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ABSTRACT

Several multigrid schemes are considered for the numerical computation of viscous

hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial

discretization with explicit multistage time stepping. Two-level versions of the various

multigrid algorithms are applied to the two-dimensional advection equation, and Fourier

analysis is used to determine their damping properties. The capabilities of the multi-

grid methods are assessed by solving two different hypersonic flow problems. Some new

multigrid schemes, based on semicoarsening strategies, are shown to be quite effective in re-

lieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds

number flows. These schemes exhibit good convergence rates for Reynolds numbers up to

200 x 106.

INTRODUCTION

In the past several years, multigrid has been used to accelerate the convergence of

Navier-Stoke s computations for a variety of flow problems at both subsonic and transonic

speeds (refs. 1 and 2). More recently, multigrid methods with either central or upwind

differencing have been applied to viscous hypersonic flows to achieve convergence rates

that approach those obtained at lower Mach numbers and moderate Reynolds numbers

(Re < 107). However, at the higher Re values experienced by high-speed flight vehicles,

a dramatic +slowdown Occurs in t-he-_onvergence rate. One +reason for this slowdown is the

deterioration in the high-frequency damping 0f the multigr_d driving scheme caused by the

very high-aspect-ratio cells that'+occui: in the computational mesh in order to resolve the
+- . _ _

thin boundary layers.

The present paper describes an effort to understand and improve the use of multigrid

schemes for the computation of viscous hypersonic flows. First, various two-level multigrid

schemes both with and without semicoarsening are introduced. Then we use a Fourier

analysis of the schemes, applied to the two-dimensional convection equation, to reveal the

behavior of their components. For each multigrid approach, the solver uses an upwind dis-

cretization combined with an explicit multistage scheme. We next consider the numerical

solution of the Navier-Stokes equations for hypersonic flows. The basic elements of the

flow solver for these equations are summarized. Some details concerning the application of
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the time-stepping scheme to fine- and coarse-grid problems are presented. The extension

of the two-level schemes to multilevel ones is then discussed. Elements of multigrid that

are of particular importance for high-speed flow computations are given. In the results

section, we consider two different hypersonic flow problems to assess the capabilities of the

multigrid schemes. Semicoarsening is shown to be quite effective in relaxing the stiffness

that arises from the resolution of thin boundary layers.

MULTIGRID METHOD AND STRATEGIES

The multigrid approach is based on the full approximation scheme of Brandt (ref. 3).

The grid transfer operators are those considered by Jameson (ref. 4). Coarser meshes

are obtained by eliminating alternate mesh points in each coordinate direction. Both the

solution and the residuals are restricted from fine to coarse meshes. A forcing function

is constructed so that the solution on a coarse mesh is driven by the residuals collected

on the next finer mesh. The corrections obtained on the coarse mesh are interpolated

back to the fine mesh. The multigrid schemes investigated within the present work are

displayed in Figure 1. Figure l(a) shows a two-level scheme with full coarsening. Re-

striction of the solution from the fine mesh (m,n) to the coarse mesh (m/2,n/2) is done

by injection, whereas full weighting is used for the restriction of the residuals. Prolonga-

tion of the corrections is done by bilinear interpolation. Figure 1 (b) shows a scheme with

semicoarsening in the different coordinate directions. Again, injection and full weighting

are used in the restriction process. The corrections obtained on the coarse meshes are

averaged before they are added to the current fine mesh solution which is indicated by the

numbers at the "up" arrows. Because of this averaging, half of the individual corrections

on the coarse meshes are lost. We, therefore, anticipate that the scheme in Figure l(a)

should be computationally more efficient, provided that enough high-frequency damping

can be obtained with the smoothing scheme of the fine mesh. In order to overcome this

deficiency of the semicoarsening scheme, two more variants are considered. For the scheme

of Figure l(c), the solutions on the coarse meshes are computed sequentially. Hence, the

corrections obtained on the (m/2,n) mesh can be used to update the (m,n/2) mesh before

time stepping (as indicated by the horizontal arrow). The sequential update of the second

coarse mesh allows the full corrections to be passed up to the fine mesh. Note that this

multigrid variant is not compatible with the idea of parallel computations. An interesting

compromise between the schemes of Figures 1 (b) and 1 (c) was suggested by Van Rosendale

based on the work of ref. 5 (Figure l(d)). Here, only the corrections common to both

of the coarse meshes, (m/2,n) and (m,n/2), are averaged, whereas the corrections to the

modes that live either on (m/2,n) or on (m,n/2) are passed to the fine mesh in full. This

scheme does allow parallel computations for the coarse meshes.

FOURIER ANALYSIS OF THE SCALAR ADVECTION EQUATION

A crucial factor in constructing an effective multigrid method is the selection of a

smoothing or driving scheme. Local mode (Fourier) analysis is generally applied to evaluate

possible smoothers on the basis of stability and high-frequency damping properties. The
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screeningof schemesis often performed with a single-grid analysis. Since a stable single-
grid schememay not be stable for the multigrid process,the behavior of a smoother with
a particular multigrid strategy is needed. In addition, the multigrid process can have
a substantial impact on the performance of the multigrid method. In fact, as we will
demonstrate in this paper, semicoarseningcanprovidesignificant improvement, relative to
full coarsening,in the damping of the multigrid, especiallywhen a strong meshanisotropy
is present due to the high-aspect-ratiocells.

In ref. 4, Jamesonmodels a multigrid schemeas a multilevel uniform schemeand
analyzesthe stability of this schemewhen applied to the linear advectionequation in one
spacedimension. With the multilevel uniform scheme,fine-grid and coarse-gridcorrections
arecomputed at all points of the fine grid. Then, a nonlinear filter is appliedto removethe
coarse-gridcorrections at fine-grid points not contained in the coarsegrid. The filtering
produces additional errors in the form of a carrier wave with a frequency depending on
the fine-meshspacing. This approachdoesnot allow for the coupling (aliasing) effectsdue
to the restriction operator (fine to coarsegrid transfer operator) in the multigrid method.
However,it doesoffer the advantagesof simplicity and application to more than two-level
schemes. Thus, it allows the rapid comparison of multigrid algorithms. If a multigrid
method is unstable or inefficient according to Fourier analysisof the multilevel uniform
scheme,then it is probably not a reasonablescheme.

In ref. 6 we consider the scalar two-dimensional advection equation and perform a
Fourier analysisof the multilevel uniform schemefor different multigrid strategies. The
effectsof mesh-cellaspect ratio are included in the analysis. For details of the analysis,
seeref. 6. Here, as in ref. 6, a five-stageschemewith three weighted evaluations of the
numerical dissipation is used for a solver. The explicit stability limit of this schemeis
extendedwith variable-coefficientimplicit residual smoothing,which results in a Courant-
Friedrichs-Lewy (CFL) number of 5. A two-levelanalysisis applied to both full coarsening
and semicoarseningstrategies. Figure 2 presentscontours of the amplification factor g as

a function of Fourier phase angles for the full coarsening and sequential semicoarsening

strategies when the mesh-cell aspect ratio CAR) was set to 10. Even with this AR, one

can clearly see the improved damping (reduced g) in the direction of the long side of the

cell with sequential semicoarsening.

SPATIAL DISCRETIZATION

A finite-volume approach, where the flow quantities are stored at the cell vertices, is

used for the spatial discretization of the Navier-Stokes equations. For the convective flux

calculation, an auxiliary grid is used, which is defined by connecting the cell centers of the

original cells (see Figure 3). The inviscid numerical flux is separated into the sum of an

averaged term that corresponds to central differencing and a dissipative term that adapts

the discretization stencil in accordance with local wave propagation. The dissipative flux

function is based on. the second-order-accurate-hpwind scheme of Yee and Harten (ref.

7). In the case of viscous flows the entropy correction for this scheme must be carefully

designed, as discussed in ref. 6. The physical viscous fluxes are approximated by central
differences with a local transformation from Cartesian to curvilinear coordinates (ref. 2).
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MULTISTAGE SCHEME FOR THE FINE AND COARSE MESHES

We haveobservedthe needto pair spatial discretization and particular time-stepping
schemesfor the solution of the Navier-Stokesequation. The most robust choiceof spatial
discretizations found to this point is to use a second-orderupwind schemeon the fine
meshesand to set the limiter to zero everywhereon the coarsemeshes. An alternative
taken in refs. 8 and 9 is to usescalar second-differencedissipation terms on the coarse
meshes. This approach turned out to be less robust becausethe seconddifferencesare
lessdiffusive with respect to the acousticmodes;also, the central-differenceschemeallows
wavesto travel upstream in supersonicflow. As indicated previously, a five-stageexplicit
schemewith three evaluationsof dissipation is usedfor time advancement.Disturbances
are most effectively expelledout of the computational domainby using local time stepping
and implicit residualsmoothing (refs. 8 and 10). The smoothingof the residualsallowsthe
CFL number of the explicit schemeto be ashigh as5.75,which extendsthe stability limit
(CFL*) by a factor of 2.5. The time step is proportional to the ratio of the cell volume
to the sum of the spectral radii of the inviscid flux Jacobiansin the different coordinate
directions.

To stabilize the schemesin regionswherethe viscousstability limit is morerestrictive
than the inviscid limit, the coefficients of the implicit residual smoothing operator are
locally increased,as outlined in refs. 8 and 9. At strong shocks,however,high Courant
numbersare not appropriate. Consequently, an adaptive time step is empIoyed. By using

the nondimensional second difference of the pressure as a switch, the value of CFL is locally

r_uced to approximaiely 2 at the shock: ........

MULTIGRID SCHEMES

For the numerical solution of the Navier-Stokes equations, the two-level strategies

presented in Figure 1 are extended to multilevel schemes, as displayed in Figure 4. The

only differences between the two-level schemes and the multilevel schemes occur in the

restriction process. Whenever two "down" arrows meet at a coarse mesh, averaging is

used to obtain the restricted variable. The multilevel arrangement of the coarse meshes,

shown in Figure 4(b), was first given by Mulder (ref. 11), who used semicoarsening to solve

the flow alignment problem. Suitable coordinate meshes for thin boundary layers exhibit

mostly cells with high aspect ratios in the surface-aligned direction. In this paper, other

variants of semicoarsening, which are computationally cheaper than the semicoarsening

schemes shown in Figure 4, are also considered for these situations.

One may notice that the central restriction and prolongation operators discussed pre-

viously allow for upstream propagation of disturbances in supersonic flow. Furthermore,

the corrections given by the standard multigrid scheme near strong shocks lead to diver-

gence of the calculation, especially when free-stream initial conditions are used. Therefore,

the restriction operator is damped by using

P_,j = max (1 - ei,j (n), O)fli,j, (1)

where /_,j is the standard restriction operator and e_,j (n) is a switch to detect strong

484



shocks,and
ei,j(n) = k (n) max (vi, Ill.q-l, Vi--1, Vj,/]j-I-l,/]j--l),

Pi-lj - 2pij + Pi+l,j

Pi-l,j + 2pi,j + Pi+lj
, _= Pi,j-1 - 2pi,j + Pi,j+lPi,j-1 + 2pij + Pi,j+l

(2)

I, (3)

where p denotes pressure. The damping coefficient k (n) is given a value of approximately

1 in the start-up phase of the multigrid process and is decreased to a value of about 0.4 at

later cycle numbers to allow for good asymptotic convergence rates. Such a local damping

with a k (_) that does not vanish is in line with the restriction damping of Koren and

Hemker (ref. 12), who based their damping coefficients on a more physical analysis.

A fixed V-type cycle with time stepping only on the way down is used to execute the

multigrid strategies described above. The robustness of the overall scheme is improved

by smoothing the resultant coarse-mesh corrections before they are passed to the finest

mesh. The smoothing reduces the high-frequency oscillations introduced by the linear

interpolation of the coarse-mesh corrections. The implicit residual smoothing procedure

with constant coefficients of around 0.1 is used for this smoothing. Also, the application

of full multigrid (FMG) provides a well-conditioned starting solution for the finest mesh

that is considered.

NUMERICAL RESULTS

Two different hypersonic flow cases are used to assess the capabilities of the multigrid

schemes. These are laminar Mach 10 (M = 10) flow over a compression ramp and turbulent

flow over a slender forebody at high Reynolds numbers. Table 1 gives a summary of the

geometries and the flow parameters of the test cases. In this table, Tiny is the dimensional

free-stream temperature, and T_ is the specified wall temperature. Also, the finest grid

used for each flow computation is characterized by the streamwise and normal leading-edge

spacings Asle, Anle, with the normal spacing Ant_ at the end of the geometry.

The flow over the compression ramp is identical to case 3.2 of the Workshop on

Hypersonic Flows for Reentry Problems, Part II, held in Antibes, France, in 1991. This

allows comparisons with the performance of other computational methods published in

ref. 13. Figure 5 displays the coordinate mesh generated for this test case. The low

Reynolds number allows for a mesh with moderate aspect ratios between 5 and 50 near

the wall. The 129 × 81 mesh is successively coarsened down to 9 × 6, which yields 9 grid

levels with semicoarsening and 5 levels with full coarsening. The semicoarsening strategy

is expected to eliminate most of the stiffness associated with aspect ratio. The converged

flow solution is shown in Figure 6 for the 129 × 81 and 65 × 41 grids. The computed extent

of separation in the corner is somewhat smaller for the coarse mesh than for the fine mesh.

The fine-mesh results agree well with grid-converged computations published in ref. 14.

In the next figures, we investigate the performance of the different multigrid schemes.

For this purpose, computations were started from a solution that was converged to about

plotting accuracy. Results from the different schemes of Figure 4 are compared in Figure

7. The numbers indicate the final convergence rate r of the schemes and the rate of data

processing (RDP) on a CRAY-YMP to advance one grid point by one multigrid cycle.
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The sequential semicoarsening scheme (Figure 4(c)) gives by far the best convergence rate.

For this scheme, the effect of the modifications in the multigrid strategies of Figure 4 is

investigated in Figure 8. The meshes obtained by full coarsening and by semicoarsening in

the direction normal to the wall are both important in achieving good convergence rates.

From Figures 7 and 8, we conclude that semicoarsening with a selected number of coarse

meshes is most effective for this flow problem. Semicoarsening is about 2.4 times faster

than full coarsening, which does a surprisingly good job because of its low work count. In

particular, the multigrid scheme with sequential semicoarsening converges (i.e., the residual

was reduced 3 orders of magnitude) in roughly 33 sec (CPU time) on a Cray-YMP, which

is 10 times faster than the single-mesh scheme.

The flow over a slender forebody is chosen to represent a generic configuration that

corresponds to a high-speed civil transport aircraft or an air-breathing space transportation

system with low wave drag. The high Reynolds numbers yield thin boundary layers, which

can only be resolved with highly clustered coordinate meshes and large-aspect-ratio cells.

The mesh used for the present investigations is displayed in Figure 9. The cells near the

wall have aspect ratios up to 25000. The flow computations were done with fixed transition

at 2 percent chord and with the assumption of an adiabatic wall. Figure 10 shows the Mach

contours for the mesh of 256 x 96 cells, and Figures 11 and 12 show the solution obtained on

three successively refined meshes. Both the distributions of the skin friction and the wall

temperature are accurately computed, even with only 25 points in the normal direction.

Next we examine the convergence behavior of the multigrid schemes. The fine mesh

with 257 x 97 points allows 11 grid levels to be used with semicoarsening. The full diamond-

shaped tree of coarse meshes cannot be run because the time-stepping scheme is not well

suited to handle the extreme aspect ratios that occur on the coarse meshes. With the

proper half of the diamond, which includes the meshes with relatively low aspect ratios,

the numerical solution converges. Figure 13 displays a comparison of the different multigrid

strategies. The computations are started from a preconverged solution. Again, the scheme

with sequential semicoarsening converges best. The differences between the multigrid

schemes for this case, which has cells with very high aspect ratios, are larger than for the

ramp flow. The final convergence rate of the scheme with sequential semicoarsening is 15

times better than the rate with full coarsening. A comparison of the performance for the

complete FMG process is given in Figure 14. The sequential semicoarsening scheme takes

194 cycles and 570 sec to reduce the averaged residuals to 10 -2 on the fine mesh. The

scheme with full coarsening takes 1024 cycles and 1430 sec, and the single mesh code takes

7762 time steps and 6190 sec to achieve the same convergence level. Note that residuals of

10 -2 correspond to a solution that is converged within plotting accuracy. If we compared

computer times to reach lower levels of residuals instead, then the results would have been

even better for the multigrid scheme with semicoarsening.

CONCLUSIONS

New multigrid schemes for hypersonic flow computations have been investigated. The

basic solution algorithm employs upwind disc_etization and explicit multistage time step-

ping. Various multigrid schemes with semicoarsening are introduced to overcome the
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stiffness that results from the high-aspect-ratio mesh cells used to resolve viscous flows.

The basic components of the algorithm are examined with a Fourier stability analysis ap-

plied to the two-dimensional advection equation. Both the results of the Fourier analysis

and the computations of high Reynolds number flows suggest that the semicoarsening ap-

proach is effective. The convergence rates shown for hypersonic viscous flows are similar
or even better than those previously published for the transonic regime in refs. 1 and 2.

Further work is required to make the computational scheme less expensive. This need for

more research is particularly true for the coarse meshes used within the semicoarsening

approach, which make up the major portion of the overall work count of the scheme.
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Table 1. Flow and geometric parameters for test cases

Flow Case

M

\ \ \ x', ", <_\_\\ \

- |--C _

M a Reo T.,,,r T,dT_,f

i0 20° 18119 52K 5.57

7 5_ 2.E8 100K adlab.

No.Pt,s. As,,/c &nl,/c _nte/C

129x81 0.004 0.0008 0.0008

257x97 4.4E-5 2.E-7 2.E-6

(m,n)

1

1

(m/2, n/2)

(m,n)

i_1.5 .5

(m/2, n) (m, n/2)

(a) Full coarsening. (b) Semicoarsening with simple averaging.

(m, n)

1 1

(m/2, n) (m, n/2)

(m,n)

(m/2, n) (m,n/2)

(c) Sequential semicoarsening. (d) Semicoarsening with selective averaging.

Figure 1. Two-level multigrid schemes investigated in present work.

488



_I_ Ll_Vel g

1.00

2.5 _1 0.95
H 0.89

-1oo..1 F 0.79

E 0.74

oC 0.53
B 0.58

-- = A 0.52

0.0 _ 9 0.47

8 0.42

7 0.37

8 0.31

,..._1 _ 4 0.21

3 0.16

I 2 0.10
-2.5 1 1 0.05

i i [ •

-2.5 0.0 2.5

Og

(a) Two levels, full coarsening, AR = 10 (CFL = 5.0, CFL* = 2.4).
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0.63

0.58
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0.42

0,37

0.31

0.26

0.21

0.16

0.10
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(b) Two levels, sequential semicoarsening, weights = 1.0, AR = 10 (CFL = 5.0, CFL* = 2.4).

Figure 2. Contour plots of amplification factor for 5-stage Runge-Kutta

scheme with first-order upwind approximation and 3 evaluations

of dissipation (coefficients: 0.2742, 0.2067, 0.5020, 0.5142, 1.0).
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Figure 3. Control volume for nodal-point scheme.

(a) Full coarsening. (b) Semicoarsening with simple averaging.

(c) Sequential semicoarsening. (d) Semicoarsening with selective averaging.

Figure 4. Multilevel schemes.
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Figure 5. Coordinate mesh for ramp-flow problem with 128x80 cells.
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Figure 6. Flow solution for ramp-flow problem.
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Figure 9. Coordinate mesh for forebody with 256x96 cells.
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Figure 1I. Distribution of skin friction along forebody.
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Figure 12. Distribution of adiabatic wall temperature along £orebody.

494



-I-

-2

c_

c_ -4

o

-5

-6

_'° ................ °..

*'".-.. ....... °.......o....

RDP = 56/_sr = 0.996

RDP = l12#s
= 0.976

o0 o

0.941

-7 J i i L i ,

0 40 80 120

multigrid cycles

Figure 13. Influence of multigrid strategy on convergence for forebody, mesh 256x96.
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Figure 14. Convergence histories for single-mesh time stepping and multigrld with sequen-

tim semicoarsening.
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