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IV. DATA PRESENTATION AND DISCUSSION

Detailed concentration and velocity measurements were made in the modified rig. Three configurations
were studied: dome annular jets only, primary jets only, and combined dome annular jets and primary
jets.

4.1 DOME ANNULAR JETS

Figure 4.1-1" shows the annular jets only configuration. The following two subsections present the
concentration and velocity measurements, respectively.

4.1.1 Dome Annular ly - Con ion Measuremen

For the annular jets only case, no qualitative information can be collected from the data since all air en-
tering the model was mixed with seed particles. The pictures here do aid in flow visualization.

Pictures for the annular jets only case are presented in Figures 4.1.1-1 through 4.1.1-6. Single and 127
frame averages of the xy plane at z=7.5 in. are seen in Figures 4.1.1-1 and 4.1.1-2. Smoke entering the
annular jet is seen to close behind the center portion of the annular jet and travel downstream. Recircu-
lation zones behind the center portion of the annular jet and along the upper and lower walls are pre-
sent. The pictures at z=7.0 and 8.0 in. have larger recirculation zones along the upper and lower walls.

4.1.2 Dome Annular - Velocity Measurements

Five annular jets were investigated. The three-view drawing in Figure 4.1-1 shows the configuration of
the model except all primary jets were removed and replaced with plugs.

4.1.2.1 Inlet Conditions

To establish inlet conditions of the annular jets, velocity scans were made at four edges of the center an-
nular jet. Figure 4.1.2-1 shows a sketch of where the data were taken with respect to the center annular

jet.

Figure 4.1.2-2 shows mean and root mean square (rms) velocities at 0.08 in. from the annular jet exit. The
results are plotted versus the radius of the annular jet. The mean velocity has a relatively flat profile
across the annular gap and agreement between data taken at the different edges. A mean velocity of
23.2 ft/sec exists in the gap. The rms velocity shows larger values for the right and left annular jet
edges than the top and bottom edges. This is due to the finite size of the probe volume. The probe vol-
ume length was oriented across the annular gap for these two measurements, causing gradient bias to oc-
cur due to the existence of a wide range of velocities across the probe volume.

4.1.2.2 Mean Flowfield Resuits

Figure 4.1.2-3 provides details of the xy plane data sampling grid. The vector plots for the annular jets
only case are seen in Figures 4.1.2-4 through 4.1.2-19. Figure 4.1.2-4 shows the rig centerplane vector
plot with streamlines. Two regions of high velocity are seen as the fluid discharges into the rig
through the annular jets. These peaks spread out and entrain more fluid as the annular jet of fluid de-
velops into the rig. A portion of the fluid from the upper and lower section of the annular jet sets up a
pair of counter rotating vortices within the center portion of the annular jet. The main portion of the
fluid can be seen converging at the middle of the rig and accelerating as the flow is squeezed between
recirculation regions of flow along the upper and lower walls of the rig. Downstream, the main flow
then decelerates as the recirculation zones are passed.

" Figures for Section IV appear at the end of each subsection. The figure number identifies the
subsection in which the figure is discussed.
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Recirculating flow along the upper and lower walls of the rig has been observed through flow visual-
ization studies and will be presented in a later section. The vector plot at z=7.5 in. shows some indica-
tion of these recirculation zones by the slight turning of the flow at the upper and lower data limits.

Results similar to those at z=7.5 in. are seen at z=7.4 and 7.6 in. (Figure 4.1.2-5). A recirculation zone
along the upper wall in the z=7.6 in. plot is more evident than the previous two plots demonstrating
asymmetries in the flow. The existence of recirculating flow in the center annular jet region and the
convergence and acceleration of the main flow between the recirculating flow along the upper and lower
walls still persists.

Similar results are seen farther away from the centerplane between 6.8 in. < z < 8.2 in., Figures 4.1.2-8
through 4.1.2-19 for planes z < 7.2 in. and z > 7.8 in. Several general trends can be observed from these
figures. First is the movement of the two velocity peaks at the annular jet exit toward the centerline
and the disappearance of the recirculation zone behind the center of the annular jet. The cause of both
of these is due to the annular jet curvature. The second general trend is the widening of the recirculation
zones along the upper and lower walls. Both recirculation zones are clearly evident farther away from
the rig centerplane. Third, a decrease in the main flow velocity along the centerline is seen. The flow
is still seen to accelerate between the upper and lower recirculation zones but with decreased velocities.

At planes outside of the annular jet, 6.0 in. <z < 6.7 in. and 8.3 in. £ 2 £ 9.0 in., there is a breakdown of
any real organized pattern of flow. Some general trends are still noticeable in the plots. First, down-
stream flow is reduced and completely disappears by the time the planes at z=6.3 in. and z=8.7 in. are
reached. Regions of backflow along upper and lower walls gradually converge at the center of the rig
eliminating flow downstream. Second, larger regions of backflow seem to exist along the lower wall of
the rig. Initial measurements showed the flow in the rig was very sensitive to the annular jet endplate
position. [f the plate was not perfectly perpendicular to all the rig walls asymmetries would arise.

No well defined recirculation zone can be seen in any of the previous plots. Sometimes very random,
perhaps chaotic, flow velocities are seen in the recirculating flow. The flow was observed to be ex-
tremely unsteady during the flow visualization study. Still, general trends in the flow can be dis-
cerned.

4.1.2.3 Turbulent Flowfield Results

The yz plane Urms and Vmg plots for the annular jets only case can be seen in Figures 4.1.2-20 through
4.1.2-24. Plots at x=0.5 in. (Figure 4.1.2-20) show larger fluctuations in the annular gap of the annular
jet with decreased fluctuations in the inner portion of the annular jet and outside the annular jet, z < 6.8
in. Larger turbulence levels occur at the exit of the annular jet due to the mixing of the fluid in the rig
with that entering the rig. Larger turbulent fluctuations can also be seen at z > 8.2 in. in both Urms and
Vrms plots. Since these levels are not present on the opposite side of the cell, these values may be in er-
ror.

At x=1.0 in. similar results are seen, increased magnitudes are evident in the inner portion of the annu-
lar jet and a spreading of the turbulence due to the entraining of more fluid by the annular jet. The Vrmsg
plot is seen to be spread out over a larger area than the Urmg plot and have less defined fluctuations in
the annular jet region. Downstream plots show similar development of Urmg and Vrms profiles in the
rig (Figures 4.1.2-23 through 4.1.2-29).

Figures 4.1.2-30 and 4.1.2-31 show the Urms and Vrms velocities as they develop downstream of the an-
nular jet in the planes at z=7.0, 7.5, and 8.0 in. The largest Urms fluctuations occur at the annular jet en-
trance, while smaller fluctuations are present in the center of the annular jet. For the Vrmg plots, peak
values can be seen behind the center of the annular jet. The turbulence spreads toward the upper and
lower walls and the cell boundaries with decreasing magnitude farther downstream. Uniform turbu-
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lence can be observed at x=6.0 in., but magnitudes are much greater than zero unlike values for the pri-
mary jets only case.

The two-dimensional turbulent kinetic energy plots are presented in Figure 4.1.2-32 through 4.1.2-36.
Trends existing in the Urms and Vrms plots are also seen to occur here. Similar plots are seen at x=0.5 in.
and x=1.0 in. Most of the turbulent energy can be seen concentrated at the annular jet exit due to larger
velocity gradients in this area because of annular jet flow mixing with the flow already in the rig. At
x=1.0 in., the turbulent energy can be seen to spread out more and increases magnitude in the inner
annular jet region. Regions of peak turbulence energy can be seen at z > 8.2 in., where peaks existed in
the rms plots. Similar results can be seen at downstream stations x=1.5 to 9 in. in Figures 4.1.2-33
through 4.1.2-36.

Figure 4.1.2-37 shows line plots of the K' distribution as it develops downstream for planes at z=7.0, 7.5,
and 8.0 in. The greatest turbulence energy can be seen at the annular jet exit, as was seen from the contour
plots. Planes at z=7.0 and 8.0 in. have peak values at the rig center, while at z=7.5 in. two peaks are
seen on both sides of the rig center. Peak magnitudes diffuse on downstream, but the K' distribution is
not quite uniform at x=6.0 in.

yz plane plots of the xy plane Reynolds shear stress are in Figures 4.1.2-38 through 4.1.242. The U'V'
distribution at x=0.5 in. indicates that the largest magnitude occurs in the annular jet exit region and
near the cell edges at z > 8.5 in. Peak fluctuations in the annular jet region occur at the edges of the an-
nular gap where the largest turbulent friction exists due to fluid mixing between fluid entering through
the annular jet and the fluid within the rig. Another flat profile can be seen outside the annular jet re-
gion, indicating that very little momentum transfer is occurring. Peak fluctuations at z > 8.5 in. may be
caused by errors in measurement. Similar results are seen between x=1.0 in. and x=9.0 in. Additional
plots for downstream locations are in Figures 4.1.2-39 through 4.1.2-42.

Figure 4.1.2-43 shows Reynolds shear stress distributions in planes at z=7.0, 7.5, and 8.0 in. Largest
magnitudes and variations occur immediately downstream of the annular jet, where large velocity gra-
dients and recirculation zones are present. Downstream, the shear stress spreads toward the rig bound-
aries with decreasing magnitudes. Positive values of U'V' occur in the upper portion of the rig and neg-
ative values in the lower portion of the rig.
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TE92-2539

Figure 4.1.1-1. Annular jets only single frame picture, z=7.5 in.

TE92-2540

Figure 4.1.1-2. Annular jets only 127 frame average picture, z=7.5 in.
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TE92-2541
Figure 4.1.1-3. Annular jets only single frame picture, z=7.0 in.

TE92-2542

Figure 4.1.14. Annular jets only 127 frame average picture, z=7.0 in.
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TE92-2543

Figure 4.1.1-5. Annular jets only single frame picture, .z=8.0 in.

TE92-2544
Figure 4.1.1-6. Annular jets only 127 frame average picture, z=8.0 in.
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Figure 4.1.2-1. Annular jet scans for inlet conditions.
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370



6.0in. £z 6.7 in.

AND 8.3in. £z <9.0in.

28 -
2 =
=20 =
2186 :
212F
~o08f :
0.4 -
0.0 Limimesl ! s ] el il il
-Q. 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
X (inches)
6.8in.£z<8.2in.
2.8 y
M4 =
7 20 ==
218 =—
2 12 == ,
< L. B !
> 08 - =
04 fF =
0.0 L S 1955, O T PR (I L L
-0. 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
X (inches)
TES2-2547
Figure 4.1.2-3. Annular jets only Xy plane sampling grids.

371



ocauons

cara

il

3-9.—.:

I

10 fi/sec

.___:_::_:___ I

Lot
\Z::_ :::_;Z
.:::_:_:_:._:\
il nheee
A
AT GHAS

i S
/R

AR AUA

—._..._._._.-._L.-._L._.-LF.

el |

45 50 55 6.0 6.5

-

CROTNODOITNODYTNO
ONNNANNT™ - -~ 00000

(seyoun) A

1S 20 25 30 35 40

10

-0.0 0.5

X (inches)

TEQ92-2548

=7 .91

372

Figure 4.1.2-4. Annular jets only mean velocity vector plot at Z
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Figure 4.1.2-8. Annular jets only mean velocity vector plots a) Z=7.1 in. b) Z=7.9 in.
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Figure 4.1.2-9. Annular jets only mean velocity vector plots a) z=7.0 in. b) Z=8.0 in.
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Figure 4.1.2-11. Annular jets only mean velocity vector plots a) Z=6.8 in. b) Z=8.2 in.
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Figure 4.1.2-12. Annular jets only mean velocity vector plots a) Z=6.7 in. b) z=83 in.
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Figure 4.1.2-13. Annular jets only mean velocity vector plots a) Z=6.6 in. b) Z=8.4 in.
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Figure 4.1.2-17. Annular jets only mean velocity vector plots a) Z=6.2 in. b) Z=8.8 in.
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Figure 4.1.2-18. Annular jets only mean velocity vector plots a) z=6.1 in. b) Z=8.9 in.
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Figure 4.1.2-19. Annular jets only mean velocity vector plots a) z=6.0 in. b) z=9.0 in.
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Figure 4.1.2-20. Annular jets only contour plot of Urms and Vrms at x=0.5 in.
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Figure 4.1.2-21. Annular jets only contour plot of Urms and Vrms atx=1.0in.
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22. Annular jets only contour plot of Urms and Vrms at x

Figure 4.1.2
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Figure 4.1.2-24. Annular jets only contour plot of Urms and Vrms at x=2.5 in.
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Figure 4.1.2-28. Annular jets only contour plot of Urms and Vrms at x
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Figure 4.1.2-38. Annular jets only contour plot of U'V" at a) x=0.5 in. b) x=1.0 in.
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42 PRIMARY JETS

Figure 4.2-1 shows a drawing of the primary jets only configuration. The next two subsections will pre-
sent the concentration and velocity measurements, respectively.

4.2, i - Con tion Measur nt

Marker particles were introduced into the combustor model through the lower primary jet for this case.
Data collected for this case will provide qualitative information about the mixing of the two primary
jets.

Results for the primary jets only case are presented in Figures 4.2.1-1 through 4.2.1-12. Mean concentra-
tion values were obtained by averaging 127 frames of images of the xy plane. Figures 4.2.1-1 and 4.2.1-2
are single and 127 frame averages of images taken at z=7.5 in. The spread at the impingement region is
less visible in the average picture due to oscillations of this region above and below the centerline. By
averaging, the observable oscillations are reduced. Pictures in Figures 4.2.1-3 through 4.2.1-6 are 0.5 in.
from the rig centerplane. The spreading of the jet impingement point can clearly be seen in all of the
pictures, due to spreading of smoke in the xz plane. The turbulent nature of the flow is evident by the
difference between single and averaged frame pictures. Symmetry should exist between averaged
frames since each is the same distance from the rig centerplane.

Figures 4.2.1-7 through 4.2.1-12 present 3-D and line plots of the concentration inside the air rig. The
line plots are taken at stations of constant x from the lower to upper wall of the rig. At z=7.5 in., the
smoke entering the lower primary jet enters the rig up to the stagnation point with the opposing jet.
Smoke is moved upstream and downstream by the jet stagnation point spreading radially in the xz
plane. The line plots indicate that concentrations between upper and lower walls increase farther
downstream and show a peak concentration near the rig centerline. Moving 0.5 in. away from the z=7.5
in. plane, z=7.0 and 8.0 in., line plots show an increased minimum concentration level at stations up-
stream and downstream of the primary jets. Peak concentrations still exist near the rig centerline at
y=1.5in. A peak can also be seen in the 3-D plots near x and y =1.5 in. due to the spreading of the smoke
from the stagnation regions of the primary jets in the xz plane. Even farther away from the center-
plane, z=6.5 and 8.5 in., the concentration levels spread out even more with peak values slightly above
the rig centerline. As the smoke becomes completely mixed with air entering the upper primary jet, con-
centration levels are nearly equal from bottom to top walls of the rig downstream of x=1.0 in.

Figure 4.2.1-12 shows a line plot comparing measured concentrations along the primary jet axis of the
different z planes. Planes equal distance from the center plane, z=7.5 in., should be symmetric due to rig
symmetry. Planes at z=6.5 and 7.0 in. have peak concentrations placed closer to the upper wall of the
rig than planes at z=8.0 and 8.5 in. A flapping motion of the stagnation region was observed in the xy
plane. This flapping motion should also be present in the yz plane if symmetry is valid, and if more
pronounced may cause a tilt of the stagnation region. Any slight misalignment in the jet could cause
these asymmetries to arise.

4.2.2 Primary Jets - Velocity Measurements

A set of five pairs of opposing primary jets centered 1.5 in. (x/H = 0.5) downstream of the rig endplate
was used. The annular jet endplate was replaced with a solid one-inch thick aluminum plate for this
case. Figure 4.2.2-1 shows a drawing of the rig when annular jets are used in conjunction with the
primary jets.

4. nl ndition

To establish inlet conditions, velocity measurements of the primary jets were conducted. An extensive
measurement of the lower primary jet was performed to observe the development of the jet as it enters
the combustor model. A series of xy plane scans using the grid in Figure 4.2.2-2 were performed. These
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scans were taken at 0.05 in. intervals in the z direction resulting in the xz plane grid shown in Figure
4.2.2-3. Since the average probe volume length was 0.05 in., the probe volume should not overlap be-
tween data points. Additionally, a measurement was taken of the upper and lower jets to determine the
relative strengths of the two primary jets.

The mean and rms plots of the lower jet are presented in Figures 4.2.2+4 through 4.2.2-10. Figure 4.2.24
shows the axial velocity, distribution of the lower jet at y=0.1 in. From this plot it is evident that the
entrance velocity has a flat top profile with mean velocity of 27.9 ft/sec. This yields a Reynolds num-
ber of 6,392 based on the jet diameter. The axial fluctuating velocity, Vrms, in Figure 4.2.24 indicates
peak values along the edges of the jet at z=7.7 and 2=7.3 in. and lower values at the edges of the jet at
x=1.3 and x=1.7 in. This is caused by the length of the probe volume being approximately the same size
as the grid spacings.

Measurements taken at y=0.25, 0.5, 0.75, 1.0, and 1.25 in. (Figures 4.2.2-5 through 4.2.2-9) show the max-
imum velocity at the center of the jet starts to gradually decrease and spread as more fluid is entrained
into the jet and it nears the opposed jet. Also, the jet is seen to have a slight bend downstream due to
the crossflow in the rig. The Vrmg plots indicate that larger fluctuations occur at the jet edges as the jet
emerges into the more turbulent flow. The upstream edge of the jet, x=1.3 in., shows larger fluctuations
than any other part of the jet due to recirculating flow upstream of the jet entrance.

The plane at y=1.5 in. is at the center of the combustor model, Figure 4.2.2-11. Velocity fluctuations of
-10 to 6 ft/sec are a result of the fluctuating stagnation point of the two opposing jets. Higher rms values
due to increased turbulent mixing are also evident. Flow visualization revealed that the stagnation
point of the two jets oscillated about the midpoint.

The velocity distribution 0.6 in. from the primary jet inlets is plotted in Figure 4.2.2-11, showing a com-
parison between the upper and lower primary jets. Approximately a 3% difference between the upper
and lower jet maximum velocity is present. The rms values indicate that the upstream side of the jet
has a slightly higher turbulence level due to recirculating flow.

4.2.2.2 Mean Flowfield Results

Perhaps the most helpful form of data presentation of the mean flow is xy plane vector plots. Vector
plots at the various z locations provide a quick and informative view of the flow. With the addition of
streamlines to the vector plots, recirculation zones and symmetry about the rig centerline is evident.
Figure 4.2.2-12 provides details of the xy plane sampling grid. Figures 4.2.2-13 through 4.2.2-17 show
vector plots for 7.1 £z < 7.9 in. Symmetry should exist between upper and lower halves of the rig and
between planes equal distance from the centerplane (z=7.5 in.).

Figure 4.2.2-13 shows the vector plot for the rig centerplane (z=7.5 in.). Clearly evident is the upper
rear recirculation zone centered about x=3.5 in. and y=2.2 in. A lower recirculation zone also exists at
approximately x=3.5 in. and y=0.75 in. Asymmetry between upper and lower halves is clear as the flow
at the centerline tends toward the lower wall, resuiting in a reattachment point of the lower recir-
culation zone farther upstream than the upper zone. This reattachment point will cause the upper re-
circulation zone to be larger than the lower recirculation zone. A larger recirculation zone will allow
the flow to diffuse faster and cause the stagnation point of the recirculation zone to occur farther up-
stream.

Plots at the planes of z=74 and z=7.6 in. (Figure 4.2.2-14) should be the same due to symmetry of the rig.
These two plots show the centers of the upper and lower rear recirculation zones occur at x=3.5, y=2.1 in.
and x=3.75, y=0.7 in., respectively, for z=7.6 in. The same points for z=7.4 in. are at x=3.45, y=2.2 in. and
x=3.75, y=0.7 in., respectively. Here symmetry between planes was seen to exist, while symmetry
between upper and lower halves of the rig does not exist.
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Comparison of the two planes at z=7.7 in. and z=7.3 in. (Figure 4.2.2-15) shows that the recirculation
zones in the z=7.3 in. plane are centered slightly forward of the zones in the z=7.7 in. plane. In addi-
tion, the recirculation zones in the z=7.3 in. plane entrains fluid immediately downstream of the jet
stagnation point, while in the z=7.7 in. plane the fluid immediately downstream of the jet stagnation
point is allowed to move with the axial flow.

Different features of the flowfield are seen at the z=7.2 and 2=7.8 in. planes. In Figure 4.2.2-16, flow
forward of the jet inlet point, x=1.5 in., is not all entrained into the forward recirculation zones. Since
the primary jets have a diameter of 0.43 in., the planes here are outside the boundaries of the jet. Thus,
fluid is able to flow downstream and be entrained into the rear recirculation zones. Comparison between
the two planes shows definite asymmetries. The rear recirculation zones in the z=7.2 in. plane are off-
set due to the reattachment point of the lower recirculation zone being farther upstream than the upper
zone. While both planes see a bending of the flow toward the lower wall, only the plane at z=7.2 in.
shows the dramatic offset of recirculation zones.

Figure 4.2.2-17 shows plots at z=7.1 and z=7.9 in., respectively. The plane at z=7.1 in. seems fairly
symmetric with rear recirculation zones at approximately x=3.5 in. The flow between upper and lower
halves of the rig is symmetrical as the fluid continues downstream. The plane at z=7.9 in. shows offset
rear recirculation zones with the upper and lower zones centered around x=3.4 and 3.2 in., respectively.
[n addition, forward recirculation zones begin to become visible within the measured portion of the
flow.

Additional vector plots of the flow between the planes z=6.0 and 7.0 in. and z=8.0 and 9.0 in. are pre-
sented in Figures 4.2.2-18 through 4.2.2-28. Table 4.2-] presents approximate forward and rear recircu-
lation zone locations for the planes 6.5 in. < z < 8.6 in. Some general trends of the recirculation zones can
be seen from this table. Forward recirculation zones move downstream and toward the upper and lower
walls farther away from the rig centerplane. Also, the forward recirculation zones tend to be fairly
symmetric between upper and lower portions of the rig. These recirculation zones are clearly visible be-
tween the planes z=6.5 and 7.0 in. and z=8.0 and 8.5 in.

The center of the rear recirculation zones tends to move upstream and toward the upper and lower walls
the farther away it is from the rig centerplane, z=7.5 in. Asymmetry between upper and lower recircu-
lation zones is present in many of the plots. In addition, there seems to be a lot of variation in the occur-
rence of the recirculation zone centers between planes on different sides of the rig centerplane. Another
very noticeable aspect in all the plots is the trend for the streamiines to bend quicker toward the lower
wall of the rig. Reverse flow upstream of the jet entrance is evident even to the cell boundaries at z=6.0
and 9.0 in., indicating how influential the primary jets are throughout the cell.

4.2.2.3 Turbulent Flowfield Results

Figures 4.2.2-24 through 4.2.2-37 present the axial fluctuating, Urms, and the vertical fluctuating,
Vrms, velocities in the yz plane. At stations x=0.5 and x=1.0 in. peak values of the fluctuating compo-
nents are seen at the center portion of the rig. The magnitudes of these quantities are seen to increase at
station x=1.0 in. due to the measurements being closer to the impinging jets. The maximum value of the
Urms term is seen to be more and more concentrated in the center portion to the rig at x=1.0 in. than at
x=0.5 in. The Vrms term seems to diffuse and spread out at the x=1.0 in. station while the magnitudes of
the fluctuations in the center portion of the rig nearly doubles.

At the entrance of the primary jets, x=1.5 in., the influence of the primary jets can clearly be seen. In
Figure 4.2.2-31, the Urms velocity is seen to have a large decrease in magnitude between the upper and
lower walls of the rig at z=7.5 in., indicating very low turbulence in this region. Two peaks can be seen
on both sides of this dip, at z=6.6 in. and z=8.4 in., indicating increased turbulence in these regions due to
the fluid flow accelerating around the jets downstream.
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Table 4.2-1.

Forward zones Rear zones

z X y X y X y X y
6.5 12 2.4 1.3 <0.5 -- -- -- --
6.6 1.0 2.25 1.0 0.75 29 >2.5 2.7 <05
6.7 0.85 2.15 0.85 0.85 3.15 2.35 3.0 <05
6.8 0.8 2.05 0.8 0.95 35 24 0.2 0.5
6.9 065 2.0 0.65 0.95 34 2.35 3.3 0.7
7.0 <0.5 2.1 <0.5 0.95 345 2.25 3.2 0.7
7.1 <0.5 2.0 <0.5 1.0 3.5 2.3 3.4 0.7
7.2 <0.5 2.0 <0.5 1.0 345 22 3.6 0.7
7.3 = -- -- -- 3.35 22 3.3 0.8
7.4 -- -- -- -- 3.45 22 3.7 0.7
7.5 -- -- -- -- 3.5 2.2 3.8 0.7
7.6 - -- -- -- 35 2.1 3.7 0.7
7.7 - . -- -- 3.4 2.15 3.5 0.7
7.8 <0.5 2.0 <0.5 1.0 3.5 22 3.4 0.8
7.9 <0.5 2.0 <0.5 1.0 3.4 2.2 3.2 0.8
8.0 0.65 1.95 0.5 1.0 3.35 20 -- .
8.1 0.7 2.0 0.7 1.0 3.25 2.25 3.4 0.7
8.2 0.8 2.05 0.8 0.95 3.35 2.3 3.2 0.7
8.3 0.85 2.05 0.85 0.9 3.0 2.3 3.1 0.7
8.4 1.1 2.15 1.0 0.85 3.0 2.3 3.0 <05
8.5 1.3 2.35 1.3 0.7 27 >2.5 2.7 <0.5
8.6 1.5 2.5 1.5 0.6 -- -- -- --

The Vrms plot at x=1.5 in. shows a decrease in the Vg velocity at the jet centerplane. However, this
decrease in magnitude does not span the entire height of the rig. Peak values are seen at the middle of
the rig at y=1.5 in., z=7.5 in. This is caused by increased turbulence due to the fluctuation of the jet
stagnation point about y=1.5 in.

Downstream of the primary jet entrance, at x=2.0 in., the magnitude of the Urms plot increases due to
the acceleration of fluid from the jet stagnation point between the upper and lower recirculation zones.
The Vrms term shows a decrease and diffusing of magnitudes toward the walls and cell boundaries.
Similar results are seen at stations x=2.5, 3.0, 3.5, 4.0, and 6.0 in., see Figures 4.2.2-33 through 4.2.2-37.

Figures 4.2.2-38 and 4.2.2-39 show line plots of the Urms and Vms velocities at measurement locations
between x=0.5 and 6.0 in. for planes at z=7.0, 7.5, and 8.0 in. The largest fluctuations in the Urmg term
occur immediately upstream and downstream of the jet stagnation point. The largest Vrmg fluctuations
occur at the jet stagnation point, x=1.5 in. The Urmg and Vrms magnitudes decrease and diffuse down-
stream and farther from the rig centerline until nearly uniformm magnitudes at x=6.0 in.

An alternate way to view the previous terms is through the two-dimensional turbulent kinetic energy
term. Figures 4.2.2-40 through 4.2.2-44 show the results of the yz plane plots for K'. At station x=0.5
in., a central peak is observed in the middle regions of the rig indicating higher levels of turbulence
than other regions of the flow. Similar resuits are seen at x=1.0 in. where the magnitude of K' increases
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due to the acceleration of the fluid from the jet stagnation point between the forward recirculation
zones.

The greatest magnitude of turbulence energy occurs at the primary jet impingement, Figure 4.2.2-41. A
reduced magnitude of turbulence energy exists at z=7.5 in., where the primary jets enter, and larger
peaks are on either side due to jet entraining fluid within the rig. Also visible are the two peaks on ei-
ther side of the rig midpoint, see Figure 4.2.2-31 for the Urmg profile. Again, acceleration of fluid
around the primary jets causes this increased turbulence.

Results at x=2.0 in. indicate a spreading of the turbulence energy in the z direction. Increased flow
around the primary jets and downstream are responsible for this. Similar plots downstream are pre-
sented in Figures 4.2.2-42, 4.2.2-43, and 4.2.2-44.

Figure 4.2.2-45 represents line plots of K' at the 2 planes of 7.0, 7.5, and 8.0 in. It can be seen that the
highest turbulence levels are around the stagnation region of the two jets. Turbulence levels decrease
and spread towards the upper and lower walls of the rig as the flow continues downstream. Uniform
turbulence is present by the time the flow is at x=6.0 in.

Figures 4.2.2-46 through 4.2.2-50 represent yz plane contour plots of the Reynolds shear stress component
in the xy plane. Higher magnitudes of Reynolds stress occur in areas of higher velocity gradients where
large momentum transfer occur. At the x=0.5 in. station peak values occur between z=6.7 in. and z=8.3 in.
In addition, the sign of the Reynolds stress changes at the midpoint of the rig, y=1.5 in. These peak
values occur in the regions where the forward recirculation zones occur. A similar plot is seen at the
x=1.0 in. station. Only differences between this plot and at x=0.5 in. is that the magnitudes have
increased.

A very different plot is seen at x=1.5 in. in Figure 4.2.2-47. Peak negative values occur at the z=7.5 in.
plane where the primary jets enter. This indicates a large amount of momentum transfer taking place
due to the fluid being entrained into the entering jet. Maximum positive values occur in the center of the
rig on either side of the centerplane. Here, the stagnation point of the two jets results in large amount of
shear stress and higher turbulence as the stagnation point fluctuates.

The plot at x=2.0 in. shows negative values of shear stress now occur on the lower half of the rig, while
positive values occur on the upper half of the rig. Peak values can be seen to occur between z=6.7 and
z=8.3 in., due to the recirculation zones in these regions. Additional plots downstream have similar
trends and can be seen in Figures 4.2.2-48, 4.2.2-49, and 4.2.2-50.

Figure 4.2.2-51 shows the Reynolds shear stress distribution in the planes at z=7.0, 7.5, and 8.0 in. Peak

values occur at the jet stagnation region. Magnitudes are seen to decrease farther away from the center-
plane and a uniform distribution between upper and lower walls develops at x=6.0 in.
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TES2-2590
Figure 4.2.1-1. Primary jets only single frame picture, z=7.5 in.

TE92-2591
Figure 4.2.1-2. Primary jets only 127 frame average picture, z=7.5 in.
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TE92-2592
Figure 4.2.1-3. Primary jets only single frame picture, z=7.0 in.

TE92-2593
Figure 4.2.14. Primary jets only 127 frame average picture, z=7.0 in.
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TE92-2594
Figure 4.2.1-5. Primary jets only single frame picture, z=8.0 in.

TE92-2595
Figure 4.2.1-6. Primary jets only 127 frame average picture, z=8.0 in.
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Figure 4.2.1-7. Primary jets only mean concentration distribution, z=7.5 in.
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Figure 4.2.1-9. Primary jets only mean concentration distribution, z=8.0 in.
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Figure 4.2.1-10. Primary jets only mean concentration distribution, z=6.5 in.
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Figure 4.2.1-11. Primary jets only mean concentration distribution, z=8.5 in.
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Figure 4.2.2-21. Primary jets only mean velocity vector plots a) z=6.7 in. b) z=8.3 in.
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Figure 4.2.2-22. Primary jets only mean velocity vector plots a) z=6.6 in. b) z=8.4 in.
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Figure 4.2.2-31. Primary jets only contour plot of Urms and Vrms at x
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Figure 4.2.2-37. Primary jets only contour plot of Urms and Vrms at x=6.0 in.
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Figure 4.2.2-40. Primary jets only contour plot of K' at a) x=0.5 in. b) x=1.0 in.

469



dama

locanans

o)
o

(o)
o)

2640

TES2-

Figure 4.2.241. Primary jets only contour plot of K’ at a) x=1.5 in. b) x=2.0 in.

470




O000o00OO
MNO®+t M~

da

ncauons

onowvowo
TNV~~~

\

)

A0
..._ ¢ x“.."..

"
....

"

0
00

T — 00

09
k

TES2-2641

=3.01n:

Figure 4.2.242. Primary jets only contour plot of K' at a) x=2.5 in. b) x

471



-2642

TES2

472

Figure 4.2.2-43. Primary jets only contour plot of K' at a) x=3.5 in. b) x=4.0 in.
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Figure 4.2.2-50. Primary jets only contour plot of U'V' at x=6.0 in.
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Figure 4.2.2-51. Primary jets only U'V' distribution.
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4.3 DOME ANNULAR JETS AND PRIMARY JETS

Figure 4.3-1 shows a drawing of the annular and primary jet configuration. The following two subsec-
tions present the concentration and velocity measurements, respectively.

4.3.1 Dome Annular an ima - Concentration ur

For the annular and primary jets, case marker particles were introduced into the combustor model
through the annular jets only and through the lower primary jet. This allowed the observation of the
mixing between the annular and primary jets.

4.3.1.1 Smoke in Prima

Results for smoke in the lower primary jet with annular jet flow are shown in Figures 4.3.1-1 through
4.3.1-12. Figures 4.3.1-1 and 4.3.1-2 show single and 127 frame average at z=7.5 in. The effect of the an-
nular jet can be seen by the bending of the flow from the primary jets downstream. The single frame pic-
ture has higher concentrations of smoke from the lower primary jet downstream than the averaged pic-
ture, thus demonstrating the unsteadiness of the flow. In the averaged pictures of the planes at z=7.0
and 8.0 in. (Figures 4.3.1-3 through 4.3.1-6) higher concentrations of smoke are seen in the corners and
along the upper and lower walls. Similarity between planes is also seen as demonstrating symmetry.

Line and 3-D plots of the mean concentration are in Figures 4.3.1-7 through 4.3.1-12. At z=7.5 in., the in-
fluence of the annular jet on the primary jets is clearly apparent. Most of the smoke entering from the
primary jet is pushed downstream, with very little smoke being mixed upstream of the upper primary
jet. In comparison with Figure 4.3.1-7, with no annular flow, concentration levels of five to six times
larger exist in the same area. Downstream of the primary jets, concentration profiles between the upper
and lower walls smooth out with peak values on the lower side of the centerline. As the planes move
farther away from the centerplane, the maximum concentration levels occur just above the rig center-
line. Concentration levels along the upper half of the rig for x < 1.5 in. remain relatively small com-
pared to the levels when no annular jet flow is used (Figures 4.3.1-7 through 4.3.1-11).

Figure 4.3.1-12 presents a comparison of concentration profiles along the primary jet axis for z=6.5 to 8.5
in. Symmetry between planes at z=7.0 and 8.0 in. and z=6.5 to 8.5 in. is seen to exist with the largest
deviation between the plots along the upper wall of the rig. Comparison with Figure 4.3.1-12, with no
annular jet flow, shows reduced concentration levels in the middle and upper half of the rig when the
annular jet is on.

4.3.1.2 Smoke in Annular Jet

Results for smoke entering the annular jet with primary jets on are shown in Figures 4.3.1-13 through
4.3.1-23. Single frame and 127 frame averages for the z=7.5 in plane are given in Figures 4.3.1-13 and
4.3.1-14. Single and average frames are similar in appearance. Higher concentrations downstream of
the primary jets is present for the single frame picture, while the average picture has a more uniform
distribution between walls. At z=7.0 and 8.0 in. (Figures 4.3.1-15 through 4.3.1-18) the average frames
show higher concentrations in the corners and along the upper and lower walls of the rig, similar to
when smoke was in the primary jets.

Mean concentrations are plotted in Figures 4.3.1-19 through 4.3.1-23 with smoke in the annular jet. From
the z=7.5 in. plane, the annular jet flow has a flat concentration distribution between upper and lower
walls, up to the primary jet entrance. The smoke is then squeezed between the primary jets and gradu-
ally spreads out between upper and lower walls downstream. Farther from the centerplane, the concen-
tration distribution flattens out. Distributions in the 2=7.0 and 8.0 in. planes have constant values near
the walls and flat top profiles across the annular jet inlet upstream of the primary jets. At z=6.5 and 8.5
in. this is not seen, and higher concentrations are downstream of x=1.5 in. Higher concentrations exist on
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the upper than on the lower walls in all these plots, possibly indicating nonuniform smoke in the
annular jet or Gaussian beam effects in the laser sheet.

4.3.2 Dome Annula and Prima ts - Veloci uremen

Figure 4.3.2-1 presents the three-view drawing for this case. The five pairs of primary jets were cen-
tered 1.5 in. downstream of the annular jet entrance.

4.3.2.1 Inl nditions

To establish inlet conditions for this case the same type of measurements made on the primary jets for
the primary jets only case were performed along with measurements of the annular jet described earlier.
Figures 4.3.2-2 through 4.3.2-8 present contour piots of the mean and rms velocity of the lower primary
jet. Figure 4.3.2-2 shows the mean velocity distribution at y=0.1 in. above the lower primary jet. Again,
a flat top profile similar to the primary jets only results is seen. A mean velocity of 15.4 ft/sec is
present resulting in a Reynolds number of 3528. The rms velocity shows peak values along the edges of
the jet at 2=7.7 in. and z=7.35 in. and lower peaks along edges at x=1.35 in. and x=1.7 in. Errors due to
probe volume length and the grid spacing produce this result. In addition, higher fluctuations occur on
the upstream side of the jet, x < 1.3 in., than on the downstream side, due to a recirculation zone at this
edge of the jet.

Measurements taken in the planes at y=0.25, 0.5, 0.75, 1.0, and 1.25 in. (Figures 4.3.2-2 through 4.3.2-7)
show the development of this jet as it enters the combustor model. The mean velocity of the jet can be
seen to gradually decrease, and the jet appears to bend downstream as more and more fluid is entrained
by the jet and the crossflow from the annular jet mixes with the jet. Comparison of these data with
those obtained for the primary jets only case (Figures 4.2.2-5 through 4.2.2-9) demonstrates the effect of
the annular jet on the primary jet flow. In addition, negative velocities are clearly evident on the up-
stream side of the primary jet for planes up to y=1.0 in., while the downstream side of the jet has veloc-
ities between 0.5 to 2 ft/sec. This is caused by a clockwise rotating recirculation zone between the end-
plate and the upstream side of the primary jet. These negative velocities are seen to disappear at
y=1.0 in., due to the annular jet crossflow.

The rms velocities in Figures 4.3.2-2 through 4.3.2-7 show increased fluctuations on the upstream side of
the primary jet until the y=1.0 in. plane is reached. Larger fluctuations are evident on the downstream
side of the jet for y=1.0 and 1.25 in. This change in turbulence is due to the deflection of the primary jet

by the annular jet and the formation of a rear recirculation zone at the downstream edge of the jet.

The jet stagnation point is reached at the y=1.5 in. plane (Figure 4.3.2-8). The mean velocity is similar
to Figure 4.2.2-10 for the primary jets only case. The mean velocity is seen to fluctuate about zero due to
the unsteady fluctuations of this stagnation point. A difference is visible between the rms velocities in
Figure 4.3.2-8 and Figure 4.2.2-10 for the primary jets only case. For this case, the rms velocity steadily
increases farther downstream, while for the primary jets only case the maximum fluctuations occur
around the center of the jet. The annular jet crossflow causes a severe bending in the primary jet, produc-
ing this increased turbulence downstream farther than at the center of the plot.

A comparison between the upper and lower primary jets can be seen in Figure 4.3.2-9. Only approxi-
mately a 2.5 % difference is seen between the upper and lower jets maximum velocity. The rms velocity
comparison again shows close agreement between upper and lower jets. Increased turbulence is also evi-
dent on the upstream side of the primary jet due to a recirculation zone.

Figure 4.3.2-10 shows the annular jet inlet velocities taken on four edges of the annular jet at 0.08 in.

from the inlet. A very flat velocity distribution similar to Figure 4.1.2-2 for the annular jets only case
can be seen. A mean velocity of 15.8 ft/sec is present in the center of the annular gap. The rms velocity
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shows larger peak values for the right and left sides of the annular jet due to the probe volume length
being nearly five times larger than the grid points.

4.32.2 Mean Flowfield Results

Figure 4.3.2-11 provides details of the xy plane sampling grids. Vector plots for the annular and pri-
mary jets case are presented in Figures 4.3.2-12 through 4.3.2-27. The centerplane is seen in Figure 4.3.2-
12. The flow issuing from the annular jet can be seen entering at y=0.85 and y=2.15 in. This flow pene-
trates up to the primary jets inlet at x=1.5 in. and then is turned parallel to the primary jets forming re-
circulation zones outside the annular region, y < 0.7 in. and y > 2.3 in., and in the center of the annular
region. The primary jets can be seen bending downstream due to the annular jet interaction. Downstream
of the primary jet inlet, the flow accelerates between two recirculation zones on the upper and lower
walls of the rig. This flow slowly diffuses as the recirculation zones shrink in size downstream.

The recirculation zones are clearly visible with the aid of streamlines. The rear recirculation zones
show symmetric placement between upper and lower portions of the rig. The two forward recirculation
zones centered in the annular region also show symmetric placement. Two additional recirculation
zones outside of the annular region are also present, but since they are outside the measurement grid
they do not stand out as clearly.

Comparison between planes at z=7.4 and 2=7.6 in. (Figure 4.3.2-13) shows similar resuits. The rear re-
circulation zones at the z=7.4 in. plane can be seen to be slightly forward of the recirculation zones at
the z=7.6 in. plane. In addition, the flow is seen to bend toward the lower wall at the z=7.4 in. plane,
while there is no bending in the z=7.6 in. plane. The two forward recirculation zones are symmetric be-
tween planes at x=1.0 in., y=1.85 in. and x=1.0 in., y=1.1 in., for the upper and lower zones respectively.

Figure 4.3.2-14 shows plots at z=7.3 and 7.7 in. Symmetric flow between planes can be seen, while sym-
metry between upper and lower portions of the rig does not exist. Rear recirculation zones are located at
approximately x=2.85 in., y=2.1 in. for the upper zone and x=3.05 in., y=0.9 in. for the lower zone. The
placement of the upper recirculation zone forward of the lower recirculation zone indicates that the
reattachment point occurs farther upstream for the lower recirculation zone. Asymmetry can also be
seen for the forward recirculation zones in the z=7.7 in. plane. Placement of the forward recirculation
zones in the z=7.3 in. plane is symmetric.

Planes at z=7.2 in and 2=7.8 in. are seen in Figure 4.3.2-15. Rear recirculation zones here are symmetric
between planes and between upper and lower halves of the rig. Forward recirculation zones are clearly
present at z=7.2 in., but are very disordered at z=7.8 in. These planes are outside the primary jet inlet
diameter, and therefore more of the flow moves directly downstream instead of being entrained into the
forward recirculation zones.

More vector plots are seen in Figures 4.3.2-16 through 4.3.2-27. The annular jet inlet extends between 6.8
in £z <8.2in., where a finer grid was used. Table 4.3-I presents approximate forward and rear recircu-
lation zone centers. From this table, some trends are evident about the recirculation zones. The forward
recirculation zones placement is steady between 7.2 in. < z < 7.8 in. Qutside these limits no center is well
defined within the measured portion of the flow. Rear recirculation zones tend to move downstream
and toward the upper and lower walls of the rig. Rear recirculation zone locations are visible between
6.8 in. € z £ 8.2 in. within the measured flow.

Backflow can be seen upstream of x=1.5 in., even out to the limits of the cell. Recirculating flow could
exist in this region, but due to beam restrictions, points closer to the wall could not be measured. Mea-
surements downstream of x=1.5 in. show that the flow velocity accelerates from x=1.5 in. on the way
downstream between recirculation zones and then diffuses as the recirculation zones are passed. This is
seen to happen to the cell boundaries.
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Table 4.3-1.

nular and prim lati ne |
Forward zones Rear zones

z X y X y X y X y

6.8 -- >2.5 - <0.5 - >2.5 o= <0.5
6.9 -- >2.5 -- <0.5 3.4 2.4 -- <0.5
7.0 -- >2.5 -- <0.5 3.4 2.3 3.3 <0.5
74l -- >2.5 -- -- 3.5 2.2 3.2 0.8
7.2 TS %7 151 1.3 3.1 2:1 3.0 0.9
7.3 1.0 1.8 1.0 1:1 2.9 2.1 3.0 0.9
7.4 1.0 1.8 1.0 1.1 27 2.1 2.8 0.9
7.5 1.0 1.8 1.0 151 2.8 2.1 2.8 0.9
7.6 1.0 1.8 1.0 12 2.9 2.1 2.9 0.9
7.7 0.7 1.8 1.0 12 2.8 2.1 3.1 0.8
7.8 -- -- 0.7 1.2 3.0 2-15 3.0 0.8
7.9 - -- -- -- 3.3 22 3.3 0.8
8.0 -- - - -- 8:1 229, 3.5 0.7
8.1 -- .- - -- 3:1 23 3.5 0.7
8.2 -~ -- -- -- 3.3 >2.5 3.5 0.7

Comparing vector plots to the primary jets only case, some similarities can be seen. The influence of the
primary jets on the flowfield is seen downstream of x=1.5 in. Flow downstream of x=1.5 in., in the annu-
lar and primary jet case, is seen to be very similar to the flow in the primary jets only case. Recircula-
tion zones for the annular and primary jet case are larger and extend downstream farther, but the flow is
still seen to accelerate past the recirculation region and then diffuse. This is an indication of how much
influence the primary jets have on the flow.

4.3.2.3 Turbulent Flowfield Results

The Urms and Vrms yz plane contour plots are presented in Figures 4.3.2-28 through 4.3.2-37. Figure
4.3.2-28 contains plots for the station at x=0.5 in. Both plots show a flat profile outside of the annular
jet inlet and inside the annular jet region. Peak fluctuations occur in the annular gap where fluid is en-
tering.

The Urms and Vrms plots at x=1.0 in. can be seen in Figure 4.3.2-29. The magnitude of the fluctuations
increase and spread out from x=0.5 in. to x=1.0 in. Fluctuations at the center of the annular region have
increased due to the pair of counterrotating recirculation zones formed in this region. Magnitudes out-
side the annular jet remain small compared to the annular jet region.

Plots at x=1.5 in. show a definite change in the Urmg and Vrmg velocity distribution due to primary jet
interaction (Figure 4.3.2-30). The Urms plot shows decreased turbulence at the centerplane, z=7.5 in.,
from the top to bottom walls of the rig due to the primary jets. Three pairs of peak flctuations occur on
the sides of the centerplane. The peaks at the bottom and top walls are caused by the flow above and
below the annular jets accelerating around the primary jets and flowing downstream. The pair of peaks
at the center of the rig correspond to increased flow around the primary jets from recirculating fluid in
the center of the annular jet. The turbulence diffuses as the edges of the cell are reached.



The Vrms plot at x=1.5 in. shows decreased magnitudes at the upper and lower walls at the rig center-
plane. A peak is observed at the center of the cell due to the fluctuation of the stagnation point of the
primary jets. The magnitudes dissipate as the cell boundaries are reached.

The Urms component at x=2.0 in. (Figure 4.3.2-31) shows a decrease at both upper and lower walls in the
rig center and peak magnitudes occur along the rig centerline between z=7.0 in. and z=8.3 in. The drop in
magnitude along the upper and lower walls is due to a recirculation zone, while the peaks at the center
of the rig are caused from fluid being accelerated between the upper and lower recirculation zones. The
Vrms component at x=2.0 in. shows peak velocities along the rig centerline between z=7.0 in. and 2=7.9
in. Similar results are evident at downstream locations (Figures 4.3.2-32 through 4.3.2-37).

Figures 4.3.2-38 and 4.3.2-39 show line plots of Urms and Vrms velocities as they develop in the rig for
planes at z=7.0, 7.5, and 8.0 in. Peak Urmg fluctuations are at the annular jet exit and immediately
downstream of the primary jets. Peak Vrmg fluctuations can be seen in the region of the primary jet
stagnation. On downstream, the magnitudes decrease and spread out. Uniform fluctuations from the
bottom to the top walls can be seen at x=6.0 in. Magnitudes at x=6.0 in. are slightly larger than the
primary jets case and much smaller than the annular jet case.

The 2-D turbulent kinetic energy contour plots are presented in Figures 4.3.2-40 through 4.3.244. The K
distribution at x=0.5 and 1.0 in. (Figure 4.3.2-40) shows similar distributions. Peak turbulence occurs at
the edges of the annular jet where large shear stress is present. Outside the annular inlet, the turbu-
lence is uniform to the cell boundaries and walls. The plot at x=1.0 in. shows peak magnitudes nearly
doubling with increased turbulence within the annular region. Distributions toward the cell boundaries
continue to be uniform.

The plot at x=1.5 in. shows peak turbulence occurring at the rig center and at the top and bottom walls.
The decrease seen in the rms plots is also seen here in Figure 4.3.2-41. The trends seen in this plot corre-
spond to the trends explained in the rms plots in Figure 4.3.2-30.

At x=2.0 in., peak turbulence values can be seen at the center of the rig with a sharp drop in turbulence
energy between z=7.0 and 8.0 in. at the upper and lower walls. The formation of the downstream recir-
culation regions in these areas are responsible for the drop in turbulence energy. Magnitudes decrease as
cell boundaries and walls are reached. Similar trends are present in plots downstream (Figures 4.3.2-42,
4.3.2-43, and 4.3.2-44).

Figure 4.3.2-45 contains the 2-D turbulent kinetic energy distribution throughout the rig at the planes
z=7.0,75, and 8.0 in. The largest turbulence energy can be seen concentrated in the region of annular and
primary jet intersection at x=1.5 and 2.0 in. Magnitudes decay and spread downstream and away from
the rig centerplane. Uniform turbulence energy between upper and lower walls is present at x=6.0 in.

yz plane contour plots of the xy plane Reynolds shear stress are in Figures 4.3.2-46 through 4.3.2-50. The
U'V' distribution at x=0.5 in. is seen in Figure 4.3.2-46. Negative stresses are observed at the edges of
the annular jet inlet due to the transfer of momentum from the edges of the annular jet to the fluid
within the rig. A constant distribution is seen throughout the rest of the plane indicating very little
momenturm transfer. Similar results occur at x=1.0 in. Here, the magnitudes of the stresses have nearly
doubled and spread to the inner annular jet region. A uniform region is still seen throughout the rest of
the plane.

At the x=1.5 in. plane, three regions of decreased, or negative, stress is seen separated by a strip of in-
creased U'V" at z=7.5 in. The three regions of decreased magnitude occurs in the same area as the peak
fluctuations occurred for the Urms plot in Figure 4.3.2-30. The negative values are therefore caused by
the increased velocity gradients in these regions as the flow accelerates around the primary jets. The
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central peak must be caused by the cross jets entering in this location. Qutside of the annular jet inlet,
=6.8 and z=8.2 in., a uniform shear stress extends to the cell boundaries.

At x=2.0 in., a region of peak positive U'V' occurs along the upper half of the rig while negative U'V"
occurs through the lower half of the rig. The magnitudes continue to decrease and the peaks tend to
spread toward the walls and boundaries of the rig on downstream. The peak through the rig at z=7.5
in. seems to exist on downstream. Similar distributions are present downstream of x=2.0 in. Figures
4.3.2-48, 4.3.2-49, and 4.3.2-50 contain these plots.

Figure 4.3.2-51 shows line plots of the Reynolds shear stress as it develops downstream at planes z=7.0,
7.5, and 8.0 in. The largest fluctuation of shear stress is present at x=1.5 in. Here, primary and annular
jet interaction produces large velocity gradients and momentum transfer. Downstream and away from
the centerplane, magnitudes decay and approach a uniform distribution of shear stress at x=6.0 in.
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TE92-2652
Figure 4.3.1-1. Annular and primary jets with smoke in primary jet, single frame picture, z=7.5 in.

TE92-2653
Figure 4.3.1-2. Annular and primary jets with smoke in primary jet, 127 frame average picture, z=7.5 in.
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TE92-2654
Figure 4.3.1-3. Annular and primary jets with smoke in primary jet, single frame picture, z=7.0 in.

TE92-2655
Figure 4.3.1-4. Annular and primary jets with smoke in primary jet, 127 frame average picture, z=7.0 in.
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TE92-2656
Figure 4.3.1-5. Annular and primary jets with smoke in primary jet, single frame picture, 2=8.0 in.

TE92-2657
Figure 4.3.1-6. Annular and primary jets with smoke in primary jet, 127 frame average picture, z=8.0 in.
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Figure 4.3.1-7. Annular and primary jets mean concentration distribution with smoke in lower primary
jet, z=7.5 in.
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Figure 4.3.1-8. Annular and primary jets mean concentration distribution with smoke in lower primary
jlet, z=7.0 in.
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Figure 4.3.1-9. Annular and primary jets mean concentration distribution with smoke in lower primary
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Figure 4.3.1-10. Annular and primary jets mean concentration distribution with smoke in lower primary
jet, z=6.5 in.
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Figure 4.3.1-11. Annular and primary jets mean concentration distribution with smoke in lower primary
jet, z=8.5 in.
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- TE92-2664
Figure 4.3.1-13. Annular and primary jets with smoke in annular jet, single frame picture, z=7.5 in.

TE92-2665

Figure 4.3.1-14. Annular and primary jets with smoke in annular jet, 127 frame average picture, 2=7.5
in.
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TE92-2666
Figure 4.3.1-15. Annular and primary jets with smoke in annular jet, single frame picture, z=7.0 in.

TES2-2667
Figure 4.3.1-16. Annular and primary jets with smoke in annular jet, 127 frame average picture, z=7.0

1n.
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TE92-2668
Figure 4.3.1-17. Annular and primary jets with smoke in annular jet, single frame picture, z=8.0 in.

TE92-2669

Figure 4.3.1-18. Annular and primary jets with smoke in annular jet, 127 frame average picture, z=8.0
in.
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Figure 4.3.1-19. Annular and primary jets mean concentration distribution with smoke in annular jet,
z=7.5in.
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Figure 4.3.1-20. Annular and primary jets mean concentration distribution with smoke in annular jet,
z2=7.0 in.
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Figure 4.3.1-21. Annular and primary jets mean concentration distribution with smoke in annular jet,
z=8.0 in.
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Figure 4.3.1-22. Annular and primary jets mean concentration distribution with smoke in annular jet,
=6.5 in.
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Figure 4.3.1-23. Annular and primary jets mean concentration distribution with smoke in annular jet,
z=8.5 in.

511



i

T

G/92-2631
vo0g
T
g
1
u! mq\ —
v 00E J
VIR N |

w

Il

N

-

U

‘Guimesp moia-ooay) - syl Arewnid pue sepnuuy -z ¢p 2andiy

U oSt

0€

512



N+ O0oNO Q

locanons

b
w0 ﬁa
—_——e @O NO )

gata

TE92-2676

> 0.0-0Qc0°0

— N
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Figure 4.3.2-3. Annular and primary jets V and Vrms distribution of the primary jets at'y
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Figure 4.3.2-5. Annular and primary jets V and Vrms distribution of the primary jets at y
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Figure 4.3.2-25. Annular and primary jets mean velocity vector plot at a) z=6.2 in. b) z=8.8 in.
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Figure 4.3.2-39. Annular and primary jets Vrms distribution.
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V. PHYSICAL AND MATHEMATICAL MODELS
5.1 GOVERNING EQUATIONS AND TURBULENCE MODELS
In this subsection, the equations which govern the distribution of the mean quantities are summarized.

These equations are derived from the conservation laws of mass and momentum using time averaging
and are expressed in tensor notation for steady and constant density flow as

Ui _o (62)
X
AU
Dl O B S o) (63)
X P 3X; ax

]

where Uj and u; are the mean and fluctuating velocities along the x; direction, respectively, p is the
mean pressure, and the bar is used to denote time-averaged quantities.

As a consequence of the nonlinearity of Equation 63, the averaging process used introduces unknown cor-
relations ujyj which can be made known through the assumption of turbulence modeling.

Three different types of turbulence closures are investigated, namely, the standard k-¢ model, algebraic
second-moment closure (ASM), and differential second-moment closure (DSM).

The k-e model is a simple closure based on the gradient transport relations. In this model, the turbulent
fluxes are related to the mean fields through the assumption of an isotropic eddy viscosity and a turbu-
lent Prandtl/Schmidt number as:

. AU;
a&+_])-§.51jpk (64)

-puil; =
91] utaxl aXi

The eddy viscosity (W) is obtained from the turbulent kinetic energy (k) and its dissipation rate (g) us-
ing the relation:

= c”_pkz/e (65)

In order to close the set of Equations 62 through 64, two addmonal equations governing the transport of
k and ¢ are required. These are

Uk _ 3 {u )ak aU;
Zep) == (pupuy) - pe
’ax 3X; . 3X; Y aX; e
de 0 (M o€
U: =_(_t.+ )_-c £
P fax;  ax; (o M)~ Cer & (pui) CeZP (67)

j j

where oy and o¢ are turbulent Schmidt numbers and C¢j and C¢7 are model constants. The constants used
in this model have been taken from Launder and Spalding (1974) and are given in Table 5.1-1.

* References for Section V are listed at the end of the section.
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Table 5.1-1.

Values of nts in the k- model.
Cm 0.09
Cel 1.44
Ca 1.92
Ok 1.0
¢ 13

The k-¢ model is the simplest model which is suitable for recirculating flow calculations. It allows the
characteristic length scale of a wide range of complex flow fields to be determined. The k-e model has
been used with success in the calculation of various free shear flows and recirculating flows with and
without swirl (e.g., Rodi, 1980). However, in flows with significant streamline curvature, the isotropic
eddy viscosity assumption may not be able to describe the turbulent diffusion effects adequately. The
three-dimensional form of the turbulent flow equations is given in Appendix A for the k-e¢ model.

To allow for the nonisotropic behavior of the eddy viscosity and to account for the effect of body forces
(e.g., buoyancy, rotation), the k-€ model is refined by introducing ASM. This model is based on a sim-
plification of the Reynolds stress transport equation which relates the individual stresses to mean ve-
locity gradient, turbulent kinetic energy, and its dissipation rate by way of algebraic expressions. The
ASM model adopted here is based on Rodi's hypothesis (Rodi, 1976) which approximate the connection
and diffusion transport of turbulent stresses in terms of the transport of k.

The result can be summarized as:

] Pij - 2P

aij= -G Y ge ) (68)

Ci-1 +—P—1-<—

pE

where
—3U: _—_dU;

Pi)' = pujukx-puiukﬁ (69)
Pk=%Pn (70)

C1 and C; are model constants, and ajj is the nondimensional measure of anisotropy and is given by the
following expression.

W

i P (71)
1] k 3 ll

Since the quantities k and ¢ are present in these equations, their transport equations also have to be

solved. These are determined by:

Jdk 9 —ak
Ui = 2 (CLok & )-Py -
Pk Taxg <Pe e Tk TP (72)



de _ d k —— J¢ g2
Ui—=—( ) + £P - (73)
P i "% Cspg“;"na—xn Sei sk Cops

Ci, Ce, Ce1, and Cg2 are all model constants and are given in Table 5.1-I1.

The k- and ASM models assume that the local state of turbulence can be characterized by one velocity
scale. In order to allow for the different development of the various Reynolds stresses representing var-
ious velocity scales in complex flows, and to account properly for their transport, models which employ
transport equations for the individual stresses must be applied.

The Reynolds stress equations can be written in tensor notation form as

d

Here, Pjj is the production of Reynolds stress uju, &ij represents viscous dissipation, ¢;; controls the redis-
tribution of turbulence energy among the normal stresses through the interaction of pressure and strain,
and djj stands for turbulence diffusion. Since Pjj is exact, it does not need modeling. However, closure as-
sumptions are required for dij, ¢ij, and &jj. The assumption of local isotropy allows the dissipation tensor
to be approximated by

eij=%5ij€ (75)

where ¢ is the turbulence energy dissipation rate. The diffusion term is approximated by the gradient-
diffusion model of Daly and Harlow (1970)

=2y g 7
dij Xy (Ckp“k“'n e Xy ) (76)
where Cy is a model constant and k = 1/2 ujuijis the turbulent kinetic energy. The pressure redistribution
term (¢jj) is modeled in three parts, ¢ij1 resuiting from purely turbulence interactions known as retum-to-
isotropy, ¢ij2 involving interactions between the mean strain rate and turbulence known as rapid part,
and ¢jjw representing the effects of rigid boundaries on both ¢jj; and ¢;j2. The presence of a rigid wall
affects the flow field near that region by impeding the transfer of turbulent energy from the streamwise
direction to that normal to the wall, and as a result reduces the relative magnitude of the shear stress.
In the present study, Rotta's linear model (Rotta, 1951) for the turbulence part of ¢;; is adopted:

Table 5.1-II.
Values of constants in the ASM and DSM closures.
Cel 1.44
Ce2 1.92
Ce 0.18
Cx 0.22
C1 1.8
Ca 0.6
Ciw 0.05
Cow 0.006
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41 =~ C1p& (3 - 2 31k (77)

The simple linear form for ¢;;1 is widely accepted and used dispite the fact that the actual return-to-
isotropy process is highly nonlinear (Bradshaw, 1968). More sophisticated nonlinear forms, such as
Lumely and Khayeh-Nouri's proposal (1974), have been suggested, but these have shown no significant
improvement over Rotta's proposal. The rapid part is approximated using the simple model suggested
by Naot et al (1970), known as the isotropization production (IP) model

dijz =~ G (Pij -gsiij) (78)
A more sophisticated version of ;2 is the linear quasi-isotropic (QI) model (Launder et al, 1975)

(79)
(3oc2-z) au;  9Y;
- pk +
55 an aX;
where
—Uy  —aUy
D.. - u-u] -+ u.u] (80)
. ‘{ ! an ) axi)

This model includes both the symmetric and antisymmetric mean strain effects on redistribution model-
ing.

The effects of solid boundaries on pressure redistribution term are included using the wall correction
proposed by Launder et al (1975), or

e 25 eeo 9t '
Pijw -Ex—n[Clw f(u,u) - %—8,]Pk) +Cow (Pl] - D,])] (81)

where xy, is the normal distance from the wall and the model constants Cyy and Cpy, are specified in
Table 5.1-II. The modeled Reynolds stress transport equations for three-dimensional flow are given in
Appendix B.



5.2 MATHEMATICAL FORMULATION

The calculation procedure used in this study is based on the primitive variable formulation of the
Navier-Stokes equations. The conservation equations are discretized using a control-volume approach.
The coupling between the continuity and momentum equations is handled via the SIMPLER algorithm.
The procedure is described in detail in Karki et al (1988), Patankar (1980), and Varejao (1979).

The conservation equations for all dependent variables may be expressed in the following general form

3 3 36 30 36
\% \'% — I- r--+§S (82)
—(pU¢) + (P ) "' (p ¢) = K‘( 3X )+ a—Y( aY) + —( 37 +

where ¢ is the particular variable of interest, I is the diffusion coefficient, and S is the source term.

5.2.1 Discretization

Equation 82 can be written as:
d d
—Jx+—Jy+—]7z=S (83)
XXz’

where Jx, Jy, and ]z, are the total (convection and diffusion) fluxes defined by

do
=pUb-T— (84a)
Jx=pUd 3X
a0
apVe-r 22 | (84b)
Jy=pVe=T'=o
J, =pVo- raa" (84c)

The integration of Equation 83 over the control volume surrounding the grid point P (Figure 5.2.1-17)
gives

(Ix’e = Jx’w) AY AZ+ (Iy’n = Jy’s) AX AZ + (Iz’t = Jz,b> AX AY = S AX AY AZ (85)

A discretization scheme is needed to relate the flux at each control-volume face to the values of the de-
pendent variable at the neighboring grid points. The results presented in this report have been ob-
tained using the power-law differencing scheme and flux-spline scheme. A brief description of these
schemes is presented next.

5.2.2 Power-Law Differencing Scheme

This scheme is based on a curve fit to the exact solution of the one-dimensional convection-diffusion
equation without a source. Since this formulation is based on a purely one-dimensional flux balance, it
leads to significant numerical errors in the presence either of strong source terms or crossflow gradients

" Figures for Section V appear at the end of each subsection. The figure number identifies the subsection
in which the figure is discussed.
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in multidimensional flows coupled with the grid-to-flow skewness. The flux-spline scheme includes
these effects in the interpolation profile between the grid points.

: Flux-Spline Diffi i m

The flux-spline scheme considered here is based on the assumption that within a control volume the to-
tal flux in a given direction varies linearly along the coordinate direction. For example, the flux in the
x direction for the control volume around the grid point P (Figure 5.2.3-1) is given by

a0 (]x,e - Jx,w)
= ) ik sl SO AN 86
Jx =pUd o Ixw+ o X (86)

The integration of Equation 50 leads to the following expression for the variation of ¢ in the x direction

¢=a+bexp PUX/T) +cX (87)
where the constants a, b, and ¢ for a given control volume can be expressed in terms of Jx e, Jxw,and ¢p.

Equation 87 gives the variation of ¢ within a control volume. For two adjacent control volumes the ¢-
profiles are such that they imply the same total flux at the common interface. In addition, these pro-
files must also give a unique value of ¢ at the common interface. This continuity-of-¢ (spline continuity)
condition for the interface between the grid points W and P can be expressed as:

Jx,w = (Dx, wow - Ex wop) + By w Ux,w - Jx,&) + Cx,w Ux,w - Jx, ww) (88)

Here, the expression (Dx,w¢w - Ex w$p) is identical to that obtained from the lower-order exponential
scheme (e.g., Patankar, 1980) which is based on the assumption that the total flux is uniform within a
control volume. The extra terms involving By and Cyx result from the linear variation of flux. For ease of
presentation, Equation 88 is rewritten as

Jx,w = (Dx,wOW - Ex woP) + Jx w (89)

It should be noted that additional terms such as Jx w involve the difference in flux values at adjacent
faces of the control volume. That there is a difference in flux indicates the presence of a source term
and/or multidimensionality (a change of flux in one direction is felt as a source term in another direc-
tion).

Similar expressions can also be derived for fluxes in other coordinate directions. Substituting these ex-
pressions in Equation 85 and utilizing the discrete form of the continuity equation, the following dis-
cretization equation for ¢ is obtained

apdp = TapnpPnp +b+S (90)

The values of the influence coefficients anp are identical to the coefficients obtained from the exponen-
_tial scheme. The contribution of the flux-spline formulation is contained in the term S, which is given

-~

S= (Ix,w - Jx,e) Ay Az + (‘j)'ls = ‘jy’n) Ax Az + (jz,b -jz’t) Ax Ay (91)

A three-dimensional situation is governed by three field variables: ¢, Jx,and Jy- The four sets of equa-
tions that determine these variables are:
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(1) the conservation equation for ¢

(2) the spline-continuity condition in the x direction
(3) the spline-continuity condition in the y direction
(4) the spline-continuity condition in the z direction

The solution of these equations is obtained in an iterative manner. In the beginning, Jx, Jy, and | are set
equal to zero, then the conservation equation for ¢ reduces to the lower-order formulation and can be
easily solved. The solution leads to new estimates for the fluxes Jy, Iy, and ] from which new Jx Jy, and
Jz can be calculated. The ¢-equation is now solved with the flux-spline contribution to the source term.
This process is repeated until convergence is achieved.
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VI. MODEL VALIDATION

This section presents the results of the comparisons of the various models for three-dimensional recircu-
lating flows. Predictions obtained with each of the turbulence models are discussed and compared with
experimental data. The goals of this study require a careful selection of the test cases. They have to
provide reliable mean flow and turbulence data in the recirculation and recovery regions. A detailed
specification of the flow parameters in the upstream region is also essential, since these are used as in-
let conditions to start the computations. The test problems used encompass the range of complexities in-
volved in combustor flows. Theses are:

¢ dome annular jets
e primary jets
e dome annuiar jets and primary jets

All data sets meet the criteria for acceptable measurements in terms of adequate experimental facility,
appropriate instrumentation, and agreement with generally accepted flow trends.

6.1 DOME ANNULAR JETS

This subsection presents the comparison of the computational resuits with the experimental data ob-
tained for three-dimensional annular flow. The experiment was conducted in an air rig (Figure 6.1-1 b
consisting of five annular swirling or nonswirling streams issuing into a duct of rectangular cross section.
Five jets were used in the experiment in order to allow for any interaction between jets and to remove
wall effects. The test section was of rectangular cross section, 3.0 x 15.0 in., and extended 10 duct heights
(76.2 cm) downstream from the headplate. The top, bottom, and sides were constructed of glass and
Plexiglas to facilitate easy access with the laser. There were provisions for radial jets at specified ax-
ial locations. For the present case, all streams were nonswirling and there were no primary jets.

The elliptic nature of the flow required the boundary conditions to be specified on the six sides of the
solution domain. Four kinds of boundaries needed consideration: inlet, axis of symmetry, wall, and the
outlet. In an ideal annular combustor, geometric symmetry exists between annular jets. The volume be-
tween the annular jets extends downstream of the combustor inlet. Due to the symmetry of the problem,
the computational domain includes only one quarter of the annuiar stream. In the cross section, the com-
putational domain is bounded by symmetry lines in the z direction, and by a symmetry line and a wall
in the y direction. At the inlet boundary, which is located at the exit of the annular streams (x=0.0),
the experimentally measured profiles of axial velocity and kinetic energy, assuming isotropic turbu-
lence, are prescribed. The inlet dissipation rate is calculated based on the turbulent kinetic energy and
constant length scale. The computational domain extends from the inlet plane to four duct heights (4H)
downstream of the jet exit. Since the measured flow does not show any x dependence at x>3H, the spec-

ified condition, %x =0, at the exit plane of the calculation domain is realistic. At the axis of symme-

try, the radial velocity, turbulent shear stress, and the radial gradients of other variables are set to
zero. The conventional logarithmic law, which is based on the local equilibrium assumption, is ap-
plied to the wall boundary condition. The inlet profiles and the grid distribution are displayed in Fig-
ures 6.1-2 and 6.1-3.

Computations are made on two grids, 37 x 27 x 27 and 52 x 42 x 42, which are referred to as medium and
fine grids, respecnvely In the refined grid, a finer spacing is used within and near the jet. In both
cases, the grid spacing in the x direction is finer near the inlet.

" Figures for Section VI appear at the end of each subsection. The figure number identifies the
subsection in which the figure is discussed.
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The accuracy of a numerical simulation is dictated by the differencing scheme and the physical models
embodied in the computational method. The use of first-order differencing schemes for transport terms
in the conservation equations introduces significant false-diffusion in the numerical solution (Patankar,
1980"). The presence of false diffusion makes accurate predictions of complex flows difficult, as it may
completely mask the effects of physical diffusion. In principle, false diffusion can be reduced to negli-
gibly low levels by using a very fine grid. However, the necessary degree of grid refinement is almost
impractical for complex three-dimensional flows. The need for an excessively fine grid can be avoided
by using an improved differencing scheme for the transport terms in the conservation equations. The
improved schemes take into account the effects of flow skewness, lateral transport, and the sources. For
the same accuracy, these schemes require a smaller number of grid points than the first-order schemes
(Varejao, 1979; Karki, 1988).

Two different numerical schemes, namely the first-order power-law differencing scheme (PLDS) and
higher-order flux-spline differencing scheme (FSDS), are applied for the calculations. Here, the em-
phasis is being placed on the differences between the results obtained from these schemes. Thus, the
disagreements between the numerical and experimental results may be attributed to the numerical inac-
curacy or the inadequacy of the turbulence model. However, for a given turbulence model, the flux-
spline results are more accurate.

Three different turbulence models, namely the k-e model, algebraic second-moment (ASM), and differ-
ential second-moment (DSM), were applied with grid size of 37 x 27 x 27 to predict the mean and turbu-
lence quantities. Figure 6.1<4 shows the axial velocity profiles in the vertical center plane (xy plane at
z = 7.5 in.) predicted by the k-€ model at the selected axial locations obtained from the medium grid so-
lution. The results show differences in the prediction of peak and centerline values in the developing
region. The calculated velocity field shows higher peaks and a longer recirculation at the centerplane
when the FSDS is applied. At all streamwise locations, the profiles resulting from the power-law are
more smeared than those from the FSDS. This trend indicates the presence of excessive numerical dif-
fusion in the power-law solution. The experimental data show a portion of the fluid from the upper
and lower sections of the annular jet. The main portion of the fluid can be seen converging at the middle
of the rig and accelerating as the flow is squeezed between recirculation regions of flow along the upper
and lower walls of the rig (Figure 6.1-4). Downstream, the main flow then decelerates as the recircula-
tion zones are passed. The computational resuits show recirculating flow along the upper and lower
walls of the rig, this behavior has been observed experimentally through flow visualization studies.

The comparison of the predicted centeriine velocity distribution with the experimental data is pre-
sented in Figure 6.1-5. It is seen that the FSDS results in better agreement with the measurement at lo-
cations near the inlet. However, further downstream the velocity is underpredicted by both schemes.
The underprediction for a centerline velocity stems from the incorrect representation of the turbulent
diffusion process. As shown by Ribeiro (1976), the radial normal stress is particularly important in the
upstream region and, as a consequence, the isotropic viscosity hypothesis is inadequate.

The predicted axial velocity profiles in the xy plane at y = 1.5 in. (horizontal centerplane), which con-
tains the centerline of the annular jet, at various streamwise locations obtained from the k-¢ model are
shown in Figure 6.1-6. The experimental data show that the maximum velocity in the xz plane is
slightly higher than the peak value in the xy plane. The calculations show that the FSDS resuited in
higher maximum velocity and a larger recirculation zone. Away from the centerline, the measurement
shows recirculation zones between the annular jets. The fluid is converged at the middle of the rig and
increases the velocity. The computations show the recirculations between the jets start to form at ap-
proximately x = 1.0 in. from the inlet. At all axial locations, the false diffusion associated with the
first-order numerical scheme causes the PLDS to predict smaller peak velocity and, as a result, a
shorter recirculation region.

* References for Section VI are listed at the end of the section.

576



Having demonstrated the effect of the isotropic diffusion assumption and compared the k-¢ model with
data, attention was turned to the performance of the DSM closure. It seems somewhat paradoxical that
the more advanced types of turbulence models have been least successful in the complex flows associ-
ated with flow recirculation for which in theory they have the most to offer compared with eddy vis-
cosity based closures. Comparisons of the predicted mean velocity profiles by DSM closure with mea-
surements are shown in Figures 6.1-7 and 6.1-8. The resuits have been illustrated in xy (Figure 6.1-7) and
xz (Figure 6.1-8) centerplanes and calculated by both PLDS and FSDS. One of the main differences
between these results and those obtained from the k-€ model is apparent near the inlet plane (x = 0.2
in.), where the PLDS resulted in a larger negative velocity despite the fact that a smaller peak veloc-
ity was predicted. However, the velocity profile was squeezed near the centeriine in order to satisfy
the global mass conservation.

The second difference observed in the calculations is that the FSDS predicted a longer recirculation
length up to one-third of the channel height. The agreement between the calculated and measured re-
sults improved in the upstream region when the advanced numerical scheme was applied. The under-
prediction of the centerline velocity (Figure 6.1-9) has been noted at several axial locations and proba-
bly reflects a deficiency of the turbulence model. Some further diagnostic runs were carried out by vary-
ing the inlet turbulence kinetic energy and dissipation length scale, but these changes had minor influ-
ence on the centerline velocity.

Figures 6.1-10 through 6.1-14 are plots of velocity at various lateral locations away from the center-
plane, and the results are shown for selected axial stations. The experimental resuits similar to those
atz=75in.areseenatz =74 and 7.6 in. The recirculation zones along the upper and lower are appar-
ent. The flow visualization shows the existence of recirculating flow in the center annuiar jet region,
and also shows that the convergence and acceleration of the main flow between the recirculating flow
along the upper and lower walls still exist. Similar results are seen farther away from the centerplane
between 6.2 < z < 8.2 in. several general trends can be observed from these figures. The first trend is the
movement of the two velocity peaks at the annular jet exit toward the centerline and the disappear-
ance of the recirculation zone behind the center of the annular jet. The cause of both of these is due to
the annular jet curvature. The second observable trend is the widening of the recirculation zones along
the upper and lower walls. Both recirculation zones are clearly evident farther away from the rig cen-
terplane. Third, a decrease in the main flow velocity along the centerline is seen. The flow is still seen
to accelerate between the upper and lower recirculation zones. At planes outside of the annular jet, 6.0 <
2<6.6in.and 8.4 <z<9.0 in,, there is a breakdown of any organized pattern of flow. In these planes
some general trends are still noticeable in the plots. Downstream flow is reduced and completely dis-
appears by the time the planes at z = 6.4 and 8.6 in. are reached.

Comparisons of the mean velocity and root mean square (rms) velocity profiles predicted by the ASM
and DSM closures with the measured values are presented in Figures 6.1-15 through 6.1-18. The resulits
have been shown for eight axial stations along the centerplane. In general, the results of the ASM and
DSM are similar in the upstream region (x < 0.8 in.). At subsequent downstream locations there are sub-
stantial differences between the two models in the prediction of centerline velocity. Both models pre-
dicted similar recirculation length, however, use of the ASM promotes higher centerline velocity rela-
tive to the DSM. The reason is attributed to the turbulent diffusion process, which depends on the
Reynolds stress gradients. In the outer flow region the ASM and DSM predict similar axial turbulence
intensity distribution, but, the maximum turbulence levels were better predicted by the DSM model.

With regard to the comparison between the FSDS and PLDS, the predictions by the FSDS seem to be
better, especially near the inlet, for turbulence field (Figure 6.1-19). Examination of the calculated rms
profiles indicates that the FSDS results mimic the experimental data better near the centerline region.
The maximum turbulence intensity predicted by both models are very close and are underpredicted as
flow proceeds towards the downstream region. Overall, the turbulence intensities were qualitatively
well predicted and their behaviors were in agreement with the measured profiles.



The predictions for the finer grid (52 x 42 x 42) using the standard k-¢ model are displayed in Figure 6.1-
20, and similar trends are noticed. The FSDS results in higher peak values than all the previous calcu-
lations. To some extent, the fine grid solution obtained from the PLDS is as good as the result of the
FSDS for medium grid. The computed centerline velocity variations of the fine grid (Figure 6.1-21) in-
dicate a strong recirculation zone. However, in the accelerating region the centerline values calculated
from the FSDS are in closer agreement with the experimental data.

Comparisons of the predicted streamwise turbulent kinetic energy using both schemes is shown in Figure
6.1-22. The results are normalized with the inlet axial velocity (Ug = 98.2 ft/sec). A wide disparity
exists between the calculation and the measurement. Numerical study indicates that the inlet ¢ profile
is a very important factor in predicting the maximum values of turbulence quantities (Nikjooy et al,
1989). The calculated and measured turbulence fields show two different trends. The experimental pro-
files show further increase of the peak values extending from the inlet plane to the end of the central
recirculation zone without any significant change of turbulence intensity at the centerline. The turbu-
lence intensity then gradually tends to diffuse towards the wall. Secondly, the calculated profiles in-
dicate the continuous growth of the turbulence intensity at the centerline.

Predictions of the axial velocity profiles in the xz centerplane (y = 1.5 in.) show similar behavior seen
previously in the xy plane (Figure 6.1-23). The use of the FSDS generated higher maximum velocities
and a longer recirculation length. The predicted peak values in the xy and xz planes are almost iden-
tical, showing that the top and bottom walls did not significantly affect the potential region. On the
other hand, the experiment shows higher peaks in the xz plane. The wake region created by the di-
viding lip between the two streams is the probable reason for this behavior. In order for mass to be con-
served, the recirculation zone created in the wake region accelerated the flow in the potential region
and resulted in higher velocities.

The CPU time needed to achieve the fine grid solution was about 20 hours on a CRAY2 machine. The
criteria selected for a convergent solution was based on the absolute sums of the mass and momentum
residuals at all internal grid points, normalized by inlet mass and momentum fluxes. With this as-
sumption, the maximum relative residual errors for all calculations is found to be 0.01%.
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Figure 6.1-1. Geometry for an annular jet-induced flow in a duct.
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Figure 6.1-10. Axial velocity profiles predicted by DSM ( flux-spline—power law).
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6.2 PRIMARY JETS

In this subsection the comparisons of numerical results with measured values obtained for opposed pri-
mary jets are presented. The experiment was conducted in an air rig (Figure 6.2-1) using a set of five
pairs of opposing primary jets centered 1.5 in. from the rig endplate. The test section was of rectangular
cross section, 3.0 x 15.0 in., and extended 10 duct heights (76.2 cm) downstream from the headplate. Also
in this case, all streams were nonswirling.

The set of governing partial differential equations for isothermal, constant density, three-dimensional
flow consists of equations for continuity, axial, vertical, and lateral momenta, dissipation rate, and six
Reynolds stress components. These equations are coupled and are nonlinear. The finite volume method
(Patankar, 1980) has been used to reduce the continuous equations of motion to a set of coupled algebraic
equations. The numerical solutions have been obtained using both the PLDS and the FSDS. The PLDS
is based on a curve fit to the exact solution of the one-dimensional convection-diffusion equation with-
out source terms. This scheme becomes identical to the hybrid scheme for mesh Peclet number (Pe)
greater than 10. The PLDS can be considered as approximations to the exponential scheme (Patankar,
1980) which results from the exact solution to the one-dimensional convection-diffusion equation. In the
derivation of this scheme, the total flux (convection + diffusion) is assumed to be uniform between two
grid points. The FSDS improves upon this approximation by assuming a piecewise linear variation of
the total flux. This leads to a scheme in which the discretization coefficients are identical to those
from the exponential scheme, but there is an additional source term which involves the differences of
fluxes at the control volume faces. The presence of this extra source term enables the FSDS to respond to
the source terms in the governing equations and/or to the multidimensional effects. '

A calculation procedure for elliptic flow requires boundary conditions on all boundaries of the computa-
tional domain. Four kinds of boundaries need consideration, namely inlet, plane of symmetry, wall, and
the outlet. Due to the symmetry of the problem, the computational domain includes only one-half of
the primary jet. In the cross section, the computational domain is bound by symmetry lines in the z di-
rection and by a symmetry plane, wall, and inflow in the y direction. All dependent variables must be
specified at the inflow boundary. The inlet conditions were derived from the experimentally measured
profiles. The inlet dissipation rate is calculated based on the turbulent kinetic energy and constant
length scale. The computational domain extends from 1.5 in. upstream of the primary jets plane to 4
duct heights downstream. At the downstream plane, the gradients of all dependent variables in the
axial direction are set to zero. At the symmetry plane Neumann boundary conditions are specified. The
normal gradients of all dependent variables except the zero radial velocity and shear stresses are
taken to be zero. At the wall, the conventional logarithmic law, which is based on the local equilib-
rium assumption, is applied. The inlet profile and the grid distribution in xy and yz planes are pre-
sented in Figures 6.2-1 and 6.2-2. The coupled equations and boundary conditions are solved numerically
in a sequential manner using the staggered grids for velocities and shear stresses. The main advantage
of staggering the locations of stresses is to enhance numerical stability, a result of high coupling be-
tween the shear stresses and related mean strains. The iteration sequence employes the SIMPLER algo-
rithm (Patankar, 1980) to handle the coupling between the continuity and momentum equations. The
algebraic equations are solved using a line-by-line tridiagonal matrix algorithm. [terations are carried
out until the absolute sums of the mass and momentum residuals at all internal grid points, normalized
by inlet mass and momentum, are less than 103 %.

The predicted mean axial velocity obtained from the k-&¢ model is compared with the experimental
data (Figure 6.2-3). A nonuniform grid of 40 x 28 x 24 along the x, y, and z directions, respectively, was
used for all calculations. The symmetry of the flow in the lateral (z) direction allows the computations
to be confined between the jet centerline and the centerline between the jets.

Two different numerical schemes, namely FSDS and PLDS, were applied for the calculations. Figure
6.2-3 shows the streamwise mean velocity profiles on the z = 7.5 in. (containing the centerline of the
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primary jets) at the selected axial locations. The purpose of this calculation is to address the differ-
ences between the results found from these schemes. Comparison of the data with the measurement re-
veals differences near the centerline. The velocity profiles predicted by both schemes were underesti-
mated upstream and downstream of the primary jets. There are, however, minor differences observed
between the schemes which demonstrate the presence of false diffusion. The measured data show
asymmetry between the upper and lower halves. As a result, the flow at the centerline tends toward
the lower wall resulting in a reattachment point of the lower recirculation zone farther upstream than
the upper zone. This will cause the upper recirculation zone to be larger than the lower recirculation
zone. A larger recirculation zone will allow the flow to diffuse faster and cause the stagnation point of
the recirculation zone to occur farther upstream.

Figure 6.24 shows the comparison of the predicted centerline velocity distribution with the experimen-
tal data. The flux-spline results are in relatively better agreement with experimental data at loca-
tions near the centerline. Near the impingement region, the velocity is considerably underpredicted.

Figure 6.2-5 shows the turbulent kinetic profiles on the z = 7.5 in. plane at various streamwise locations
obtained using the k-& model with the FSDS. Although differences between the calculated and exper-
imental results are significant, the predicted results reasonably well mimic the behavior of the exper-
imental data. A central peak is observed in the middle regions of the test section indicating higher
levels of turbulence than in other regions of the flow. The magnitude of turbulent kinetic energy in-
creases from x = 0.5 in. to x = 1.0 in. due to the acceleration of the fluid from the jet stagnation point be-
tween the forward recirculation zones. The greatest magnitude of turbulence energy occurs at the pri-
mary jet impingement (x = 1.5 in.). A spreading of the turbulence energy occurs farther downstream due
to the increased flow around the primary jets.

The differences between the predictions and the experimental data may be due to the coarseness of the
mesh used and/or the inadequacy of the turbulence model. To reduce the numerical errors, calculations
were repeated on a finer grid (Figures 6.2-6, 6.2-7, and 6.2-8). The use of the fine grid reduces the differ-
ences between the results from the two differencing schemes. The smeared (coarse grid) power-law pro-
file indicates the presence of excessive numerical diffusion. Although differences between the fine grid
power-law calculations and the experimental resuits still exist, change of the differencing scheme to
flux-spline did not improve the predictions (Figure 6.2-8). This clearly shows that the present calcula-
tions are grid independent.

Computations were also made on a 40 x 28 x 24 grid using the DSM and ASM closures. Figure 6.2-9 shows
the axial velocity profiles on centerplane at selected axial locations obtained using the FSDS. For this
calculation, plug profiles were prescribed at the inlet plane. At all streamwise locations, the profiles
resulting from the DSM and ASM are more smeared than those from the k-€ model. This trend indicates
the presence of excessive diffusion in the ASM and DSM solutions. Figures 6.2-10 and 6.2-11 show the
comparison of the predicted axial and vertical turbulence intensities obtained from the DSM and ASM
closures. A wide disparity existing between the two models. At all axial stations, the DSM results
mimic the behavior of the experimental data better than those obtained from the ASM. At stations x =
05 and x = 1.0 in. peak values of the fluctuating components are seen at the center portion of the rig.
The magnitudes of these quantities are seen to increase at station x = 1.0 in. due to the closer effects of
the impinging jets. The maximum value of the axial component predicted by the ASM is seen to be off
the center portion of the rig at x = 1.0 in. The radial component seems to diffuse and spread out at the x
= 1.0 in. station while the magnitudes of the fluctuations in the center portion of the rig nearly double.

At the entrance of the primary jet, x = 1.5 in., the influence of the primary jets can clearly be seen. Only
the behaviors of the results obtained from the DSM are consistent with the experimental data. The
radial turbulence intensity at x = 1.5 in. shows the a decrease in the v at the jet centerplane. However,
this decrease in magnitude does not span the entire height of the test section. The maximum values are
seen at the middle of the rig, which is caused by increased turbulence due to the fluctuation of the jet
stagnation point. Downstream of the primary jet entrance, the data show that the magnitude of the ax-
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ial turbulence intensity increases due to the acceleration of fluid from the jet stagnation point between
the upper and lower recirculation zones. This phenomena has been only partially predicted by DSM.
Similar results are seen at further downstream stations.
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Figure 6.2-10. Axial turbulence intensity profiles predicted by DSM and ASM (—— DSM-—ASM).
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Figure 6.2-11. Radial turbulence intensity profiles predicted by DSM and ASM (—— DSM——ASM).
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6.3 DOME ANNULAR JETS AND PRIMARY JETS

In this subsection, a numerical study of a jet-in-cross-flow configuration is presented. The purpose of
this study is to assess the performance of the DSM closure for compiex three-dimensional flow. Both
first and second-order discretization schemes were employed. The experiments were performed in an
air rig (Figure 6.1-1) consisting of five annular nonswirling streams issuing into a duct of rectangular
cross section 3.0 x 15.0 in. There are also five pairs of primary jets centered 1.5 in. downstream of the an-
nular jet entrance.

The set of governing partial differential equations for isothermal, constant density, three-dimensional
flow consists of equations for continuity, axial, radial, and tangential momenta, €, and six Reynolds
stress components; these equations are coupled and are nonlinear. It is not possible to obtain analytical
solutions, so numerical techniques have to be used. The finite volume method (Patankar, 1980) has been
used to reduce the continuous equations of motion to a set of coupled algebraic equations. The numerical
solutions have been obtained using both the PLDS and FSDS (Varejao, 1979). In the FSDS, the total
flux is assumed to vary in a piecewise linear manner within a control volume. This assumption leads to
a scheme in which the discretization coefficients are identical to those from the exponential scheme
(Patankar, 1980), but there is an additional source term that involves the differences in fluxes at adja-
cent faces of a control volume. The presence of this source term enables the FSDS to respond to the pres-
ence of sources and/or multidimensionality of the flow.

The elliptic nature of this flow required the boundary conditions be specified on the six sides of the so-
lution domain. Four kinds of boundaries need consideration: inlet, plane of symmetry, wall, and the
outlet. Due to the symmetry of the problem, the computational domain includes only one quarter of the
annular stream. In the cross section, the computational domain is bounded by symmetry lines in the z
direction and by a symmetry plane, wall, and inflow in the y direction. All dependent variables must
be specified at the inflow boundary. The upstream boundary, which is placed at the exit of the annular
stream (x = 0.0), the experimentally measured profiles of axial velocity and normal Reynolds stress
components are prescribed. The inlet dissipation rate is calculated based on the turbulent kinetic energy
and constant length scale. The computational domain extends from the inlet plane to four duct heights
downstream of the jet exit. The reason for this selection was to prevent recirculation at the exit. At the
downstream plane the gradients of all dependent variables in the axial direction are equal to zero. At
the symmetry plane Neumann boundary conditions are specified. The normal gradients of all depen-
dent variables, except the zero radial velocity and shear stress components, are taken to be zero. The
conventional logarithmic law, which is based on the local equilibrium assumption, is applied to the
wall boundary condition. The inlet profiles and the grid distribution in the xy and yz planes are dis-
played in Figures 6.3-1 and 6.3-2.

The coupled equations and boundary conditions are solved numerically in a sequential manner using the
staggered grids for velocities and shear stresses. The main advantage of staggering the locations of
stresses is to enhance numerical stability, a result of high coupling between the shear stresses and re-
lated mean streams. The iteration sequence employs the SIMPLER algorithm (Patankar, 1980) to han-
dle the coupling between the continuity and momentum equations. The algebraic equations are solved
using a line-by-line tridiagonal matrix algorithm. [terations are carried out until the absolute sums of
the mass and momentum residuals at all internal grid points, normalized by inlet mass and momentum,
are less than 0.01%.

The predicted mean and turbulence fields obtained for jet-in-cross flow are compared here with the ex-
perimental data. The jet-to~cross stream velocity ratio investigated is almost equal to 1. A nonuniform
grid of 52 x 42 x 42 x, y, and z directions, respectively, was used for all calculations. The symmetry of
the flow in the lateral (z) direction allows the computations to be confined between the jet centerline
and the centerline between the jets. Figure 6.3-3 shows the streamwise mean velocity profiles on the z =
7.5 in., containing the centerline of the annular jet and primary jets, at the selected axial locations ob-
tained from the DSM solution. Two different numerical schemes, namely the PLDS and FSDS, are ap-
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plied for the calculations. Here, the emphasis is being placed on the differences between the results ob-
tained from these schemes. The resuits show differences in the prediction of peak and centerline values
in the developing region. The predicted velocity profiles indicate higher maximum and a longer recir-
culation at the centerplane when the FSDS is applied. In the lower order schemes, the physical diffu-
sion may be dominated by the false diffusion and the physical diffusion may have no influence on the
numerical solution. At all streamwise locations, the profiles resulting from the PLDS are more smeared
than those from the FSDS due to excessive numerical diffusion in the power-law solution. If a diffusive
scheme, such as the PLDS, is used for discretizing the equations and if the flow is recirculating, which
creates sufficient internal production of turbulence, the numerical experiment shows that the results are
not strongly sensitive to the inlet profiles for k and e. The differences between the two solutions dimin-
ish as the grid is refined.

The data show that the annular jets penetrate up to the primary jets inlet at x = 1.5 in. and then are
turned parallel to the primary jets forming recirculation zones outside and in the center of the annular
region. This behavior has been well predicted by the DSM closure. The primary jets can be seen bending
downstream due to the annular jet interaction. Downstream of the primary jet inlet, the flow acceler-
ates between two recirculation zones on the upper and lower walls. This flow slowly diffuses as the re-
circulation zones shrink in size downstream. The recirculation zones show symmetric placement be-
tween upper and lower portions of the test section. The two forward recirculation zones centered in the
annular region also show symmetric placement.

Figures 6.3-4 and 6.3-5 show the axial and radial turbulence intensity profiles along the axial direction
on centerplane (z = 7.5 in.). Again the agreement is less in the peak and centerline region. Examination
of the calculated turbulent distributions indicates that both schemes have similar trends and the dif-
ferences between them are minimized as flow proceeds towards the downstream. The rms velocities
show increased fluctuations on the upstream side of the primary jet, fluctuations created by the inner
and outer walls. Larger fluctuations are evident on the downstream side of the primary jet. The change
in turbulence is due to the deflection of the primary jet by the annular jet and the formation of a rear re-
circulation zone at the downstream edge of the jet. It should be noted that the rms velocity steadily in-
creases farther downstream. The reason is that the annular jet cross flow causes a severe bending in the
primary jet producing this increased turbulence. At x = 0.5 in. both the axial and radial rms velocities
plots show a flat profile outside of the annular jet inlet and inside the annular jet region. Peak fluctua-
tions occur in the annular gap where fluid is entering. The magnitude of the fluctuations increase and
spread out from x = 0.5 in. to x = 1.0 in. Fluctuations at the center of the annular region have increased
due to the pair of counter rotating recirculation zones formed in the region. Magnitudes outside the an-
nular jet remain small compared to the annular jet region. Plots at x = 1.5 in. show a definite change in
the axial and radial rms velocities due to primary jet interaction. The axial rms velocity plot shows
decreased turbulence at the centerplane, z = 7.5 in., across the test section due to the primary jets. The
experimental data show two pairs of peak fluctuations occur on the sides of the centerplane. However,
the DSM closure could only predict one pair of peak values. The peaks at the bottom and top walls are
caused by the flow above and below the annular jets accelerating around the primary jets and flowing
downstream. The pair of peaks at the center of the rig correspond to increased flow around the primary
jets from recirculating fluid in the center of the annular jet. The radial rms velocity plot at x = 1.5 in.
shows decreased magnitudes at the upper and lower walls of the rig centerplane. A peak is observed at
the center of the test section due to the fluctuation of the stagnation point of the primary jets. The axial
rms velocity component at x = 2.0 in. shows a decrease at both upper and lower walls in the rig center
and peak magnitudes occuring along the rig centerline. The drop in magnitude along the upper and
lower walls is due to a recirculation zone, while the peaks at the center of the test section are caused by
fluid being accelerated between the upper and lower recirculation zones. The radial rms velocity com-
ponent at x = 2.0 in. shows peak velodities along the rig centerline. Similar results are evident at down-
stream locations.

Comparison of predicted turbulent shear stress by DSM with the data is shown in Figure 6.3-6. The im-
proved scheme showed higher peaks over the PLDS. Negative stresses are observed at the edges of the
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annular jet inlet due to the transfer of momentumn from the edges of the annular jet to the fluid. Both
schemes predicted such a process and FSDS showed a higher negative value. In comparison to the mea-
surement, the locations of maximum and minimum are shifted. Near the inlet, the experimental data
show a constant distribution around the centerline indicating very little momentum transfer. At most of
the locations, the calculated profiles are similar to the exhibited data trend. The largest values of
shear stress are present at x = 1.5 in. Here, primary and annular jet interaction produces large velocity
gradients and momentum transfer. Downstream and away from the centerplane, magnitudes decay and
approach a uniform distribution of shear stress at x = 6.0 in. The experiment shows a region of peak
positive shear stress along the upper half of the test section, while negative value occurs through the
lower half of the test rig at x = 2.0 in. The magnitudes continue to decrease and the peaks tend to spread
toward the walls and boundaries of the rig on downstream.

The profiles at various lateral locations are displayed in Figures 6.3-7 through 6.3-16. The results
have been shown at selected axial stations. The computed results obtained from the PLDS and FSDS
are very similar close to the centerplane between the annular jets. The FSDS results in higher peak
values and a longer recirculation zone. The profiles resulting from the power-law are more smeared
than those from the FSDS. This behavior indicates the presence of false diffusion in the power-law so-
lution. The data between planes at z=7.4 in. and z = 7.6 in. show similar results. The rear recirculation
zones at the z = 7.4 in. plane are slightly forward of the recirculation zones at the z = 7.6 in. plane. In
addition, the flow is seen to bend toward the lower wall at the z = 7.4 in. plane. The two forward re-
circulation zones are symmetric between planes for the upper and lower zones. The experimental data
show that while symmetric flow between z = 7.3 and z = 7.7 in. exists, there is no symmetry between
upper and lower portions of the test rig. The annular jet inlet extends between 6.8 in. <z < 8.2 in. The
forward recirculation zones placement is steady between 7.2 in. < 2 < 7.8 in.

The influence of the primary jets on the flowfield is seen downstream of x = 1.5 in. Flow downstream of x
= 1.5 in,, in the annular and primary jet case, is seen to be very similar to the flow in the primary jets
only case. Redrculation zones for the annular and primary jet case are larger and extend downstream
farther, but the flow is still seen to accelerate past the recirculation region and then diffuse. This is an
indication of how much influence the primary jets have on the flow.

Figure 6.3-17 shows the axial velocity profiles on the z = 7.5 in. plane, containing the centerline of the
annular stream and primary jets, at several streamwise locations using the standard k-& model. Both
the PLDS and FSDS differencing profiles were applied. For this calculation experimental profiles
were prescribed at the inlet plane. The use of the FSDS results in sharper peaks and a longer recircula-
tion zone at the center. The computational results simuilate the behavior of the measured data. How-
ever, the flux-spline results are in better agreement with the experimental data at locations near the
inlet. At all axial stations, the predicted profiles by PLDS are more smeared than those from the
FSDS. This trend shows the presence of excessive numerical diffusion in the power-law solution.

Comparison of the predicted streamwise turbulent kinetic energy using both schemes is shown in Figure
6.3-18. A wide disparity exists between the calculation and the measurement. The energy distribution
at x = 0.5 and 1.0 in. shows similar behaviors. Peak turbulence occurs at the edges of the annular jet
where large shear stress is present. Outside the annular inlet the turbulence is uniform to the bound-
aries and walls. The plots at x= 1.5 and 2.0 in. show peak turbulence occurring at the rig center and at
the top and bottom walls. The largest turbulence energy can be seen concentrated in the region of annular
and primary jet intersection at x = 1.5 and 2.0 in. Magnitudes decay and spread downstream and away
from the rig centerplane. Uniform turbulence energy between the upper and lower walls is present at x =
6.0 in.
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Figure 6.3-1. Inlet profiles.
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Figure 6.3-7. Axial velocity profiles at x = 0.5 in. and various lateral stations (DSM; — flux-spline—
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Figure 6.3-11. Axial velocity profiles at x = 2.5 in. and various lateral stations (DSM; —— flux-spline-
— power-law).
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VII. SUMMARY AND CONCLUSIONS

A combined experimental/analytical investigation was conducted to validate conventional and
improved turbulence models. A systematic experimental program was carried out to collect
benchmark quality data for the mean and fluctuating quantities in the developing region of an
annular-type gas turbine combustor. A laser-Doppler velocimeter was used to provide nonintru-
sive detailed measurements of the mean velocity components and the corresponding turbulence
intensities in an annular combustor model. A detailed specification of the flow parameters in
the upstream region was provided and was used as the inlet conditions to start the computa-
tions. Three different geometrical configurations of the annular combustor model were investi-
gated. These configurations consisted of primary jets only, annular jets only, and annular and
primary jets together.

Maijor features of the flowfield include the recirculating region, the primary and annular jet in-
teraction, and the high turbulence region. In the primary jets only configuration, four recircula-
tion zones were observed. Two counterrotating recirculation zones were set up between the end-
plate and the primary jets on the upper and lower halves of the rig. These zones were observed
to move toward the primary jets and the upper and lower walls. Another two counterrotating
recirculation zones also formed downstream of the primary jets on the upper and lower halves of
the rig. These recirculation zones moved upstream and toward the upper and lower walls of the
rig. The turbulent energy was mainly concentrated at the center of the test cell between the
endplate and the primary jet entrance. The turbulence siowly decayed further downstream.

For the annular jets only case, two recirculation zones were formed along the upper and lower
walls of the combustor. These recirculation zones extend downstream from the annular jet en-
trance and showed no definite center as the recirculation zones did in the primary jets only case.
The greatest turbulent energy and shear stress existed at the inlet of the annular jet. As in the
primary jets only case, the turbulence decayed farther downstream.

For the primary and annular jets case, four recirculation zones occurred in the combustor. Two
large redirculation zones downstream of the primary jets along the upper and lower walls and
two zones upstream of the primary jets between the edges of the annular jet and the upper and
lower walls were present. Two additional recirculation zones were formed behind the center of
the annular jet. The highest turbulent energy and shear stress met at x = 1.5 inches, where the
annular and primary jets interact. Turbulence levels decayed and dispersed downstream, as in
the primary jets only case.

The most pronounced result from the data is the effect the primary jets had on the flowfield.
The annular jets only case had more scattered data than any of the other geometries. When the
primary jets and annular jets were used together, the resulting data were much more symmetric
than in the annular jets only case. In addition, recirculation zones were much more defined with
the primary jets only. The combustor model was designed to model the primary zone of a typi-
cal gas turbine engine combustor and to help understand the flow within the combustor. The ob-
jective of this program was to provide data that can be used for turbulence model validation.

Three different levels of turbulence models (k-¢, algebraic second-moment [ASM], and differen-
tial second-moment [DSM] closure) were applied for computations. To reduce the effect of nu-
merical (false) diffusion on the predicted resuits, the linear flux-spline scheme was used to
solve several three-dimensional flows. For a given number of grid points, the flux-spline
scheme produces results that are superior to those from the (lower-order) power-law differenc-
ing scheme. In addition, it has the potential of providing a grid independent solution without
requiring an excessive number of grid points. It should be noted that the effectiveness of turbu-
lence model predictions could be obscured to some extent by competing factors such as boundary
conditions, oscillatory phenomena, and numerical diffusion. A significant contribution from any
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of these factors tends to invalidate conclusions regarding the superiority or inferiority of a
given turbulence model. The turbulence model cannot compensate for inadequacy in this area.

Although some of the models described in this study, in particular the k- model, have been
shown to work well in many situations, there is much room for further development. The ¢-
equation in its present form appears not to be sufficiently universal and should be improved. As
observed by many, this equation is responsible for the performance of most models. The model
assumption for the pressure-strain correlation is also not very satisfactory and needs improve-
ment. Proposals for the behavior of ®jj; in homogeneous flaws have only gone further than that
of Rotta's linear model by including further terms in a series expansion about the isotropic ho-
mogeneous state. However, optimization of the coefficients of the terms in the expansion on the
basis of available experimental data is a very difficult tasks indeed. It seems unlikely that
any serious proposal for ®jj; will be made in the near future, and emphasis should be placed on
developing a better approximation for ®;j2.

Unfortunately, in many instances there is a lack of quality data relevant to gas turbine combus-
tion. Many modeling assumptions are similar to the constant-density, Reynolds stress closure.
Therefore, further experiments with more emphasis on turbulent scalar fluxes and density corre-
lations are needed to support or to improve these assumptions.
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TURBULENT FLOW EQUATIONS FOR THE k-e MODEL

The transport equations presented in the previous sections reduce in three-dimensional coordinates (x, y,

z) to the following:

Continuity Equation:
d d
—(pU)+—(pV)=0
=\ E(pl)

x - Momentum Equation:

) ) oP 4 ) )

— + —_ +—{pUW)= ——+ T +—(7 +—(T
—(PUU)+—=(pUV)+ —{pUW)= -—+ —(t,,) ay(uv) — (Tuw)
y - Momentum Equation:

d d a aP 9 3 d

—_— +—(pVV)+ —(pVW)=-—+—(1 +—{T +—(7
—{pUNY] ay(p )= {p¥n] » = (7w) ay(w) = (")

z - Momentum Equation:
9 d d

—{(PUW)+—(pVW)+ —(pWW) = - —+ —(1,,, )+ —(7
ax ay dz

k - Transport Equation:

j—(pUk)+—a—(ka)+—a-(ka)=Pk—pg+—a— _u—‘.puiliq.i h.g.u.a_k.{.i ﬁ.*.u
ox dy 0z ox || oy ox | dy|{ oy dy | oz| oy

€ - Transport Equation:

) 2 ) € e2 a3|(n o€
a—x(PU€)+;y'(PV€)+$(PW€)=Cele’k -Cezp—+—;{[—‘+u]— +

ABlala

where
kZ
,J_ = p_—
t n s
oU
Tou = 2“”!’ =
ax
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Tyy = p.-r[a—U-t- a_v] (A-9)
dy ox
dU oW
= — e e, (A'].O)
uw l"’r( az ax J
tw=2p,.ra—v- (A-11)
ay
Tow =HT -al/-+ﬂ (A-12)
dz ay
Tww = 2Ky i (A-13)
a0z
Wr =H, +H (A-14)
Uy (av) (aw) au‘av2 U aw) (av aw)
Py =|2 [—j + | — +(—J +| ——— +(—+—j | — — (A-15)
ax ay 0z dy dx 9z  dx 0z ody
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TURBULENT FLOW EQUATIONS FOR DSM CLOSURE

The modeled Reynolds stress transport equations presented in the tensor notation reduce in 3-D coordi-

nates (x, y, z) to the following equations.

Equation for u’:

o - — !
i(pUu2)+—a-(qu2)+i(quz)=-a_ (Ckp-]iuz)ai. =+
ox dy 0z ox £ ox

Equation for v
d — 0 — 0 —y 0 k =7 )ouv
;(pqu)+3;’-(vaw)+$(pwuv)=g{ C“p:uzj—a{!}'

P) k=3 )duv —\ouv
— (Ckp—vz)aﬂ +i[(Ckp£w2)aﬁ +Pyp + D,
ay € dy | oz € 0z

Equation for vw :
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Equation for uw :

) 3 3 ) ( ]auw]
Uuw )+ —(pVuw }+—(pWuw|=—{ | C,p—u" |— |+
= (pUuw) ay(p —{pWaw) ax[ kpa =
2 k—z')auw d ( )auw}
=i Cop—w" |—=== Cp— +P,+®
ay[( kpgv ayjl az|: ka 3z 13 13
where

P, =-2p| u —zaU+Ea—U+ma—U
ox ay 0z

(—aV =V —aV
Py =-2p| UV =—+ V" —+vw—
ax ay dz

I - L wza_vz]

ax ay 0z

Pp=-p| 0" ——+V =——uv—o+r uw—o+vw—

P=-plu

=W 3V —oU —IW —V)
Pp==p| V' ==+ W =——yW—tuv—stuw—

\ 9y 0z ox ax ax
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