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ABSTRACT

We consider preconditioning methods to accelerate convergence to a steady state for tile

incompressible fluid dynamic equations. The analysis relies oll the inviscid equations. The

preconditioning consists of a matrix multit)lying the time derivatives. Thus the stea(ly state

of the preconditioned system is the same as the steady state of the original system. We

compare our method to other types of pseudo-compressibility. For finite difference metho(ls

preconditioning can change and improve the steady state solutions. An application to viscous

flow around a cascade with a non-periodic mesh is presented.
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1 Introduction

One way to solve the steady state incompressible equations is to march the time dependent equations

until a steady state is reached. Since the transient is not of any interest one can use acceleration

techniques which destroy the time accuracy but enables one to reach the steady state faster. Such

methods can be considered as preconditionings to accelerate the convergence to a steady state.

For the incompresible equations the continuity equation does not contain any time derivatives.

To overcome this difficulty, Chorin [3] added an artificial time derivative of the pressure to the

continuity equation together with a multiplicative variable,/_. With this artificial term the resultant

scheme is a symmetric hyperbolic system for the inviscid terms. Thus, the system is well posed
and and numerical method for hyperbolic systems can be used to advance this system in time..

The free parameter/3 is then chosen to reach the steady state quickly. Later Turkel ([8], [9], [10])

extended this concept by adding a pressure time derivative also to the momentum equations. The

resulting system after preconditioning is no longer symmetric but can be symmetrized by a change

of variables.

Thus, we will consider systems of the form

w_ + fx + gu = O.

This system is written in conservation form though for some applications this is not necessary. Our

analysis will be based on the linearized equations so the conservation form does not appear in the

analysis though it does appear in the final numerical approximation. This system is now replaced

by

p-lwt + fx + gy = O, (1)

or in linearized form

p-lw_ + Aw_ + Bw_ = 0, (2)

with A and B constant matrices.

For this system to be equivalent to the original system, in the steady state, we demand that

p-1 have an inverse. This only need be true in the flow regime under consideration. We shall

see later that frequently P is singular at stagnation points. Thus, we will temporarily consider

strictly flows without a stagnation point. We also assume that the Jacobian matrices A =

and B = 0_g_are simultaneously symmetrizable. In terms of the 'symmetrizing' variables we also
Ow

demand that P be positive definite. We shall show later, in detail, that it does not matter which

set of dependent variables are used to develop the preconditioner. One can transform between any
two sets of variables. Thus, when we are finished we will analyze a system which is similar to (2),

where the matrices A and B are symmetric and P is both symmetric and positive definite. Such

systems are known as symmetric hyperbolic systems. One can then multiply this system by w and

integrate by parts to get estimates for the integral of w_, i.e. energy estimates. These estimates

can then be used to show that the system is well posed . We stress that if P is not positive then

we may change the physics of the problem. For example, if P = -I then we have reversed the time

direction and must therefore change all the boundary conditions. Keeping the right signs for the

eigenvalues is a necessary but not sufficient condition for well-posedness.
With this assumption the steady state solutions of the two systems are the same. Assuming

that the steady state has a unique solution, it does not matter which system we march to a steady
state. We shall later see that for the finite difference approximations the steady state solutions are



not necessarilythe sameandusuallythe preconditionedsystemleadsto a better behavedsteady
state.

2 Incompressible Equations

Consider the incompressible inviscid equations in primitive variables.

ux -t- vy = 0

ut + uu_ + vuy + p_ = 0

vt + uvx + vvu + py = 0

We generalize Chorin's pseudo-compressibility method [3]. Using the preconditioning suggested in
[8] (with a = 1) we have

or in conservation form

1

-ff_Pt + Ux + Vu = 0
U

'_Pt + ut + UUx + vuy + p_ = 0

v

-_Pt '_ vt + uvx + VVy + py = 0 (3)

1

-fipt + ux + v9 = 0

2u

-_pt + ut + (u _ + pl_ + (u% = 0

2v

_pt + vt + (uvlz + (v _ + ply = 0

We can also write (3) in matrix form using

p-1 ___

1/Z2 o ou/t3 2 1 0

vl_ 2 0 1

p

Multiplying by P we rewrite this as

_2 0 O)
-u 1 0

-v 0 1

wt + PAw_: + PBw v = O.

Let

D = t,z 1 A + w2 B - 1 < wl, w2 _< 1



where_vl,w2are theFouriertransformvariablesin the x andy directionsrespectively. The speeds

of the waves are now governed by the roots of det(RI - PAw1 - PBw2) = 0 or equivalently

det(AP -1 - Awl - Bw2) = O. Let

q = uwl + vw2.

Then the eigenvalues of PD are

do= q (4)

d+ =

and so the 'acoustic' speed is isotropic.

The spatial derivatives involve symmetric matrices, i.e. D is a symmetric matrix but P is not

symmetric. Thus, while the original system was symmetric hyperbolic the preconditioned system

is no longer symmetric. In [8] it is shown that as long as

> (u2 + v2)

the equations can be symmetrized. On the other hand the eigenvalues are most equalized if/_s =

(u 2 + v s) [8]. So, we wish to choose/_s slightly larger than u 2 + v 2. However, numerous calculations

verify, that in general, a constant/_ is the best for the convergence rate. The reasons for this are
not clear.

We wish to stress that _ has the dimensions of a speed. Therefore, /_ cannot be a universal

constant. There are papers that claim that/_ = 1 or/_ = 2.5 are optimal. Such claims cannot be

true in general. It is simple to see that if one nondimensionalizes the equation then/_ gets divided

by a reference velocity. Hence, the optimal 'constant'/_ depends on the dimensionalization of the

problem and in particular depends on the inflow conditions. In many calculations the inflow mass

flux is equal to 1 or alternatively p + (u 2 + v2)/2 = 1. Such conditions will give an optimal/_ close

to one.

We next define the Bernoulli function

H = p + (us + vS)/2.

BernouUi's theorem states that when the flow is steady and inviscid then H is constant along

streamlines. We now multiply the second equation of (3) by u and the third equation of (3) by v

and add these two equations. If/3 2 = u s -t- v2, the result is

Ht + uHx + vHy -- 0. (5)

Thus, by altering the time dependence of the equations we have constructed a new equation in

which H is convected along streamlines. Furthermore, if H is a uniform constant both initially and
at inflow then H will remain constant for all time. On the numerical level this will usually not be

true because of the introduction of an artificial viscosity or because of upwinding. For viscous flow,

(5) is replaced by

Ht + uHx + vH_ = _e(UAu + rAy)



We note that these relationships for H follow from the momentum equations and do not depend

on the form of the continuity equation. Hence, we consider the following generalization of (3)

1

-_pt + aHt + uz + vy = 0
OLU

-_pt + ut + uuz + vuy + px = 0
o_v

/3ypt + vt + uvx + vvy + py = 0 (6)

where, a,a and/3 are free parameters. When w2 + w_ = 1 the eigenvalues of PD are

s 4- x/s 2 + 4/32d
wlu + w2v, 2d

where

, q2
q2=u2-4-v2 d=l+a-a-_-ff, s=(1-c_)(ujlu+_2v ).

Hence, the 'acoustic' eigenwlue is isotropic if a = 1. Furthermore, d = 1 if either a = 0 or

8 2 = u 2 + v2. For a = 0 we recover our original scheme. For a = -1 the time derivative of the

pressure no longer appears in the continuity equation. For general c_,_ we have

auav)p-1 _ /_2 au 8 2 0 ,
av 0 8 2

p =

82 -au -av )

{1Ot_ 2 _t_

• -_u 1 + a- -_--
1 + a - ac__ aauv a_u 2

-av _ 1 + a - --yr-

If we write the equation in conservation form (1) we have

_1 1(P conservative = "_

(a + 1) au av '_
(l + a + o_)u j32 + au 2 auv )(1 + a + c_)v auv 8 2 + av 2

(8 2 + a(u 2 + v 2) -au -av '_
pco,_servatiw= 1 • -(1 + a + (_)u 1 +a- _ -_ J_C_; d_U 2

l+a-aa -(I +a+_)v _ I+a _-

In [9] an analogy to the symmetric preconditioning of van Leer, Lee and Roe was constructed

for the incompressible equations. If we choose a = 1 P is symmetric. If we also choose 8 2 = u 2 + v 2
then we get the preconditioning of van Leer et.al..

p=

u2_v 2 --u --v )

U 2 uv

- v 1+

4



Theseexamplesshowthat preconditioningis not unique. If fact, sincethe determinantof the
transposeof amatrix isequalto thedeterminantof theoriginalmatrix it followsthat thetranspose
ofP isalsoa preconditionerwith thesameeigenvaluesfor thepreconditionedsystem.Thesevarious
systemswill havethe sameeigenvaluesbut differenteigenvectorsfor the preconditionedsystem.
Numerouscalculationsshowthat the systemgivenby P in (3) ismorerobustandconvergesfaster
than with the transposepreconditioner.This showsthat it is not sufficientto considerjust the
eigenvaluesbut that theeigenvectorsarealsoof importance.Theeigenvectorsaregivenin ([10]).

Wenext considerthe preconditionerconsideredby deJouette,Viviandet. al. ([4]). Define:

q = uu_ + vuy +p_- (r_ + rx_)

r = uv_ +vv_ +p_- (rx_ + r_y)

s = uq + vr

U 2 = u 2 + v _

Then they consider the following extension of the incompressible Navier-Stokes equations.

pt + dv(u_ + vu) + avs = 0

ut + avq + _vu(ux + %) + evus = 0

vt + avr + jOvv(ux + vu) + evvs = 0

(7)

In the steady state q = r = s = 0 and u_ + v_ = 0 and so we recover the usual incompressible

equations, ay,dv,ey,ay,/_y are free parameters that satisfy the following conditions

av_v = dvev

av >_ 0 dv >_ 0

(dv + avU2)(dv + jOvU 2) >_ 0

In addition, in order for the speed of the convective wave to remain unchanged we add the condition

av = 1. From the momentum equations we obtain

[uu, + vvt + ZvU_(ux + v_)]

1 + evU s

Hence we can rewrite (8) as

1 + evU 2 Ot v

pt - U,j(uut + vvt)d

+u_ + v_ = 0

[3vu
d pt+ut+q= 0

/3vv
d pt+vt+r= 0

Comparing this with (6) we see that the two approaches are identical if

5



dy =
(a + 1)/3_ - a_U 2

_v - _ dv
Ol

- Nev

ev = -ff;dv

Choosing a = 1 and/3 = U 2 we get the standard preconditioning (3). The Viviand parameters

become av = -a, flv= -1, av = 1, dv = U 2, ell = a. Then a = 0 gives the Turkel preconditioner

and a = 1 gives the van-Leer (symmetric) preconditioner.

3 Difference equations

Until now the entire analysis has been based on the partial differential equation. We now make

some remarks on important points for any numerical approximation of this system. When using
a scheme based on a Riemann solver this solver should be for the preconditioned system and not

the original scheme. When using a central difference schemes there is a need to add an artificial

viscosity. Accuracy is improved for low Mach number flows if the preconditioner is applied only

to the physical convective and viscous terms but not to the artificial viscosity. The use of a

matrix artificial dissipation ([7]) should be based on the preconditioned equations as for Riemann

solvers, difference scheme. Hence, both for upwind and central difference schemes the Riemann

solver or artificial viscosity should be based on P-11PA I and not IAI i.e. in one dimension solve

wt + P f= = P(P-11PAIw_)_ . When using characteristics for extrapolation at the boundaries

it should be based on the characteristics of the modified system and not the physical system.

Preconditioning is even more important when using multigrid than with an explicit scheme. With

the original system, the stiffness of the eigenvalues greatly affects the smoothing rates of the slow

components and so slows down the multigrid method, [6]. We conclude that the steady state

solution of the preconditioned system may be different from that of the physical system. Thus, on

the finite difference level the preconditioning can improve the accuracy as well as the convergence
rate.

We next consider adding artificial viscosity to the system (3). We first rewrite this system

eliminating Pt from the velocity equations. This gives

or in matrix form

v

or

pt + f_2(u_ + vz,) = 0

ut + p= + vuy - uvy = 0

v_ + uv=- vu_ + p_ = 0

+ 1 0 0 u + 0 v -u

t 0 -v u v 0 0 1
)(p)uv

Y

=0 (8)

6



wt + PAw_: + PBw v = O.

We next consider the use of a matrix valued viscosity. Let D = wlA + w2B with w_ + w2 = 1.

The non-preconditioned matrix viscosity is given by IAI in the x direction and [B] in the y direction.

Then

IDI -
(A2 - A3) q2 2q 2

q R 2

qRS

q R 2

(,X22 -4-Az2) R 2 4- (A2 - ,_3) 82 [RI

RS (,X22 + A32- (A2 - A3) ]RI)
)RS (_X2= + _32 -(_X2- _3) IRI) .

()_22 +_32) S 2 +(A2-)_3)R21RI

with
R + v/-R-_+ 4 R _ v/'-R-_+ 4

A2 = 2 , A3 = 2

R ----- //A,Jl + V¢_.)2_ S = nO)2 -- V0J2

For the preconditioned artificial viscosity we consider instead P-xIPAI and P-1leBi (see [7]).

We consider the case a = 1 with/3 and a arbitrary. Then

P-1IpD[= V21 V22 V23
V31 V3_ V33

with

1 + a aS2q2X
Vii- +

_v_ _

[_d RS (/32-q2) vXVa2 = a + S2 u X + f12

u RS (/32-aq 2) vX
V21 -- 4- S 2 u X 4-

/3vFd f12

[_ $2 RS (fl2-q2) ux]1/'13= a + v X - 132

v RS (fl2_aq2) uX
V31 - + S 2 v X -

flv_ f12

/3 fl2S2u2X ( - 2fl2'_ R 2 (/32-dq2)v2XV22 = _ + q2 R S 1 + a q2 ] u V X 4- q2

fl f12 S 2 v 2 X

v_ = -_ + q_ _ 2fl 2_ R2 (fl 2-dq2) u 2x+ RS l+a q2 ] uvX + q2



Ru x
f12 q2

where

V32= (_2 S v + R u (aq 2 - fl2) ) (_2 S u + R v (_2 _ q2) ) X
82 q2

R = _'°J1 + v_2 S- tg'°2- v°J1
q q

q2 = u2 + v2

x - IRqlv_ -/_
dZ

Z - 84S 2 - (/_2 _ q2) (/_2 _ aq2) R2

By inspection the matrix is symmetric when a = 1. For the special case a = 1 and 8 2 = u2 + v2

the formulas simplify and we get

R+I
Vll-

q

V21 ---- V12 -- R _-

q

V31 = V13 = R v-
q

V22 = q +
u2(R- 1) v2 + Ru 2

w

q q

V33 = q+
v2(R - 1) u 2 + rv 2

q q

V23 = V32 = uv(R- 1)
q

For the equations in conservation form we multiply the continuity equation by u and add to

the x velocity equation. We also multiply the continuity equation by v and add to the y velocity
equation.



4 Computational Results

We now present a calculation for two dimensional flow around an cascade to demonstrate the

previous theory. The discretization is based on the multistage time method coupled with a central

difference approximation as described in ([5], [7]). The basic scheme is accelerated by using a local

time step, residual smoothing and multigrid. This code was further developed to consider cascade

configurations in which the grid is not necessarily continous across the wake ([1], [2]). We compute

the flow about a NACA0012 with periodic external boundaries. The flow is turbulent and we use

a Baldwin-Lomax turbulence model, with Re = 500,000, Pr = 0.7, Prt = 0.9 At inflow the angle

of attack is specified as well as the Bernoulli constant, p + _ = 1. The mesh is 192 × 32 and

is shown in figure 1. We use a four stage Runge-Kutta method as a smoother for a full multigrid

iteration. We choose a = 0 and /_2 = max(K(u 2 + v2),/3m) with K = 1.1,/3m = 0.4, see (6). In

figure 2 we plot the convergence rate for different values of a. We see that the fastest convergence

occurs when a = 1 followed by a = 0 and finally a = -1. We also considered viscous flow about

a VKI cascade (figure 3). In this case the convergence of all the methods slowed down. (_ = 1 was
still the most efficient method but the differences were less dramatic than in the previous case. In

other cases in was necessary to choose /_ almost constant. The symmetric preconditioner, a = 1

was more robust but not faster than a = 0.

5 Conclusions

A three parameter preconditioning matrix has been introduced for the incompressible inviscid

equations. This is equivalent to the pseudo- compressibility methods considered by de Jouette et.

al. When a = 1 the 'acoustic' speeds are symmetric. Furthermore, one can choose the parameter

a so that the preconditioning matrix is symmetric. For the inviscid case considered computed a

considerable increase in the convergence rate was achieved.

In addition the incompressible equations offer a theoretical advantage over the compressible

equations for the theoretical study of preconditioning methods. This is because of the simpler

nature of the equations and the fact that the original method of Chorin is already symmetric.

Nevertheless, a central difference scheme coupled with a Runge-Kutta time advancement suffers

from lack of robustness. In particular /_ needs to be bounded away from zero at a relatively

high level for many of the cases. Using the symmetric preconditioner a = a = 1 yields a more

robust scheme though it does not seem to converge faster than the nonsymmetric preconditioner.

Furthermore, changes of the physical inflow boundary condition can greatly affect the choice of the

optimal c_ and/3. The major increases in the convergence rate are for the Euler equations. For the

Navier-Stokes equations it is necessary to reformulate the preconditioning matrix to account for

the viscous effecrs.
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