIATIONS AND ACRONYMS

CER Cost Estimating Relationship

ECLSS Environmental Control Life Support System

FLO First Lunar Outpost

GSE Government Supplied Equipment

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

PCM Parametric Cost Model

STCAEM Space Transfer Concepts and Analyses for Exploration

Missions

SSF Space Station Freedom

STE Special Test Equipment

WBS Work Breakdown Structure

ABSTRACT

The current technical effort is part of the fourth phase of a broad-scoped and systematic study of space transfer concepts for human lunar and Mars missions. The study addresses the costs of the First Lunar Outpost habitat and alternatives to this habitat.

COST ANALYSES

Introduction

The goal of the FLO cost model analyses is to develop parametric models that reflect current SSF Hab - A cost estimates and will allow cost estimation of the FLO habitat and its subsystems as well as estimates of alternatives to the baseline FLO Hab. The Parametric Cost Model (PCM) is based on earlier FLO mass estimates and the SSF mass properties report dated July 15, 1992, Reference 1. Certain parts of the FLO were not costed, and these include medical equipment, science, EMUs, consumables, and spares. An assumption was made that the FLO could be manufactured using loaned tooling, Government Supplied Equipment (GSE) and STE from an established Space Station Freedom (SSF) production line, and these items were not costed. Other exclusions from the cost estimate include launch operations, training and support, NASA wraps and Government costs of facilities. The habitat cost is based on an assumption of a 1999 delivery, or the #3 Hab unit off the production line. An alternate cost estimate was developed for a delivery date of 2000.

Cost estimates have been developed for several alternatives to the baseline. These include three variations of structural material; aluminum-lithium, graphite-epoxy and metal matrix composites. Other alternatives to the configuration include an ellipsoidal habitat geometry, and a method of unloading the Hab from the baseline lander onto the lunar surface.

FLO Cost Analyses

The original concept for FLO baselined the Space Station Freedom Habitation Unit with a few minor modifications to compensate for the 1/6 gravity on the Moon; i.e., floor panels added, restraints and mobility aids removed. The major subsystems, structure, ECLSS, electronics, etc. would be changed only by re-routing wiring and plumbing. Details of the FLO habitat have been provided in Reference 2.

The cost of the SSF Hab Unit from the PCP 400 model are divided, not only into non-recurring and recurring costs, but also into what is Hab unique and what is designed for the Space Station as a whole, part of which is located in the Hab. This includes items such as plumbing, thermal control. electronics, etc. The first costs mentioned are called "unique design costs" and the latter are referred to as "distributed systems cost."

For this task, the Hab part of the SSF systems cost was separated from SSF. In addition, the portion of the Hab associated with "unique" and "allocated" was added on to the Hab part of SSF. The SSF element weights, unique and distributed systems, break down into non-recurring and recurring cost and the total cost is shown in Figure 1. The mass and cost data shown in Column 1 was obtained from Space Station data.

The weight and cost results of the modifications made to SSF (in order to estimate the FLO hab module) is shown in Figure 2. The weight in the first column is adjusted to reflect the necessary changes; the recurring costs in Columns 3 and 7 are adjusted accordingly by the same percentage. Columns 5 and 9 represent the percentage change in the system relating to the non-recurring cost. This value for the unique design and distributed systems was estimated by the design team for each WBS in SSF. This percentage was used as a multiplier against the same number (Column 2 and 5) in Figure 1 to produce the values in Columns 2 and 6 in Figure 2. For example, Design Integration, WBS 3.X.2 in Figure 1 is \$11.986M. This would be a complete redesign for the FLO, and in Figure 2, WBS 3.X.2, Column 5, we find 100% change or redesign. Column 2 reflects this with a 100% change in cost. The support equipment shown in WBS 3.X.3, needs only a 5 per-cent change (Figure 2, Column 5). The resulting number goes from 1, 422 (Figure 1, Column 2) to 71 (Figure 2, Column 2). This FLO estimate, for unique and distributed, non-recurring and recurring costs, based on SSF PCP400 now becomes the baseline. A series of trade studies on alternative FLO habitats were run using this baseline as reference including an elliptical Hab, an aluminum-lithium hab, and an alternative airlock design known as the "Crewlock".

Trade Studies

To perform a series of trade studies, it is necessary to have a cost model based on history to accurately reflect cost changes brought about by design or material changes, and to have the model calibrated to a known cost, in this case, the FLO baseline (Figure 2). The model chosen was the Parametric Cost Model and the curves developed by the CER's as a weight changed were accurate and needed only to have the model calibrated to the baseline FLO cost. This was accomplished by taking the cost of the FLO hardware such as structures, ECLSS, etc., and running them through the PCM. No integration or support cost was included. Each WBS or line item in the PCM then had a multiplier added to it, in order to force it to equal the cost of the FLO baseline. These numbers were based on the FLO

system weights, average complexities of each system and an aluminum structure. Weights were then adjusted, along with the complexity and/or material of each line item according to what was required for the trade. The result was a new cost, based on the PCM CERs, and calibrated to the FLO.

The line items that run through the PCM include WBS in 3.X.7 to 3.X.15.1.9. The integration and support costs 3.X.1 to 3.X.6 and 3.X.15.1.10 to 3.X.33 were found by calculating the cost of each as a percentage of the cost of the sum of the hardware WBSs of the FLO baseline of Figure 2. In other words, the sum total of WBS 3.X.7 to 3.X.15.1.9 (Figure 3, Column 1) equals \$8.428M. WBS 3.X.6 FLT.ART. Assy & Test equals 114 or 1.35263% of the total, (Figure 2). This percentage was then used on each trade study, on everything that wasn't hardware or WBS 3.X.1 to 3.X.6 and 3.X.15.1.10 to 3.X.33.

With these percentages in place, as design, weight or material changes cause the cost of the hardware to change, so the support and integration costs will change by the same percentage. The effect of this method of comparing the FLO with an aluminum structure, and a FLO with an aluminum-lithium structure is shown in Figure 3. The structures WBS 3.X.7 is increased from 558 (Column 1) to 604 (Column 2) and from 5720 (Column 3) to 6788 (Column 4). No other hardware (WBS 3.X.7 to 3.X.15.1.9) is affected. The result can be seen to have raised the non-hardware item (integration, support, etc.) by the same percentage. The result in 1992 dollars is for non-recurring costs of \$39.35 M for aluminum and \$39.569 M for aluminum-lithium. The recurring costs are \$62.911 M and \$63.948 M for aluminum and aluminum-lithium respectively.

The cost effect of a major redesign from the original FLO based on the SSF design with minor modifications and PCP 400 costs is shown in Figure 4. The FLO based on the SSF configuration is shown in Figure 5. The ellipsoidal configuration for the FLO is shown in Figure 6.

The benefits associated with the ellipsoidal configuration are that it better utilizes interior space on the lunar surface, and therefore in a gravity environment, than would the FLO based on SSF, which is designed for a micro-gravity environment. The drawback, however, is the cost of the redesign and the loss of benefits from design work already completed in distributed systems. In Figure 2, Column 5 and 9, many of the 5 and 10 percent changes relative to SSF will go to 100 percent. The benefit of producing one more SSF Hab, assembled on an operational assembly line, would then be lost. The cost effect

of the redesign, and the additional cost of redesigning existing distributed systems is shown in Figure 4.

Many of the FLO subsystems can be used in the ellipsoidal design without modification, or with only minor modification and this was taken into consideration. The results can be seen in the totals - 1992 dollars line, Figure 4. FLO non-recurring cost has gone from \$39.351M to \$94.976M for the ellipsoid, and recurring has increased from \$62.911M for FLO to \$80.120 for totals of \$102.3M for FLO and \$175.1 for the ellipsoidal alternative habitat.

The final trade study was conducted on an alternative airlock, designed to reduce the overall weight of the FLO by reducing the airlock size, and by reducing the weight of airlock support systems, (Figure 7). This element was also run through the PCM, and was calibrated to the FLO cost from the PCP 400, (Figure 8). These costs were then put in the second format where support and integration costs were based on a percentage of the sum of the cost of the hardware subsystems as covered earlier.

Again, looking at the total 1992 cost line, it can be seen that the baseline FLO airlock and alternative "crewlock" non-recurring costs are reasonably close together, although the crew lock is less complex and requires fewer subsystems. This is a result of costing the benefits of previous design work.

œ	SPACE STATION TOTAL \$K 5, 189 28, 293 111, 034 11, 528 5, 010 11, 528 11, 528 5, 064 5, 064 5, 064 5, 064 5, 064 5, 064 5, 064 5, 064	8, 703 9, 305 14, 759 2, 092 13, 210 2, 554 2, 559 2, 559 1, 048	1,969 154 1,454 11,267 11,137 9,129 9,129 3,346 1,42 4,342 1,545 1,545 5,157 5,157	8,965 254,187 220,991
7	ATED STEMS TOTAL SK 1,061 16,228 6,477 13,562 6,477 13,562 1,697 3,196 1,697 2,567 12,095 2,447	2,518 1,154 5,659 1,080 3,802 8,78 2,559 2,559 1,048	23 23 175 133 196 3 2,535 2,229 2,229 1,545 1,645 0 9,247 5,157	8, 123, 111,
9	A - ALLOCATE IBUTED SYSTE REC 7 \$K 7 \$1,840 1,840 1,840 1,840 1,840 329 533 329 533 329 54 1	164 88 208 116 164 29	118 118 1,590	15 7,491 5,965
S	PACE SPACE HAB-A HAB-A HAB-A	2,354 1,066 5,451 3,638 3,638 2,559 2,559 1,048	906 23 175 133 196 2,417 2,229 1,545 1,545 1,645 7,657 5,157 6,157	8,950 116,108 106,019
4	101AL 4 128 12,065 4,557 4,557 1,346 6,598 6,598 2,384 2,286 2,286 3,858 3,301	6,185 8,151 9,100 1,012 9,408 1,876	1,047 131 616 1,321 1,071 8,602 9,129 6,440 3,346 4,342	130,588 109,007
ო	N N N N N N N N N N N N N N N N N N N	5,738 6,606 8,760 931 9,153 1,829	348 106 1065 1,146 7,339 6,938 6,938 1,954 3,750	87,648
2	SPACE STATION HAB-A UNIQUE DESIGN NON/REC \$K 11,986 1,422 1,422 1,303 5,498 2,275 2,275 1,227 780 832 1,494 1,494 1,494	447 1,545 1,645 81 255 47	699 25 61 175 1,263 2,191 1,392 1,392 1,03 1,06	42,940
1	WE1GHT (LBS) 2239 2239 978 5138 772 509 291 2040	1988 308 852 429 2377 268	157 1348 287 1727 296 1438 711	38,021
COLUMN	YEAR 111111111111111111111111111111111111	3.X.14 ECLSS 3.X.14.1 TEMP & HUMIDITY CONTROL 3.X.14.2 ATHOS CONT & SUPPLY 3.X.14.3 ATHOS REVITALIZATION 3.X.14.4 FIRE DEFEC & SUPPRESS 3.X.14.6 WATER RECOVERY & HANAG 3.X.14.6 WASTE MANAGEMENT 3.X.14.8 EXPANDED ECLSS FOST) 3.X.14.9 EXPANDED ECLSS ROST) 3.X.14.10 EXPANDED ECLSS ROST) 3.X.14.11 EXPANDED ECLSS ROST) 3.X.14.11 EXPANDED ECLSS ROST) 3.X.14.11 EXPANDED ECLSS ROST)	200000000000000000000000000000000000000	33.5

igure 1 Space Station Mass and Cost Elements

10	LUNAR OUTPOST TOTAL \$K 28.276 5.278 3,900	2,849 6,278 1,437 1,954 3,343 3,788 4,490	4,081 15,902 15,911 796 8,139 1,970	1,871 32 662 647 879	3,824	3,780 1,545 3,000 82 1,973 258		122,095	102,261	99,242	95,719
6	DIST SYS MON/REC X CHANGE 100 100 25	25.55	10 20 20 20 20 20 20	100 50 30 30	30	10	ח				_
œ	T TEMS TOTAL \$K 16,228 2,072 3,532	1,017 616 591 656 750 656 656	399 141 481 481 139 139	922 112 53 53	699	1 1		35,144	31,230	30,948	30,620
7	AR OUTPOS - ALLOCA BUTED SYS REC \$K 383 1,840 1,840	582 3329 3233 654 654	164 88 208 116 164 29	16		1,590	<u>C</u>	7,366	998'5	5,584	5,256
9		435 287 587 333 96 602 589	235 53 273 96 728 110	906 12 44 53	699	1,545 5 82 383 258	•	27,778	25,364	25,364	25,364
2	UNIQUE NON/REC K CHANGE X 100 5 25		50 50 50 50 50 50 50 50 50 50 50 50 50 5	100 50 25 30	30	vn					
4	TOTAL \$K 12,048 3,206 369	2,849 5,261 1,363 2,687 3,058 2,122 3,810	3,681 5,761 14,730 7,248 1,832	949 21 619 594 820	3,824 1,915	3,780		86,951	71,032	68, 293	62,099
က	LUMAR OUTPOST HAB-A UNIQUE DESIGN NON/REC RECUR \$K \$K \$K \$K 11,986 62 11,3326 43	2,735 5,138 743 1,363 2,604 2,983 2,068	3,637 5,684 14,713 7,197 1,822	250 8 603 524 715	2,948 1,584	3,750		71,633	57,045	54,307	51,112
2	LUNAR OUT HAB-A - UNIQUE DE NON/REC 5K 11,986 11,986 326	114 123 78 78 75 75 63	45 77 17 8 8 51 9	699 13 15 70 105	331	30		15,318	13,987	13,987	13,987
-	VEIGHT (LBS) 1760	8747 453 3353 1442 1514 256	1260 265 1431 265 1869 267 267	113 102 312 790 294	211	478	28,259				
COLUMN	YEAR	22-0	3. X. 14 ECLSS 3. X. 14. 1 TEMP & HUMIDITY CONTROL 3. X. 14. 2 ATMOS CONT & SUPPLY 3. X. 14. 3 ATMOS REVITALIZATION 3. X. 14. 4 FIRE DEFEC & SUPPRESS 3. X. 14. 6 WASTE MANAGENENT 3. X. 14. 6 EXPANDED ECLSS FOT 3. X. 14. 8 EXPANDED ECLSS (POST) 3. X. 14. 9 EXPANDED ECLSS (POST) 3. X. 14. 10 EXPANDED ECLSS (ROST) 3. X. 14. 10 EXPANDED ECLSS (ROST) 3. X. 14. 10 EXPANDED ECLSS (ROST) 3. X. 14. 11 EXPANDED ECLSS (ROST)	55555	55.5.1.1.2	15.2 17.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19	33	TOTALS - THEN YEAR DOLLARS	TOTALS - 1992 DOLLARS	TOTALS - UNIT 3	TOTALS - UNIT 5

Figure 2 FLO Baseline Mass and Cost Elements

9 5	- LUNAR OUTPOST - HAB-A OCT FLO ALW-LI TOTAL TOTAL \$K \$K	28,276 28,438 5,278 5,365 3,900 3,924	2,849 2,897 6,278 7,392 1,437 1,437 1,954 1,954 3,343 3,344 3,808 3,807 2,778 2,778 4,490 4,490	4,081 4,081 5,902 5,903 15,211 15,211 796 796 8,139 8,140 1,970 1,970	1,871 1,871 32 32 662 662 647 647 879 879	3,824 3,824 2,583 2,584	ค [ู] ้ค่	1,973 2,002 258 259 463 465	122,095 123,637	-	59,765 60,751
4	ALUM-LI RECUR	453 5,060 235	2,782 6,788 1,072 1,896 2,927 3,637 2,122 3,838	3,801 5,772 14,921 7,361 1,851	266 8 603 524 715	2,948 1,584	3,814	1,617	80,303	63,948	60,751
ო	5 % 5 %	45 75 31	2,735 5,720 1,072 1,896 2,927 3,637 2,122 3,838	3,801 5,772 14,921 7,361 1,851	266 8 603 524 715	2,948 1,584	3,750	1,590	78,999	62,911	59,765
2	LUNAR OUTPOST HAB-A ALUM-LI OCT NON/REC REC \$K\$	27,985 305 3,689	115 604 365 58 417 170 656 655	280 131 290 105 779	1,605 24 59 123 164	876 1,000	30 1,545 5	385 259 450	43,334	39,569	
	OCT FLO NON/REC	27,831 303 3,669	114 558 365 58 58 417 170 656	280 131 290 105 779 119	1,605 24 59 123 164	876 1,000	30 1,545 82	383 258 448	43,095	39,351	
COLUMN	THEN YEAR \$		3.x.5 ELEM TEST ART ASSY & TEST 3.x.6 FLIGHT ARTICLE ASSY & TEST 3.x.7 STRUCTURES 3.x.9 MECHANISMS 3.x.9 PACKAGES 3.x.10 ELECTRICAL POWER 3.x.11 DATA MANAGEMENT 3.x.12 INTERNAL AUDIO/VIDEO 3.x.13 THERMAL CONTROL	3.X.14 ECLSS 3.X.14.1 TEMP & HUMIDITY CONTROL 3.X.14.2 ATHOS CONT & SUPPLY 3.X.14.3 ATHOS REVITALIZATION 3.X.14.4 FIRE DETEC & SUPPRESS 3.X.14.5 WATER RECOVERY & MANAG 3.X.14.5 WATER PROMAGEMENT	55555	55.1.2	3.X.15.1.11 CREW HEALTH CARE 3.X.15.1.12 PORTABLE EMERGENCY PROVISIONS 3.X.15.2 MAN SYS EQUIPMENT INTEGRTION 3.X.15.3 HUMAN ENGINEERING 3.X.17 LAB SUPPORT EQUIP (GLOVEBOX) 3.X.18 SYS CERT IEST/MANU & ASSY 3.X.18 SYS CERT IEST/MANU & ASSY	2222	TOTALS - THEN YEAR DOLLARS	TOTALS - 1992 DOLLARS	UNIT 2, 95% LEARNING CURVE

Comparison of FLO Baseline With Aluminum-Lithium Structure

9 9	- LUNAR OUTPOST HAB-A OCT FLO ELLIP TOTAL TOTAL \$K	5, 189 28, 276 28, 373 5, 278 6, 360 3, 900 3, 950	16,552 2,849 5,010 6,278 34,425 1,437 2,370	3,334 4,107 3,808 3,808 2,778 2,778 4,490 4,490	4,081 4,805 5,902 7,167 15,211 18,488 796 928 8,139 9,145 1,970 2,323	1,871 1,871 32 32 662 1,096 647 779 879 879	3,824 4,894 2,583 1,729	5,1 3,0	82 82 1.973 9.247 258 258 463 466	122,095 204,624	102,261 175,096	59,765 76,114
4	ELLIP RECUR	542 6,057 281	6,021 2,735 10,870 1,276	1,962 3,690 3,638 2,122 3,838	4,525 7,036 18,198 823 8,366 2,204	266 8 860 656 715	4.018	3,000	1,590	100,610	80,120	76,114
က	POST OCT FLO RECUR	445 4,975 231	2,735 5,720 1,072	2,927 3,637 2,122 3,838	3,801 5,772 14,921 7,361 1,851	266 8 603 524 715	2,948 1,584	3,750	1,590	78,999	62,911	59,765
2	LUNAR OUTPOST HAB-A ELLIP OCT NON/REC REC \$K	5, 189 27, 831 303 3, 669	2, 275 2, 275 23, 555 1, 094	417 417 170 656 652	280 131 290 105 779 119	1,605 24 236 123 164	1,000	592 1,545	82 7,657 258 448	104.014	94,976	
7	OCT FLO NON/REC SK	27,831 303 3,669	114 558 365	58 417 170 656 652	280 131 290 105 779 119	1,605 24 59 123 164	876 1,000	30 1,545 5	82 383 258 448	43,095	39,351	
COLUMN	THEN YEAR \$			0-186	-0.00=10.00	5.1.5 5.1.2 5.1.2 5.1.5	22.22.2		969125	<u>,</u>	TOTALS - 1992 DOLLARS	UNIT 2, 95% LEARNING CURVE

Comparison of FLO Baseline With Ellipsoidal Structure

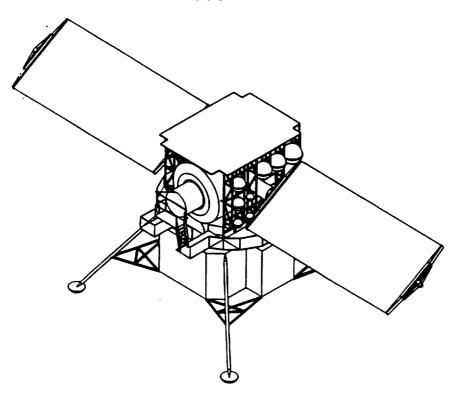


Figure 5 First Lunar Outpost (View)

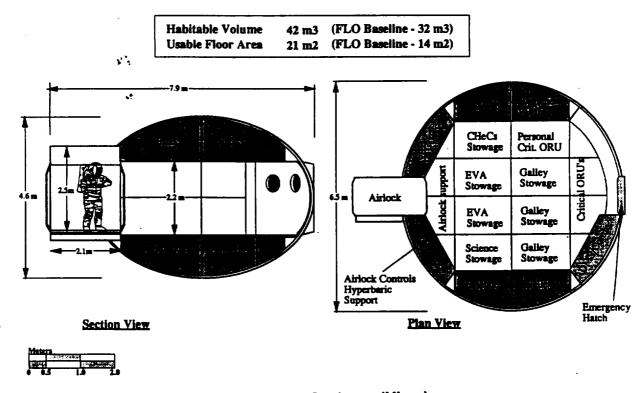


Figure 6 FLO Ellipsoidal Habitat Option (View)

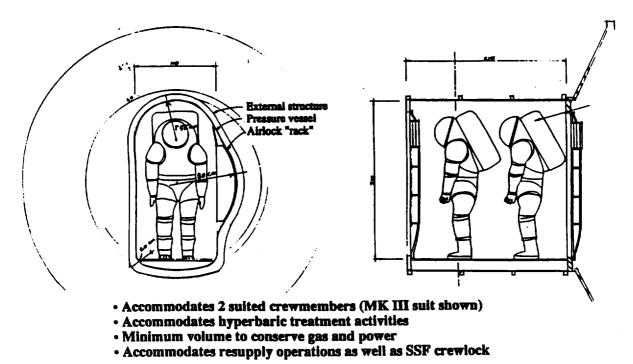


Figure 7 Alternative FLO Airlock (View)

9	A FLOLOK TOTAL	1,912 21,843 977 2,905	6,385	00000	00000	00	1,209 0 0 4 64 536	353	46,935	41,537	8,550
2	- LUNAR OUTPOST HAB-A OCT FLO FLOL TOTAL TOTAL	28,276 5,278 3,900	2,849 6,278 1,437 1,954 3,343 3,343 4,490	4,081 5,902 15,211 796 8,139	1,871 32 662 647 879	3,824	3,780 1,545 3,000 5 1,973 258	463	122,095	102,261	59,765
4	FLOLOK	66 740 34	407 3,268 1,204 110 0 0 0 4,103	00000	673 0 0	00	558 236	8	11,301	9,000	8,550
က	A	4,975 4,975 231	2,735 5,720 1,072 1,896 2,927 3,637 3,838	3,801 5,772 14,921 7,361 1,851	266 8 603 524 715	2,948 1,584	3,750 3,000 1,590	15	78,999	62,911	59,765
5	LUNAR OUTPOST HAB-A FLOLOK OCT NON/REC REC	21,912 21,777 237 2,871	3,541 665 20 0 0 0 2,282	00000	0 0 0 0	00	23 1,209 4 64 300 202	351	35,634	32,537	
-	OCT FLO	27,831 303 3,669	114 558 365 365 417 417 656	280 131 290 105 779 119	1,605 24 59 123 164	876 1,000	30 1,545 82 383 258	448	43,095	39,351	
COLUMN	EN YEAR \$	ELEMENT INTEGRATION DESIGN INTEGRATION SUPPORT EQUIPMENT SOFTWARE	X.5 ELEM TEST ART ASSY & TEST X.6 FLIGHT ARTICLE ASSY & TEST X.7 STRUCTURES X.8 MECHANISMS X.9 PACKAGES X.10 ELECTRICAL POWER X.11 DATA MANAGEMENT X.12 INTERNAL AUDIO/VIDEO X.13 THERMAL CONTROL	નંબંધ્યમાં છે.	~24x0	∞ 6777	PORTABLE EMERGENCY PROVI MAN SYS EQUIPMENT INTEGR HUMAN ENGINEERING HUMAN EQUIP (GLOVE SYS CERT TEST/MANN & ASS ECRT TEST ARTICLE SYSTEM MANUFACTURING & ASSEMBLY TECHNOLOGY DEMO HARDWARE	.X.32 FLUID MANAGEMENT SYSTEM (FMS) .X.33 TEST BED SUPPORT	TOTALS - THEN YEAR DOLLARS	TOTALS - 1992 DOLLARS	UNIT 2, 95% LEARNING CURVE

Figure 8 FLO Baseline and FLOlock

REFERENCES

- 1. "Space Station Freedom WP01 Mass Properties Report", Boeing Document D683-10275-22., July 15, 1992
- 2. "Space Transfer Concepts and Analyses for Exploration Missions", Phase 3, Final Report, Boeing Defense and Space Group, Huntsville, D615-10062-2, June 1993

	•		
~		·	
			,

,	•		
			175