NASA Technical Memorandum 105974

/N-03 /9300°

Users Manual for the NASA Lewis Three-Dimensional Ice Accretion Code (LEWICE 3D)

Colin S. Bidwell and Mark G. Potapczuk Lewis Research Center Cleveland, Ohio

December 1993

(NASA-TM-105974) USERS MANUAL FOR THE NASA LEWIS THREE-DIMENSIONAL ICE ACCRETION CODE (LEWICE 3D) (NASA) 143 p N94-21590

Unclas

NASA

G3/03 0198080

•		
		ř
		è
		•

TABLE OF CONTENTS

SUMMARY	
SYMBOLS	
I. INTRODUCTION	
II. PROGRAM UNITS	
A. Introduction	
B. Subroutine READIN	
1. General Discusion	
2. Printed Output	
C. Subroutine FLOW	
1. General Discussion	
2. Printed Output	
3. Peripheral Storage	
4. Variable Array Dimensioning	
D. Subroutine SETFLO	
1. General Discussion	
1. Printed Output	. 24
E. Subroutine BETAC	
1. General Discussion	. 24
a. Search For Upstream Particle Release Points	. 25
b. Search For Tangent Trajectories	.26
c. Calculation Of Impact Trajectories	.27
d. Calculation Of Collection Efficiency	. 28
2. Printed Output	
F. Subroutine STREM3D	. 33
1. General Discussion	. 33
b. Search For Stagnation Zone	
b. Calculation Of Upper and Lower Streamlines	. 34
c. Projection Of Streamlines Onto Surface	
2. Printed Output	
G. Subroutine STREM2D	
1. General Discussion	
2. Printed Output	. 37
H. Subroutine BSTREM	
1. General Discussion	
2. Printed Output	
I. Subroutine LEWICE2D	
1. General Discussion	
a. Modeling The Ice Growth Process	
b. Ice Growth Along Streamlines	
2. Printed Output	47

J. Subroutine BODMOD	47
J. Subroutine BODMOD	47
1. General Discussion	40
2. Printed Output	49
K. Summary Of Subroutines	47
III. INPUT FILES	63
IV. REFERENCES	
IV. REFERENCES	Ω 1
V EYAMPI F CASE	01

USERS MANUAL FOR THE NASA LEWIS THREE-DIMENSIONAL ICE ACCRETION CODE (LEWICE3D)

Colin S. Bidwell Mark G. Potapzcuk

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

SUMMARY

A description of the methodology, the algorithms, and the input and output data along with an example case, for the NASA Lewis three-dimensional ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies and the use of the code.

The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary three-dimensional lifting and nonlifting bodies with external flow. A 4th order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A heat transfer algorithm based on the NASA Lewis two-dimensional ice accretion code (LEWICE) can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest.

The three-dimensional ice accretion calculation is based on the two-dimensional LEWICE calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.

SYMBOLS

Parametric slope matrix for a line in space A. A2 Trajectory flux tube area at surface A_{m} Trajectory flux tube area in free stream A_{o} Surface area of a segment on the streamline A_{sur} Parametric intercept matrix for a line in space B, B2 $B^{\mathbf{k}}$ Vortex pair strength for kth lifting strip Specific heat, J/kg C_{p} Coarse step size for tangent trajectory search **DCOR DFINE** Fine step size for tangent trajectory search Trajectory flux tube width in free stream DS_0 Trajectory flux tube width at surface DS_{m} DICE Ice thickness array along streamline Ice thickness save array for streamlines DICES Ice thickness array d_{ice} f Freezing fraction at a segment h_{c} Convective heat transfer coefficient Enthalpy Flow field calculation flag **IFLOW** Trajectory calculation control flag **IRUN** Ice accretion calculation control flag **ICE IMOD** Geometry modification control flag Upper streamline release point array counter **ISUP** Lower streamline release point array counter **ISLO** Streamline calculation control flag **ISTRF** Flags denoting two closest sections of interest to a given N-IST1, IST2 line Heat of fusion, J/kg L_{f} Heat of vaporization J/kg L_{ν} mass flow rate m Number of rows of trajectories to be released at a section of **NBR** Number of columns of trajectories to be released at a section **NBC** of interest Flag describing region of interest **NPSEC** Number of points in two the two closest streamlines to a giv-NPTS1, NPTS2 en N-line Point arrays PIN, PIN1, P1,P2 Array containing coefficients of equation of a plane **PLN** Convective heat flux, W/m² q_c Temperature, K T

interest

TL

Parametric distance of an N-line from two closest sections of

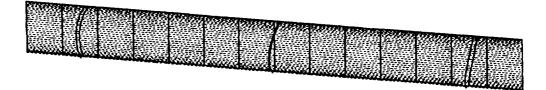
SYMBOLS CONTINUED

Weighting factor in j direction for collection efficiency interu polation Weighting factor in i direction for collection efficiency inter-V polation V Velocity M/S Stagnation point search velocity criteria **VCRIT** Coordinate arrays describing the on-body streamline. XNEW, YNEW, ZNEW, Arrays describing upstream release points XSCI, YSCI, for trajectories passing through points describing the ZSCI section of interest. Arrays describing upstream release points for tangent XTIP, trajectories YTIP, **XTIP** XSEC, Arrays describing the region of interest. YSEC, **ZSEC XSTOP** Stream wise stopping point for all trajectory and streamline calculations XL,YL, ZL Scan line arrays for stagnation point search Arrays of surface normals for streamline XN,YN,ZN Surface coordinates of impingement cell $\mathbf{x_i}$ Location of centroid of A_m x_{ci} Location along surface streamline x_{si} Displacement vector from x(i,j) to x(i,j+1)Displacement vector from x(i,j) to x(i+1,j) X_s Displacement vector from x(i,j) to x_s Pitch angle of geometry α Collection efficiency β Density of ice at segment i ρ_i Length of segment along surface streamline Δs Time increment for ice accretion Δt Sideslip angle of geometry Ψ Rotation angle of surface droplet flux tube ν Source strength of a panel σ_{i} Subscripts Air a Adiabatic wall aw Critical; convection С

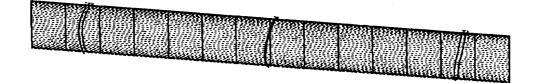
e

Evaporation: condition at the edge of the boundary layer

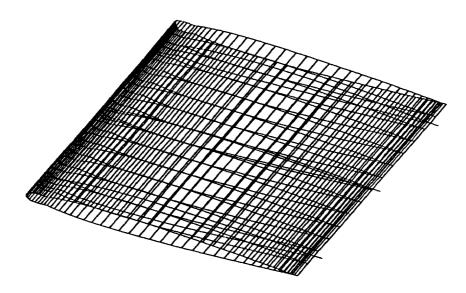
SYMBOLS CONCLUDED


i	Ice
(i)	Control volume
r _{in}	Runback into control volume
r _{out}	Runback out of control volume surface condition
sur s	Static condition
T	Total condition

I. INTRODUCTION

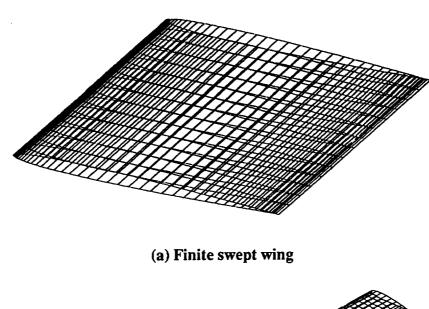

The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on two-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary three-dimensional lifting and nonlifting bodies with external flow. A 4th order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A heat transfer algorithm based on the NASA Lewis two-dimensional ice accretion code (LEWICE) can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest.

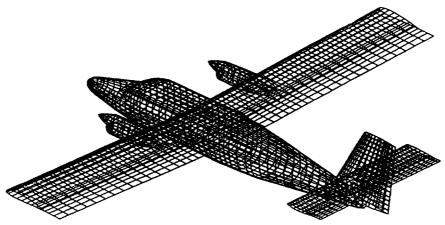
The three-dimensional ice accretion calculation is based on the two-dimensional LEWICE calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.


The basic methodology of the three-dimensional ice accretion analysis is to divide the three-dimensional ice accretion process into two-dimensional processes along streamlines of interest (fig. 1). The user inputs regions of interest on the three-dimensional body (e.g. leading edge points). A streamline is then calculated along the body's surface from the centroid of this region of interest. Impingement rates and velocities are calculated along this streamline. This information is input to a two-dimensional heat transfer module which calculates ice growth along the streamline. This information is used to generate a new geometry at the streamline location. This process is repeated for each streamline of interest on the three-dimensional body. Upon completing the ice growth calculations the geometry is modified and the flow field is updated. The above steps are repeated for as for each time step.

(a) Clean swept airfoil with three streamlines (top view).

(b) Clean swept airfoil with three iced streamlines (top view).


(c) Iced swept airfoil resulting from three iced streamlines.


Figure 1. - Airfoil with several sections of interest.

The three-dimensional (3D) analysis then, can be broken into 6 basic steps. First, a flow field is generated for the body. Second, impingement efficiency is calculated at the region of interest. Third, a streamline is calculated at the region of interest. Fourth, impingement rates along the streamline of interest are found by interpolation. During the Fifth step ice accretion along the streamline is calculated using the two-dimensional (2D) heat transfer module. The Sixth step

involves generating a new body from the ice accretion information.

A 3D Hess-Smith panel code (ref. 1-5) is used to generate the flow field used in the trajectory and heat transfer calculations. The code can accommodate lifting and non-lifting geometries or combinations thereof such as entire airplanes (fig. 2). If desired, a Prandtl-Glauert correction can be made for compressible cases. The code can also handle leaking panels to emulate inlets for instrument orifices. The code also has a variable dimension feature which allows easy adaption to different computers or problems.

(b) Twin Otter aircraft.

Figure 2. - Panel representation of different types of geometries

The trajectory code is basically that developed by Hillyer Norment (ref. 5) with one additional feature. The code uses the Hess-Smith flow field along with an Adams-type predictor-corrector algorithm developed by Krogh (ref. 6). An added feature is the ability to calculate local collection efficiency from the impacting trajectories. The code is used here to generate an array of

impingement efficiencies for each region of interest.

The surface streamline is calculated using a 4th order Runge-Kutta integration scheme. The streamline integration is carried forward from the stagnation region for both the upper and lower surfaces at the region of interest.

A linear interpolation scheme is used to determine the collection efficiency along the streamline from the matrix of collection efficiencies generated above in the trajectory step.

The 2D ice accretion calculation is basically that of the LEWICE program generated at Lewis. This code is described in detail in reference 7.

The new geometry is generated from ice accretion information and from the surface normal information and final trajectory angle information. Each new point on the streamline is generated by adding the ice accretion multiplied by either the surface normal vector or by the final trajectory tangent vector to the old streamline point.

II. PROGRAM UNITS

A. Introduction

There are nine basic program units comprising the 3D ice accretion calculation: READIN, FLOW, SETFLO, BETAC, STREM3D, STREM2D, BSTREM, LEWICE2D, AND BODMOD. A brief description of each of these modules is given along with a flow chart. Figure 3 shows an overview of the LEWICE3D job stream. Section J contains tables giving a brief description of each subroutine used in the above modules.

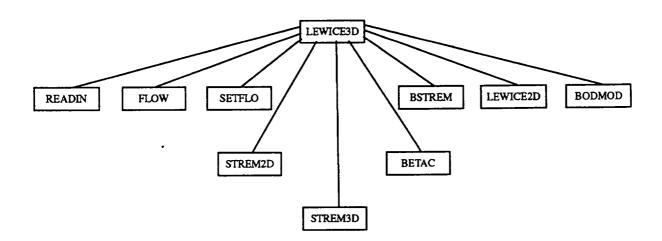
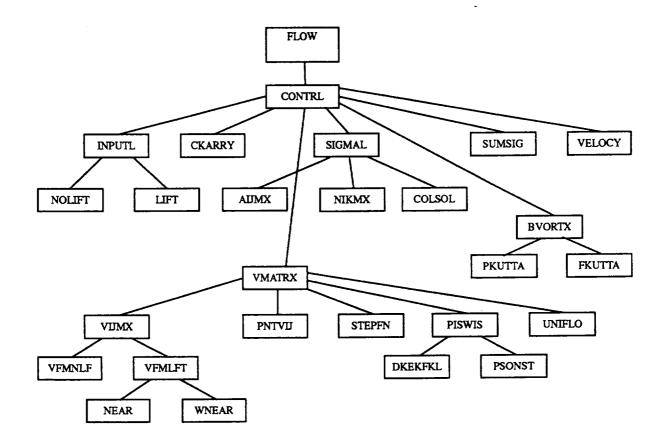


Figure 3. - LEWICE3D segmentation tree structure.

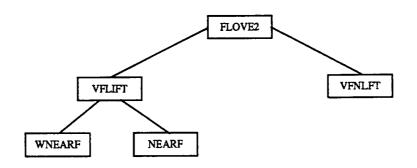
B. Subroutine READIN

1. General Discusion

The module READIN reads the job control file (unit INPUT) and initializes important program control variables. All input data (unit INPUT) is in "NAMELIST" format. Three "NAMELISTS" are input from unit INPUT: IMPING, TRAJ and ICEIN. A brief description of the variables in each of the NAMELISTS is given in the INPUT FILE section. IMPING contains control variables for the Hillyer Norment Trajectory codes. These variables are described in the user's manual for the trajectory codes (ref. 5). TRAJ contains the control variables for the overall calculation including how many stations are to be used, number of trajectories to be used, whether to run the flow field code, LEWICE or streamline calculations, etc. ICEIN contains control variables for the 2D LEWICE calculation. These variables are described in the LEWICE manual.


2. Printed Output

Subroutine READIN prints job control information to several output files (OUPUT, JOB-SUM). This information is self explanatory.


C. Subroutine FLOW

1. General Discussion

Subroutine FLOW is essentially the HESS-Smith 3D panel code put into subroutine form. Hillyer Norment gives a good description of the Hess-Smith code in his user's manual (ref. 5, pages 10-14), and this description is repeated here for completeness. Figure 4 shows a flow chart of the flow field (subroutine FLOW) and velocity calculations (subroutine FLOVE2 and FLOVEL). Subroutine FLOVE2 is the original velocity calculation alogorithm developed by Hillyer Norment (ref. 5). Subroutine FLOVEL is a vectorized version of FLOVE2 which was developed at LEWIS by Bidwell and Mohler. Subroutine FLOVEL evaluates velocities about 20 % faster than FLOVE2 on computers that do not support vectorization and about 80% faster on machines supporting vectorization. The algorithm cannot be used in cases where the piecewise linear vorticity option has been chosen (i.e. PESWIS = TRUE).

(a) Subroutine FLOW

(b) Subroutine FLOVE2

Figure 4. Flow field and velocity calculation segmentation tree structures.

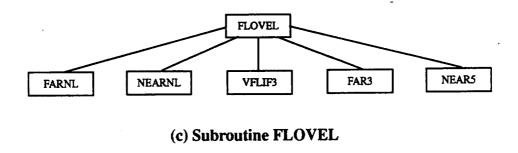


Figure 4. -Concluded. Flow field and velocity calculation segmentation tree structures.

The methods and codes of Hess (ref. 1) and Hess and Smith (ref. 2,3) are used for calculation of lifting and nonlifting potential flow about arbitrary three-dimensional bodies. Lifting bodies (i.e., airfoils) alone, nonlifting bodies alone, or combinations of lifting bodies with nonlifting bodies (e.g., combinations or airfoils and fuselages) can be treated. Effects of flow into an inlet, for example an instrument aperture, can be accounted for provided the intake flow rate, in terms of fraction of free stream air speed, is specified. The method is restricted to subsonic airspeeds, but for free stream Mach numbers greater than 0.5, the Prandtl-Glauert method is used to correct approximately for compressibility effects. Since potential flow is computed, neither viscous effects nor turbulence are treated.

The code requires input of a digital description of the body surface, and for purposes of organizing the data as well as for computing flow, the body surface is partitioned into sections which are designated as either lifting or nonlifting. In either case, the surface is represented by contiguous, plane quadrilateral panels, usually called elements (fig.2). For nonlifting sections there are few restrictions on the manner in which the elements can be arranged to represent the surface other than those required for organization. Lifting sections are restricted as follows: each must consist of strips of elements, the strips being oriented parallel to the chordwise direction of the airfoil each strip must have the same number of elements and wake elements must be included after the trailing edge of each strip. Both lifting and nonlifting portions of the body may be described by more than one section.

Each on-body element (which is in the flow) is taken to be a potential flow source. The source is a distributed one, with the distribution being uniform over the surface of the element, and each element, for example the j^{th} , is characterized by a unique source density, σ_j . In addition, each strip of elements in a lifting section is characterized by having a unique value of lift vorticity associated with it. This quantity, for example for the K^{th} lifting strip, $B^{(k)}$, represents vortex strength per unit path length around the strip (fig. 5), and it represent the sum of contributions from all panels in the strip. Velocities induced by these vorticities are treated as onset flows. Thus, there is an onset flow from each lifting strip plus the free stream onset flow. It is necessary to compute an independent source density for each of these onset flows for each on-body quadrilateral panel: if there

are N on-body panels, K lifting strips, and one free stream flow, N(K+1) values of σ must be computed. Source densities are determined by solving large systems of linear equations that represent the effects of all onset flows on all panels, plus the mutual interactions of all distributed sources, under boundary conditions for zero flux through the centroid (also called control point) of each on-body panel, or specified fraction of free stream flux through each inlet panel.

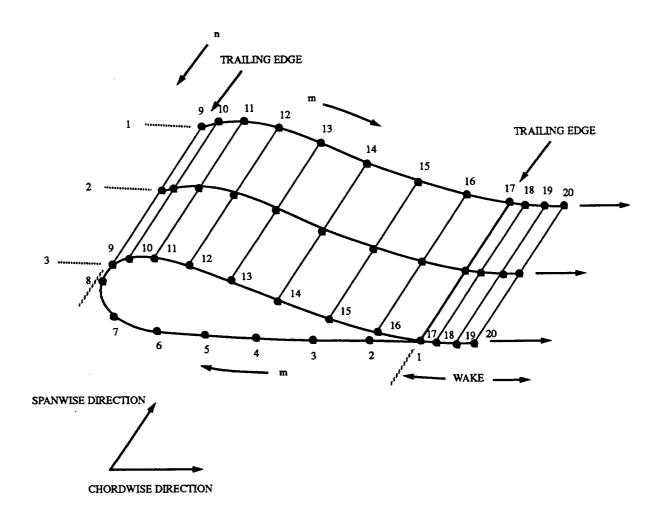


Figure 5. - Organization of m and n lines in a lifting section. A lifting strip is delineated by sequential n lines, and extends over the complete circuit from m = 1 at the trailing edge, along the underside to and around the leading edge, back to the trailing edge, and finally back to the furthest aftward extent of the wake.

Determination of vortex strengths requires an additional constraint, the Kutta condition, and this is supplied by user-selection of one of two optional methods which are designated as "flow tangency" and "pressure equality."

Lift vorticity is computed by a novel method developed by Hess (ref. 1). To circumvent

problems that have been found to result from use of vortex filaments in prior work, and to ensure that potential flow results from the vorticity distribution and that individual infinitesimal vortex lines either form closed curves or go to infinity, Hess has developed a method by which vortex sheets on the body and wake surfaces can be expressed in terms of dipole sheets on the same surfaces. Hess summarizes the method as follows:

"A variable-strength dipole sheet is equivalent to the sum of: (1) a variable-strength vortex sheet on the same surface as the dipole sheet whose vorticity has a direction at right angles to the gradient of the dipole strength and a magnitude equal to the magnitude of this gradient, and (2) a concentrated vortex filament around the edge of the sheet whose strength is everywhere equal to the local edge value of dipole strength."

Mathematical details are given in appendix A of reference 1.

For particular body geometry and orientation relative to the free stream, the source densities and vortex strengths are calculated only once, and then these can be used to calculate flow velocity at any space point exterior to the body. The primary functions of the DUGLFT codes are to calculate the σ_j and $B^{(k)}$ and store these quantities, along with other requisite data, for use by subroutine FLOVEL in calculating flow velocities. Subroutine FLOVEL is called as needed by programs TRAJEC, CONFAC, and ARYTRJ to provide flow velocities for trajectory and flow velocity array calculations.

In calculating each flow velocity, contributions from all quadrilateral elements are summed. There are three sets of algorithms for computing contributions from individual elements: (1) for elements that are close to the calculation point, detailed calculations are used that account for exact element geometries, (2) for elements at intermediate distances multipole expansions are used, and (3) for remote elements the point source approximation is used. Mathematical details are given in references 1,2 and 3 with emphasis on lifting flow in reference 1 and emphasis on nonlifting flow in references 2 and 3. The reader is strongly urged to study these references closely before attempting to use this code. Reference 4 consists of a code users manual for the lifting flow calculations described in reference 1.

Calculation accuracy is discussed in the Validation section in the Hillyer manual (ref. 5). Of course accuracy also depends on the fineness of resolution of the element description of the body, and naturally some compromise is called for. The smaller the elements the finer the resolution, and the fewer of them for which the most exacting of the three algorithms must be used. On the other hand, the number of elements increases inversely as the square of their linear size. In past studies on airplanes we have used the following paneling criteria For those parts of the airplane traversed by particle trajectories, we try to keep the element edges between 6" and 8" in length. Where allowed by simplicity of surface shape, remote elements can be larger. Remote downstream complexities of shape are ignored or treated approximately. For example, if interest is confined to the forward fuselage, then the remainder of the fuselage can be represented as a cylinder of constant cross-section which is extended to approximately five time the length of the of the nose section (as recommended by Hess and Smith, ref. 2), and the wings can be ignored entirely. The following are basic requirements of the method that apply to all calculations

- 1. A uniform, unit-speed free stream approximately in the direction of the positive x-axis.
- 2. Normalization of all velocities to be consistent with the unit free stream speed.
- 3. Normalization of all distances by a user-specified characteristic dimension of the body.

Surface point coordinates may be recorded in any convenient units and can be appropriately translated and scaled, to meet requirement 3 above, during processing via use of SR's PATPRS and DATPRS. These subroutines also allow rotation of the body about the y axis to adjust attitude angle. The coordinate system used for the calculations is described on pp. 19-20 (ref. 5).

The unit free stream speed is assumed by program DUGLFT, and the distance normalization, if required, is done during preliminary data processing as indicated above. For trajectory calculations, the user specifies the true free stream speed and the normalization length, and the codes automatically handle any additional normalizing or scaling that is required.

The module FLOW computes a flow field for the geometry input on unit NGEOM (DUG-LIFT format) and saves it on unit FLOWF. This module is executed only if IFLOW=1 (NAMEL-IST TRAJ). If the flow field code is not executed (i.e. IFLOW=0) then the flow field must be provided on unit FLOWF. The Hess-Smith 3D flow field code is used in subroutine form here to generate the flow field. The execution time for the flow field calculation is proportional to the square of the number of panels. A 1200 lifting panel model with one section required 80 seconds of CPU time on the CRAY XMP while that for a 3200 panel model with one section required 630 seconds. Two basic requirements have been found to date for the ice accretion calculations. The first is a numerical one for the panel method used. The requirement is that the aspect ratio of any panel should not be greater than 100. The source strength calculation will converge for larger aspect ratios but the vortex calculation will not. The requirement grows more stringent with angle of attack and ratios as high as 100 may not be allowed for some geometries. The second requirements is that to produce a smooth beta curve there must be approximately one panel per trajectory released in the z-direction (i.e. if 20 trajectories were to be released between the impingement limits then 20 panels are required between the impingement limits at the surface to ensure a smooth beta curve.

2. Printed Output

Subroutine flow produces several output files (units FLSUM, FLOWF). Unit FLSUM is a summary of the flow field computation and contains varying amounts of information depending on the flags set in the flow input file (unit NGEOM). Any error messages from the flow field computation will be found in unit FLSUM. Unit FLOWF contains the flow field information in binary format to be used in the calculation of velocities in the trajectory routines. A description of these files is taken from reference 5.

The flow field calculation summary output (unit FLSUM) consists of two main parts, plus a summary of input control data, various error condition messages, and optional outputs of data that are used for debugging.

- 1. The first printout is a summary of input control data, and is self-explanatory.
- 2. Next, which is the first main part, is a printout (from NOLIFT and LIFT) of element data. Elements are designated as lifting or non-lifting.

A short table follows (from INPUTL) titled TABLE OF INPUT INFORMATION, which summarizes the data in terms of section type, number of elements per section, number of strips, etc.

- 3. In the course of computing velocities induced by each element on all others, additional summary information is printed (from VIJMX) for each section. For lifting strips, this includes information on ignored elements which does not appear elsewhere.
- 4. If the piecewise linear option for determination of spanwise variation of vortex strength is used, strip widths, W_k , and parameters D_k , E_k , F_k (ref. 3, sec. 7.11) are printed for each strip for each section, along with a summary of edge conditions (NLINE1 and NLINEN).
- 5 A short statement is printed (from COLSOL) regarding the dimensions of the matrix that are solved to determine element source strengths, and the number of right-hand-sides (i.e., number of uniform onset flows plus number of lifting strips) for which the solutions are obtained.
- 6. The second main printout (from PRINTL) contains the final results of the calculations. A printout for each on-body element is labeled as follows.

X0, Y0, Z0	Control point coordinates.
VX, VY, VZ	Flow velocity components at the control point
VT	Velocity magnitude
VTSQ	Square of velocity magnitude
СР	Pressure coefficient = 1.0 - VTSQ
DCX, DCY, DCZ	Direction cosines of the velocity components
NX, NY, NZ	Components of the unit normal to the plane of the element
SIG	Source density
VN	Velocity component in the direction of the unit normal

AREA

Area of the element

Printouts for off-body and Kutta points are similarly labeled.

Also printed are vector components for pressure force and moment for each strip, each section and for the entire body, as well as a table of vortex strength per unit length, $B^{(k)}$, for each lifting strip.

7. Error messages (ref. 4).

(a) Message: MISMATCH OF ELEMENTS IN A LIFTING

STRIP IS DETECTED. ELEMENTS FORMED XXX, ELEMENTS INPUT XXX, COMPUTATION

TERMINATED. (SR INPUTL)

Cause of error: Inconsistent input data. The program sums the num-

ber of on-body elements plus the wake elements specified on card 8. This sum does not match with the

elements formed from the input coordinates.

Action: Check the lifting body information card (card 8) and

the quadrilateral corner point coordinates cards (cards 12). The number of points on an n-line should

equal the number of elements plus 1.

For example: If in a lifting section each lifting strip consist of 10 on-body elements and 1 wake element, the total number of elements is 11, and there should be 12 points on each n-line input via cards no. 12.

(b) Message:

ERROR IN IGNORED ELEMENT COUNT XXX,

SHOULD BE XXX. (SR LIFT)

Cause of error:

Erroneous specification of ignored element informa-

tion.

Action:

Check card 10 to make sure the ignored element in-

formation is properly specified.

(c) Message:

LABEL ERROR IN NONLIFTING VFORM. (SR

VFMNLF)

LABEL ERROR IN LIFTING VFORM (SR VFM-

LFT)

Cause of error:

Geometric data for each element strip, preceded by a

lifting or nonlifting label are stored on unit 4. The error occurs when a labeling mix-up is detected during input of the data from unit 4 for calculation of velocities. That is, data for a strip labeled lifting are encountered during computation for a nonlifting section, or vice versa.

Action:

Check that the number of lifting strips specified on card no. 8 for each lifting section corresponds with the cards no. 12 input.

(d) The following messages pertain to errors in specification of variable dimensions (SR CKARRY).

ELEMENT CAPACITY, NONX = XXX IS LESS THAN TOTAL ELEMENTS, NON= XXX

STRIP CAPACITY, NSTX = XXX IS LESS THAN TOTAL STRIPS, NSTRP = XXX

LIFTING SECTION CAPACITY, LFSX= XXX IS LESS THAN TOTAL SECTIONS, ISECT = XXX

LIFTING STRIP CAPACITY, NOBX = XXX IS LESS THAN TOTAL LIFTING STRIPS, LSTRP = XXX

N2BX = XXX IS NOT GE TWICE NOBX AS REQUIRED, NOBX = XXX

NSLX = XXX IS LESS THATN THE MAX. NO. OF STRIPS IN A LIFTING SECTION, WHICH IS XXX

CAPACITY OF ARRAY WKAREA, NWAX = XXX, USED BY COLSOL TO DETERMINE SOURCE STRENGTHS, IS INSUFFICIENT. IT MUST BE GREATER OR EQUAL TO XXX

NWAX = XXX IS NOT GREATER OR EQUAL TO NO. OF LIFTING STRIPS = XXX CUBED, AS REQURED FOR THE PRESSURE EQUALITY KUTTA OPTION.

Cause of error:

Array dimensions are inadequate to accommodate

the input data.

Action:

Check array dimensions and variable array parameters against the storage demands of the element data input via cards no. 12. Also check input parameter

LIFSEC, NSORCE, NWAKE, NSTRIP, and IX-

FLAG.

(e) Messages: XXX ANGLES OF ATTACK HAVE BEEN SPECI-

FIED, ONLY ONE IS ALLOWED SINCE COM-PRESSION EFFECTS ARE CONSIDERED.

ANLGE OF ATTACK, + - XXX, + - XXX, +- XXX-IS INAPPROPRIATE FOR A CASE WITH COM-PRESSION CORRECTION. (SR CKARRY)

Cause of error: Only one uniform onset flow (i.e. free stream) is al-

lowed if the compressibility correction is applied (MACH > 0.0 on card no. 2). Moreover, the direction cosines (ALPHAX, ALPHAY, ALPHAZ) of this on-

set flow must be (1.0, 0.0, 0.0; card no. 4).

Action: Set IATACK = 1 on card 2, and/or specify direction

cosines on card 4 as stated above.

(f) Message: THE NUMBER OF KUTTA POINTS SPECIFIED

IS INCORRECT AND SHOULD BE XXX (SR CK-

ARRY)

Cause of error: The flow tangency Kutta option has been specified,

and the number of Kutta points specified by input (cards no. 9, 13 and 14) does not equal the number of

lifting strips.

Action: Check parameter KUTTA on card 9, and the number

of KUTTA data points on cards 13 and 14, against the number of lifting strips input via cards no. 12 (Do not

count extra strips.)

(g) Message: ERROR IN VFORM. THE ELEMENTS FORMED

DO NOT CORRESPOND TO THE NO. OF BODY

ELEMENTS. (SRS VFMNLF AND VFMLFT)

Cause of error: Element tally recorded by SR INPTL does not match

with tally recorded from input of data from unit 4

during velocity calculation.

Action: Check lifting strip specification data on card 8 for

consistency with cards no. 12 input data.

(h) Message: AFTER XXX INTERATIONS, DELTA B STILL

DID NOT CONVERGE TO THE GIVEN CRITERI-ON/ LARGEST DELTA B = +- XXX.XXX/ PRO-GRAM PROCEEDS WITH THE MODS CURRENT VORTEX STRENGTH. (SR PKUTTA)

Cause of error:

Non-convergence of vortex strengths, B, calculation via the pressure equality Kutta condition method (ref.4, sec. 7.13.2).

Action:

Check the cards no. 12 input data.

(i) Message:

THIS CODE SHOULD BE APPLIED TO FIRST STRIP

or,

THIS CODE SHOULD BE APPLIED TO LAST STRIP. (SR DKEKFK OR PSONST)

Cause of error:

Improper specification of NLINE1 or NLINEN for piecewise linear option. Specifically, either NLINE1 = 2 or NLINEN =3 is specified, both of which are forbidden.

Action:

Check card 8 specifications

(j) Message:

XXX ON-BODY POINTS MISSED. EXECUTION TERMINATED. (SR PRINTL)

Cause of error:

The number of on-body source elements tallied during final printout does not agree with the count tallied during input.

Action:

Check input data.

(k) Message:

XXX KUTTA POINTS MISSED, EXECUTION TERMINATED. (SR PRINTL)

Cause of error:

The number of Kutta points tallied during the final print out does not agree with the number specified by parameter KUTTA on card 9.

Action:

Check the number of Kutta points input via cards 13

and 14 against parameter KUTTA.

(l) Message:

XXX OFF-BODY POINTS MISSED, EXECU-

TION TERMINATED. (SR PRINTL)

Cause of error:

The number of off-body points tallied during final

printout does not agree with the number tallied dur-

ing input.

Action:

Check input data.

8. Optional Printouts for Use in Debugging

(a) Geometrical data for each element. (IOUT = TRUE, card 3, SR INPUTL). For each nonlifting element is printed the element sequence number and twenty-nine geometric quantities (ref.4, sec. 9.51) and for each lifting element is printed the element sequence number and forty-five geometric quantities (ref. 3, sec. 7.2).

(b) Source induced velocity matrix, \vec{V}_{ij} . (MPR = 1, card 2; SR PNTVIJ)

COLUMN

Matrix column number (j)

CNTRL PT

Control point number (i)

VXS, VYS, VZS

Velocity components

if LIFSEC is greater than 0 (card 2), dipole induced velocity matrices, \vec{V}_{ij}^F , \vec{V}_{ik} , also are printed.

STRIP

Lifting strip number

CNTRL PT

Control point number

VXF, VYF, VZF

First velocity components

VXS, VYS, VZS

Second velocity components

(c) Onset flow matrices, $\vec{V}_i^{(k)}$, $\vec{V}_i^{(\infty)}$. (MPR = 3, SR UNIFLO)

ONSET FLOW NO.

CONTROL POINTS Control point number

X-FLOW, Y-FLOW Onset flow velocity components Z-FLOW

(d) Dot product matrices, A_{ij} , $N_i^{(k)}$, $N_i^{(\infty)}$ (MPR > = 2, card 2 SR AIJMX and NIKMX)

COLUMN Matrix column number (j).

AIJ Elements of Aij

FLOW NO. Onset flow number (k)

RIJ Right side of equation (7.12.5)

(e) Source density matrix (MPR > 2, card 2; PGM SIGMAL) SOLUTION OBTAINED AFTER COLSOL FLOW NO. Onset flow number. Element source densities, $\sigma_i^{(k)}$, $\sigma_i^{(\infty)}$, are printed eight to a line.

The following data are stored on unit FLOWF in binary format for use later in the velocity calculations. Actual record structures are more easily determined by examining the SR SETFLO FORTRAN listing.

CASE Body identifier (input card 2)

ISECT Number of sections (lifting plus nonlifting)

LIFSEC Number of lifting sections (input card 2)

ALPHAX(1) Uniform onset flow direction cosines (card 4)

ALPHAY(1) ALPHAZ(1)

SYM1 Floating point equivalent of input parameters NSYM1 and NSYM2

SYM2 (card 2)

NSYM Total number of symmetry planes

NSTRP Total number of strips, including extra lifting strips if input.

BETAM SQRT $(1-N_M^2)$ where N_M is free stream Mach number

BETSQ $1-N_M^2$

NLT Number of elements on each strip, including extra strips, and ignored and wake elements are counted. It is negative for the last

r) ignored and wake elements are counted. It is negative

strip of each section.

NTYPE Section type indicator.

(ISECT) 0 for nonlifting

1 for lifting

NLINE

Number of strips in a section, not including extra strips

(ISECT)

If LIFSEC GT 0:

IGW

If true, there are ignored elements.

LASWAK

If true, the semi-infinite final wake element option is exercised

PESWIS

If true, the piecewise linear method for computing spanwise varia-

tion of lift vorticity is used.

NSTRIP

See input card 8

(LIFSEC)

NLINE1(LIFSEC)

NLINEN(LIFSEC)

NSORCE(LIFSEC)

IXFLAG(LIFSEC)

IG1(I,J)

Only if IGW = TRUE (see input card 10)

IGN(I,J)

For each nonlifting element, the twenty-nine geometric quantities written on unit 4 by SR NOLIFT.

For each lifting element, the fifty-seven geometric quantities written on unit 4 by SR LIFT.

Only if the piecewise linear method is used for calculation of spanwise variation of vorticity. For each of K strips in J = LIFSEC lifting sections:

K,(D(I,J),E(I,J),F(I,J),I=1,K)

where D, E, F are D_k, E_k, F_k of equation 7.11.5 of reference 3.

KFLOW

Number of lifting strips

KONTRL

Number of on-body source elements (not including ignored, wake,

and extra strip elements)

COMSIG

Combined source densities (ref. 3 eq. 7.13.1)

(KONTRL)

B(KFLOW) Vortex strength per unit length

3. Peripheral Storage

In addition to the flow field summary file (unit FLSUM) and the flow field file (unit FLOWF) several internal files are needed for the flow field calculation. Subroutine FLOW used eleven units for scratch storage. All data stored on these units are in binary format. In the following, use of each unit is considered only in terms of the maximum number of data words (numbers) and record lengths that would be stored on it. The following variables are defined to aid in this:

KONTRL Number of quadrilateral elements, not including

those generated by symmetry, ignored, in the wake

and in extra strips.

KUTTA Points defined by input cards no. 13 and 14 at which

the Kutta condition is to be applied. (KUTTA > 0

only if the flow tangency option is exercised.)

NOFF Number of off-body points at which velocity is to be

calculated as defined by input cards no. 15.

NON KONTRL + KUTTA + NOFF

IATACK Number of lifting strips, not counting extra strips, nor

those generated by symmetry.

NFLOW KFLOW + IATACK

Unit 3: NFLOW records each consisting of 3 x NON numbers

Unit4: There is a record of 29 numbers for each nonlifting quadrilateral element

plus

There is a record of 57 numbers for each lifting quadrilateral element (including

ignored, wake, and extra strip elements)

plus

A one word record for each section of elements

Unit 8: The larger of

Two records each of length 3 x NON numbers or

NFLOW records each of length 6 x KFLOW numbers or

KONTRL records each of length KUTTA numbers

Unit 9: KONTRL records of maximum length KONTRL + 1 numbers

Unit 10: KONTRL records of maximum length KONTRL + 1 numbers

Unit 11: 1/2 KONTRL records each of length 3 x NON numbers

Unit 12: 1/2 KONTRL records each of length 3 x NON numbers

Unit 13: The larger of

2 x KONTRL records each of length 3 x NON numbers or

KONTRL records of maximum length KONTRL + NFLOW +1 numbers

Unit 14: The larger of

KFLOW records each of length 3 x NON numbers or

KONTRL records of maximum length KONTRL +1 numbers

Unit 15: The larger of

KFLOW records each of length 3 x NON numbers or

KONTRL records of maximum length KONTRL + NFLOW +1 numbers

4. Variable Array Dimensioning

Subroutine FLOW incorporates variable dimensioning so that the program can be resized to fit different sized problems and computers. The calculation and storage of the flow field account for almost all storage required by LEWICE3D and hence are the only areas where variable dimensioning is used. To resize the problem the variables affected by the following dimension sizes must be resized in the main program along with the dimension sizes located in the data statement in the main program. The following description of the variable array sizes has been taken from reference 4. Minimum values for the variable dimension parameters are given where these numbers are not effected by symmetry.

LFSX Number of lifting sections

NL2X NSLX + 2

NOBX	Total number of lifting strips, not counting extra strips
NONX	Number of on-body elements in the flow (not counting ignored, wake, and extra strip elements) plus Kutta points defined by input (flow tangency option only) plus off body points (cards 15)
NSEX	Total number of sections (lifting plus nonlifting)
NSLX	Maximum number of lifting strips in any lifting section (including extra strips if input)
NSTX	Total number of strips (i.e., n-lines; lifting plus nonlifting plus extra strips)
NWAX	Similar to 2 x (number of on-body quadrilateral elements in the flow (see NONX) plus the number of onset flows)
	and
	Cube of the number of lifting strips (not counting extra strips: i.e. NOBX**3) if the pressure equality Kutta condition options is selected.
N2BX	2 x NOBX

D. Subroutine SETFLO

1. General Discussion

The module SETFLO reads the flow field generated by the Hess-Smith code (unit FLOWF). This subroutine is always executed and hence a flow field is required on unit (FLOWF).

1. Printed Output

SETLFLO output is limited to summary information about the flow field being read. This information is self explanatory and is written to units OUTPUT and JOBSUM.

E. Subroutine BETAC

1. General Discussion

The module BETAC drives the trajectory work used in calculating the local collection efficiency at each station of interest. This subroutine is optional (IRUN=2-10, NAMELIST TRAJ) and controls all the trajectory work (fig. 6). This subroutine calculates tangent and impact trajectories at the station of interest. The impact trajectory information is then used in the collection efficiency

calculation. If module BSTREM or LEWICE2D are to be executed then the collection efficiency information is required and BETAC must be executed.

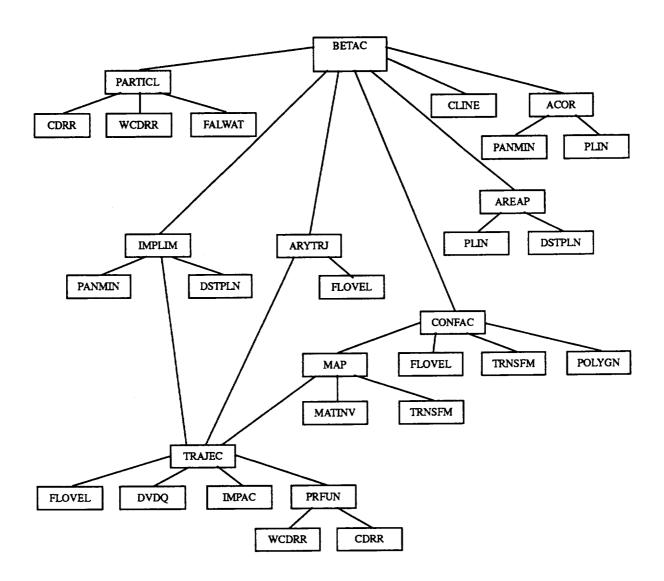


Figure 6. - BETAC segmentation tree structure.

a. Search For Upstream Particle Release Points

BETAC's first step toward the calculation of collection efficiency is to determine the upstream release points for trajectories that pass through the area of interest (fig. 7). There will be one release point calculated for each point specified at the section of interest (i.e. if NPSEC=2 then 2 upstream release points will be calculated; if NPSEC=4, then 4 upstream points will be calculated). These upstream release points (XSCI, YSCI, ZSCI) correspond to trajectories that will pass through the points defining the section of interest (XSEC, YSEC, ZSEC). The program CONFAC

developed by Norment (ref. 5) and put into subroutine form here is used to determine each of the upstream points.

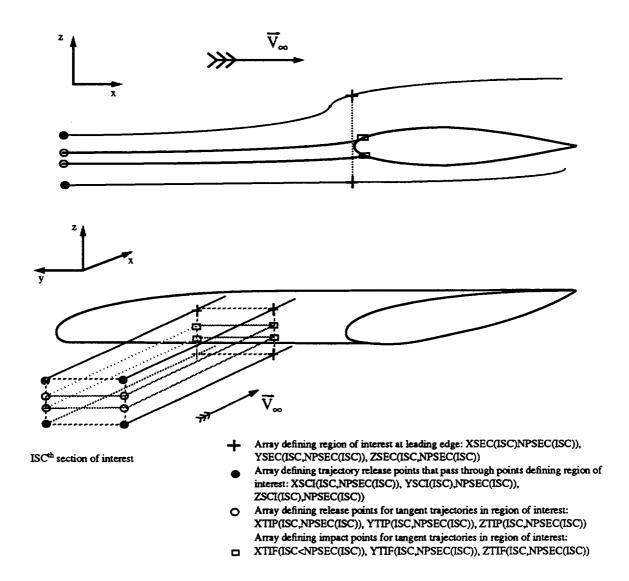


Figure 7. - Illustration of tangent trajectory search arrays.

Program CONFAC is described in detail in reference 5 and will be covered only briefly here. CONFAC is an iterative procedure which finds a trajectory that passes within RW*TOL of the specified target point (XSEC, YSEC, ZSEC). Subroutine MAP controls the iteration and uses subroutine TRAJEC for the calculation of individual trajectories. If convergence has not been reached in 50 iterations then CONFAC will continue with the next upstream point. If one or more failures occur during the search for each of the upstream points then the program will terminate.

b. Search For Tangent Trajectories

The second step toward calculating the collection efficiency at a section of interest is to determine the tangent trajectories. These are limiting trajectories that impact. Trajectories released between corresponding upper and lower tangent trajectories will impact the body. Those released outside the tangent trajectories will miss the body. There will be one tangent trajectory for every point of interest on the body (i.e. if NPSEC=2 then there will be 2 tangent trajectories, an upper and a lower. If NPSEC=4, then there will be 4 tangent trajectories, two upper and two lower). The tangent trajectories are found by searching for the proper release points along the lines formed by the upstream release points XSCI, YSXI, ZSCI. For NPSEC=2 there will be one line. For NPSEC=4 there will be 2 lines. Each line is searched in both directions to determine the upper and lower tangent trajectories. The tangent trajectory search is handled by the subroutine IMPLIM.

Subroutine IMPLIM determines tangent trajectories at the section of interest. Subroutine IMPLIM is based on the 2D tangent trajectory search routine used in LEWICE (ref. 7). Subroutine IMPLIM requires the input of specified lines (in this case the lines are formed by alternating values of XSCI YSCI, ZSCI), an initial start point on the specified line (in this case alternating points XSCI, YSCI, ZSCI), and the search tolerance DFINE. The algorithm initiates trajectories along the specified line midway between the most current "hit" trajectory and the most current "miss" trajectory. If the trajectory impacts the body it becomes the current "hit" trajectory. If it misses the body it becomes the current "miss" trajectory. The algorithm terminates the search when the distance between the initial start points of the current "hit" and "miss" trajectories is less then DFINE. This current impacting trajectory is then the tangent trajectory and is denoted by its upstream release points XTIP, YTIP, ZTIP. If the subroutine fails to find an impacting trajectory after three steps then it will continue on with the next tangent search. If one or more failures occur during the tangent trajectory search at the section of interest then the program will terminate.

c. Calculation Of Impact Trajectories

The third step is to determine the matrix of release points for the trajectories to be used in the collection efficiency calculation. If NPSEC=2, then a string of NBR equi-spaced release points will be generated between the upper and lower tangent trajectory release points (XTIP, YTIP, ZTIP). If NPSEC=4, then a matrix of NBR x NBC trajectories release points will be determined. The rectangle formed by the four upstream tangent trajectory release points (XTIP, YTIP, ZTIP) is divided into NBC equi-spaced columns and NBR equi-spaced rows (fig. 8).

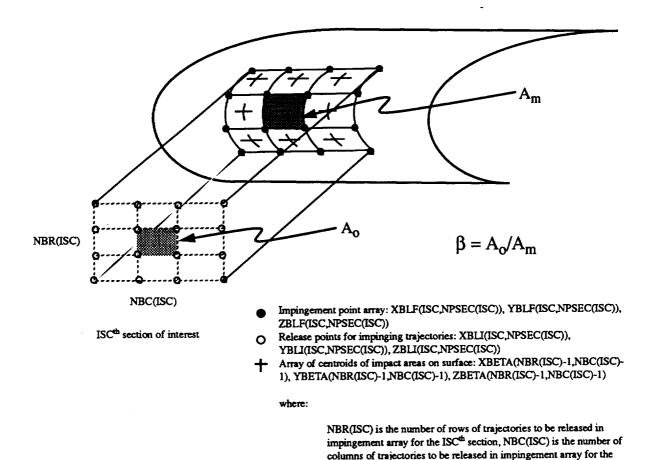


Figure 8. - Illustration of starting point and impaction point arrays.

ISCth section.

The forth step involves calculating the trajectories for each of the release points generated in the above step. Subroutine ARYTRJ (ref. 5) is used to calculate the individual trajectories. The impact points corresponding to the release points are stored in arrays XBETA, YBETA, ZBETA for use in the calculation of collection efficiency.

d. Calculation Of Collection Efficiency

The fourth and final step involves the calculation of collection efficiency at the section of interest. Subroutine BETAC calculates the local collection efficiency in two different ways depending on the variable NPSEC. The first method (NPSEC = 4) uses a full 3D calculation for which a matrix of impact trajectories (NBC x NBR) is required. This method is to be used for areas where fully 3D flow is expected. The second method (NPSEC = 2) uses a 2D method in which a single string of NBR impact trajectories is required. This 2D method saves considerable computational time and is justifiable for cases where small spanwise variations in the flow field are expected throughout the section of interest.

The full 3D collection efficiency calculations are straightforward and are analogous to those of the 2D problem. 3D collection efficiency is defined as the ratio of the particle flux at the surface to the particle flux in the free stream. Or if we follow a group of particle trajectories to the surface, then the 3D collection efficiency is the ratio of the surface area to free stream area mapped out by the particles.

$$\beta(x_c) = A_o/A_m$$
 Eq. 1

If the flux tube consists of four adjacent trajectories in the release matrix (fig.9) then the collection efficiency at the surface can be written where corrections for angle-of-attack and yaw have been made.

$$\beta(i,j) = (\cos\Psi \cdot \cos\alpha \cdot A_o(i,j)) / (A_m(i,j))$$
 Eq. 2

where the collection efficiency is said to be located at the center of the impact region mapped out by the four impacting particles. The angles Ψ and α refer to the sideslip and pitch angle of the geometry relative to the free stream flow vector (fig. 9). The areas A(i,j) and $A_m(i,j)$ are calculated using subroutine AREAP which calculates the area of an arbitrary polygon by dividing it into triangles and summing the areas of the individual triangles.

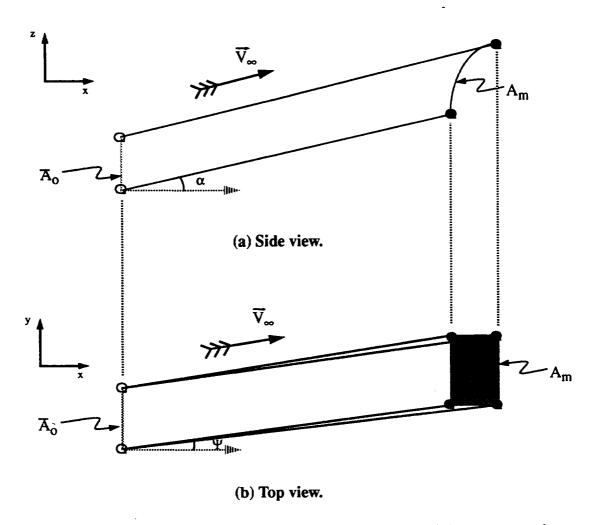


Figure 9. - Pitch and sideslip corrections for 3D collection efficiency calculation.

Calculation of collection efficiency using the "pseudo 2D" methods is similar to the 2D methods with several corrections. Corrections for angle-of-attack, yaw angle, sweep angle of surface and deformation of the flux tube are necessary (fig. 10). The resulting collection efficiency equation is then

$$\beta(i) = (\cos \psi \cdot \cos \alpha \cdot \cos \nu \cdot DS_o(i)) / (DS_m(i))$$
 Eq. 3

where the collection efficiency is said to occur at the center of the impacting points of the two trajectories. The distances $DS_0(i)$ and $DS_m(i)$ represent the distance between the upstream release point and the impact points respectively for two adjacent trajectories (fig. 10). As for the 3D case the angles α and Ψ represent the pitch and sideslip angles, respectively. Angle ν represents the rotation angle of the droplet trajectory pair relative to the sweep of the leading edge of the airfoil.

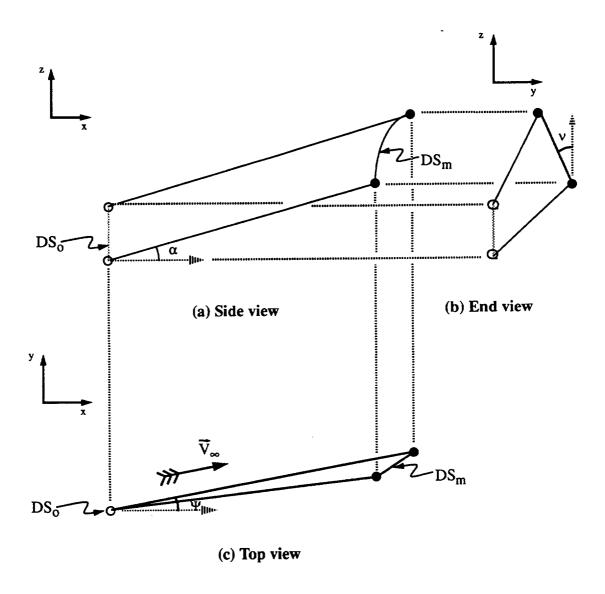


Figure 10. - Corrections for pitch, sideslip, and rotation for "quasi 2D" collection efficiency calculation.

2. Printed Output

BETAC output is written to several files and includes summary information about the trajectory calculation, trajectory coordinates, and several error messages.

Trajectory summary information includes various information about the CONFAC, TANTRA, and ARYTRJ runs and is written to units JOBSUM and OUTPUT. The information written to the files is self explanatory.

Trajectory coordinates along with other pertinent trajectory parameters are written in binary format to unit TEMP25. The information is output according the output time step TPRINT and is in the following format (SR's CONFAC, TANTRA, and ARYTRJ)

IREC,(T(I),P1(I),P3(I),P5(I),P2(I),P4(I),P6(I),VX,VY,VZ,H,R,AC) I=1,IREC)

where:

IREC	lotal number of cards output
T(I)	Integration time at the Ith output step
P1(I),P3(I),P5(I)	X,Y, Z components of the particle velocity respectively
P2(I),P4(I),P6(I)	X,Y,Z components of the particle acceleration respectively
VX,VY,VZ	X,Y,Z components of the flow field velocity respectively
H	Integration step size at the Ith output step
R	Reynolds number at the Ith output step
AC	Acceleration modulus at the Ith output step

Several error messages are written to units OUTPUT, JOBSUM. These messages along with an explanation and a possible solution are as follows.

(a) Message:	OUTPUT TRAJECTORIES FROM SUBROUTINE
--------------	-------------------------------------

CONFAC DOES NOT MATCH THE NUMBER

REQURIED. (SR BETAC)

Cause of error: Failure to find a trajectory that passes within a given

tolerance (TOL) for one of the target points at the

section of interest (XSEC, YSEC, ZSEC).

Action: Increase error tolerance (TOL), move section of in-

terests points farther from body (i.e. XSEC, YSEC, ZSEC) or increase the trajectory count limit for the CONFAC search (ILIM in data statement in SR

MAP)

(b) Message: OUTPUT TRAJECTORIES FROM SUBROUTINE

TANTRA DOES NOT MATCH THE NUMBER

REQURIED. (SR BETAC)

Cause of error: Failure to find a tangent trajectory for one of the im-

pingement limits at the section of interest (XTIP,

YTIP, ZTIP).

Action: Increase the tangent trajectory search step sizes

(DCOR,DFINE) or increase the trajectory count limit for the TANTRA search (KTLIM in data statement

OD TANTOA)

in SR TANTRA)

F. Subroutine STREM3D

1. General Discussion

The module STREM3D determines the streamline at the station of interest. The module uses a RUNGE-KUTTA integration scheme to calculate the 3D streamlines. Figure 11 shows a schematic of the job stream for STREM3D. STREM3D also generates pressure coefficient and velocity information at each of the streamlines points. This module is optional (IRUN=1,5,7,9: and ISTRF=0; NAMELIST TRAJ). If module BSTREM or LEWICE2D are to be executed then streamline information is required and either STREM3D or STREM2D must be executed.

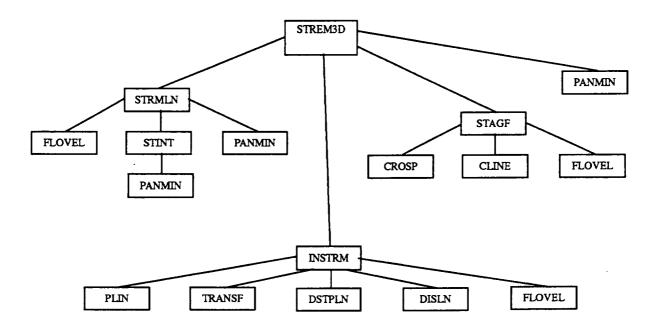


Figure 11. - STREM3D segmentation tree structure.

Four steps are involved in determining the 3D streamline: determination of the local stagnation point, integration of the upper surface streamline, integration of the lower surface streamline, and projection of the upper and lower surface streamlines onto the body.

b. Search For Stagnation Zone

A marching procedure is used to determine the stagnation zone. This algorithm steps towards the body with a step size of H. At each point a vertical scan of velocities is made. A dot product is made from consecutive velocities along the scan line. When the dot product reaches a

minimum along the scan line, the value is stored and compared to a criterion, VCRIT (currently VCRIT =.5). If the value is less than the criterion, then the stagnation point has been found and the current scan line points (XL, YL, ZL) and the points where the dot product reached a minimum value are stored (ISUP, ISLO). The points ISUP and ISLO are the points in the scan line arrays (XL, YL, ZL) where the upper and lower streamlines' integration will initiate, respectively. If the criterion is not met at the current scan line then the procedure steps towards the body and repeats the above process. If the algorithm marches to the leading edge without meeting the criterion, VCRIT, then a warning message is printed and the stagnation points (ISUP, ISLO) are set to the values where the minimum dot product occurs for the current scan line. The above procedure essentially searches for the point near the leading edge where the velocity vector divergence (measured by the dot product of consecutive velocities along the scan line) is the greatest. This point should be the stagnation zone and streamlines initiated above this point (ISUP) should follow the upper surface, while streamlines initiated below this point should follow the lower surface.

b. Calculation Of Upper and Lower Streamlines

Once the stagnation point has been found, the upper and lower surface streamlines can be determined. Off-body streamlines are used because velocity gradients on the panel edges make the integration of on-body streamlines difficult. The streamlines are integrated using a Runge-Kutta 4th order integration scheme with variable step size from points located on the scan line stored in the previous step (i.e. XL, YL, ZL). The upper streamline is integrated from the point ISUP in the scan line array. If problems occur at any time during the integration (i.e the streamline penetrates the body or the step size is too small) the streamline calculation will be restarted from the next point in the scan line array (i.e. ISUP = ISUP + 1). The above process is repeated until a streamline is integrated to X = XSTOP with no problems. If failure to integrate a "good" streamline occurs for ISUP = NPTS (where NPTS is the number of points in the scan line array) then the program will terminate. After the upper surface streamline has been found, the lower streamline search begins. The lower streamline integration is initiated from the point ISLO in the scan line arrays. As for the upper streamline, the lower streamline is integrated until either a X=XSTOP is reached or until a problem arises. If a problem occurs then the streamline is restarted from the next point on the scan line (i.e. ISLO = ISLO -1). If ISLO drops below 1 during a restart then the procedure will terminate.

c. Projection Of Streamlines Onto Surface

The last step is to project the streamlines onto the body. That is, the off-body integrated streamlines are projected onto the body in a surface normal direction to produce a streamline which has points lying on the panel edges. Projecting the streamline onto the body is done to allow easier geometry modifications in later calculations

To project the streamline onto the body we must first find the portion of the body where the streamline is located. This is done by searching for the panel which is closest to the centroid of the current section of interest (XC, YC, ZC). The lifting strip that contains the panel is then used for the on-body projection.

Once the local lifting strip has been found, we can construct the on-body points. There will

be NSTREM points in the on-body streamline which correspond to one more than the number of panels in the lifting strip. Each point on the on-body streamline will lie upon a panel edge connecting n-lines in the strip. Hence if there are NPTS panels there will be NPTS+1 points in the N-lines and hence NPTS + 1 points in the on-body streamline.

To determine the on-body points corresponding to each panel edge in the strip, we first must calculate several parameters for each edge line in the strip: the surface normal of the panel edge (XN, YN, ZN), a line containing the panel edge (A, B), and a plane with the normal of the panel edge which contains the panel edge (PLN). For the first and last edge line, the surface normal is the surface normal for the first and last panel respectively. For internal edges, the surface normal is taken as the average of the two surface normals from the panels that form the edge. The line containing the panel edge is formed from the corresponding points on the panel edge. The edge normal plane is determined from the panel edge surface normal and from a panel corner point on the panel edge line.

We can now contsruct the on-body points. Each point on the upper and lower integrated streamlines is projected onto the panel edge plane (PLN) using subroutine TRNSF (these points are stored in arrays XNEW, YNEW, ZNEW). The algorithm then searches for the two closest points in XNEW, YNEW, ZNEW to the line formed by the panel edge (A, B). A line is then formed from the two points (A2, B2) and the intersection between the two lines (A, B and A2, B2) is found. This point of intersection (PIN) is then the on-body point from the current edge line. This procedure is repeated for each of the panel edge lines in the lifting strip.

2. Printed Output

Output from STREM3D is written to several output files (JOBSUM, OUTPUT) and includes summary information about the streamline integration and several error messages. The summary information includes coordinates, surface distances (measured from stagnation zone where positive surface distance denotes lower surface and negative surface distance denotes upper surface), pressure coefficients, and surface normals for each point on the streamline. The following error messages which can occur are explained with possible solutions.

Message: STOP IN SUBROUTINE STREAM, ISUP = XXX

OT

STOP IN SUBROUTINE STREAM, ISLO = XXX

Cause of error: Failure to find an upper streamline or lower stream-

line along the line of points (XL, YL, ZL). During the search iteration the release point for the streamline (ISLO or ISUP) has reached the upper or lower bound of the arrays XL, YL, ZL (i.e ISUP = 25 or

ISLO = 1).

Action: Increase the distance between the body and the sec-

tion of interest (XSEC, YSEC, ZSEC)

G. Subroutine STREM2D

1. General Discussion

The module STREM2D determines a 'pseudo' streamline at the station of interest. Figure 12 shows a schematic of job stream for STREM2D. The 'pseudo' streamline is determined as the intersection between the surface geometry and a plane input by the user (PLNST(I), I=1,4; NAMELIST TRAJ). This essentially generates a 2D cut along the surface. This 2D streamline can be used for generating data (e.g. pressure coefficient, collection efficiency, heat transfer coefficient) for swept and unswept comparisons or for evaluating the traditional quasi-3D icing calculation (i.e. calculating swept 3D cases by using 2D calculations along planes normal to the leading edge). This module is optional (IRUN=1,5,7,9: and ISTRF=1: NAMELIST TRAJ). If module BSTREM or LEWICE2D are to be executed then streamline information is required and either STREM3D or STREM2D must be executed.

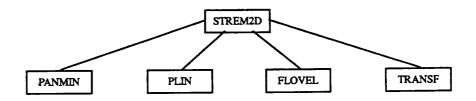


Figure 12. - STREM2D segmentation tree structure.

The first step in determining the 2D streamline is to find the lifting strip associated with the section of interest. As for the 3D streamline case, this strip is the one associated with the closest panel to the section of interest.

The next step is to determine where the specified plane intersects the local lifting strip. The points making up the 2D streamline are essentially the points where the panel edge lines (m-lines in the strip) intersect the plane. There will be one point on the 2D streamline for every m-line in the strip. This number of points in the 2D streamline then corresponds to the number of points in the N-lines for the strip or to the number of panels plus one.

Each point on the 2D streamline is constructed from an m-line and the specified plane. The panel edge lines (A, B) are constructed from the 2 corner points of the panel forming the edge line (P1, P2). The intersection of the edge line and the plane is calculated in subroutine PINT. This point then is the 2D streamline point. This procedure is repeated for every point in the N-line.

2. Printed Output

STREM2D output consists of coordinates, surface distances (measured from stagnation zone where positive surface distance denotes lower surface and negative surface distance denotes upper surface), pressure coefficients, and surface normals along the streamline and is written to units JOBSUM and OUTPUT.

H. Subroutine BSTREM

1. General Discussion

The module BSTREM interpolates the surface collection efficiencies generated by module BETAC onto the streamline generated in STREM2D or STREM3D. Figure 13 provides a schematic of the BSTREM algorithm. This module is optional (IRUN=5,7,9: NAMELIST TRAJ). If LEWICE2D is to be executed, then collection efficiencies along the streamlines are required and BSTREM must be executed.

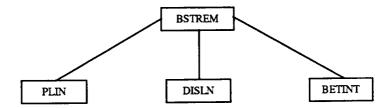


Figure 13. - BSTREM segmentation tree structure.

Subroutine BSTREM calculates the collection efficiency along the streamline from the surface impingement data in two different ways depending on the value of NPSEC. If NPSEC = 4 then an interpolation for the streamline points is made from the surface collection efficiency information. If NPSEC= 2, then an extrapolation of the surface collection efficiency is made onto the streamline points.

The first step in making the 3D interpolation (NPSEC = 4) is to determine the location of the streamline points relative to the matrix of surface collection efficiency points. For each point in the surface streamline, a search is made to determine in which collection efficiency cell the point lies (fig. 14). If the point does not lie in any of the cells, then the collection efficiency for that point is set to zero. This means care must be taken in setting the width of our section of interest. The spanwise width of the section of interest must cover the spanwise range of the streamline in its entirety within the impingement local impingement limits.

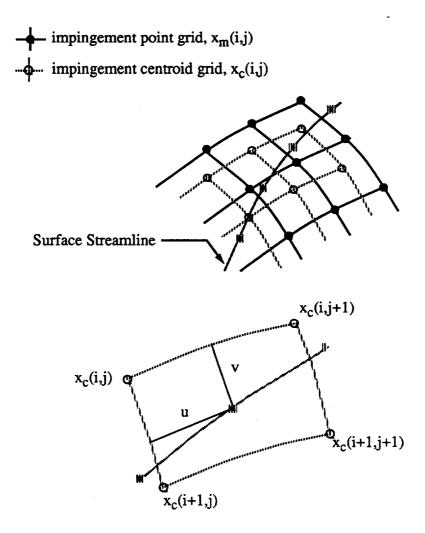


Figure 14. - Collection efficiency interpolation onto surface.

The interpolation procedure used when NPSEC = 4 is basically that described by Kim (ref. 8) in his 3D trajectory code paper. Given a point on the surface which lies amid the matrix of surface collection efficiencies, we have the following interpolation scheme for the collection efficiency at that poin.:

$$\beta(x_s) = \beta(x_c(i+1,j+1)) \cdot u \cdot v + \beta(x_c(i,j+1)) \cdot u \cdot (1-v) + \beta(x(i,j)) \cdot (1-u) \cdot (1-v) + \beta(x(i+1,j)) \cdot (1-u) \cdot v$$
Eq. 4

where:

$$u = \vec{X}_s \bullet \vec{X}_j$$

$$v = \vec{X}_s \bullet \vec{X}_j$$
Eq. 5

The method employed when NPSEC = 2 is an extrapolation technique based on the assumption that there is no spanwise variation in collection efficiency. Alternatively, the method assumes that surface lines running parallel to the leading edge are lines of constant collection efficiency. For each point on the streamline, a test is made to determine which two iso-lines of collection efficiency the point lies between. If the point is outside of the impingement limits, then the two iso-lines will be zero and the collection efficiency will be set to zero. To determine which iso-lines the streamline point lies between, we first form a line parallel to the surface which goes through the streamline point. This line (A, B) is formed from the slope of the local panel edge (ATRAN) and from the point on the streamline (P1). We then loop through the collection efficiency surface points searching for the two closest points to this line (P3, P4), and form a line between these two points (A2,B2). The minimum distance between the lines and the points where this minimum occurs for each of the lines is then calculated (PIN1, PIN2). If the point (PIN1) lies outside of the endpoints of the line segment (A2, B2), then the point lies outside of the impingement limits and its impingement efficiency is zero. If the point lies within the line segment, then a linear interpolation of collection efficiency from the collection efficiencies at the segment endpoints is made. This collection efficiency is then the collection efficiency for the streamline point.

2. Printed Output

BSTREM output consists of streamline coordinates, surface distances (measured from stagnation zone where positive surface distance denotes lower surface and negative surface distance denotes upper surface), pressure coefficients, surface normals, trajectory tangents and collection efficiency information along the streamline and is written to units JOBSUM and OUTPUT.

I. Subroutine LEWICE2D

1. General Discussion

The module LEWICE2D calculates the ice shape at the section of interest using the collection efficiency and pressure coefficient information generated above. The methodology of the ice accretion is basically that of the 2D LEWICE calculation expanded to three dimensions. Figure 15 shows a breakdown of the job stream for LEWICE2D. The ice may be grown either in the surface normal direction or in the trajectory tangent direction (see subroutine NEWPTS). If LEWICE2D is to be executed, then collection efficiency and pressure coefficient information is needed along the streamline and hence BETAC, STREM2D or STREM3D, and BSTREM must be executed.

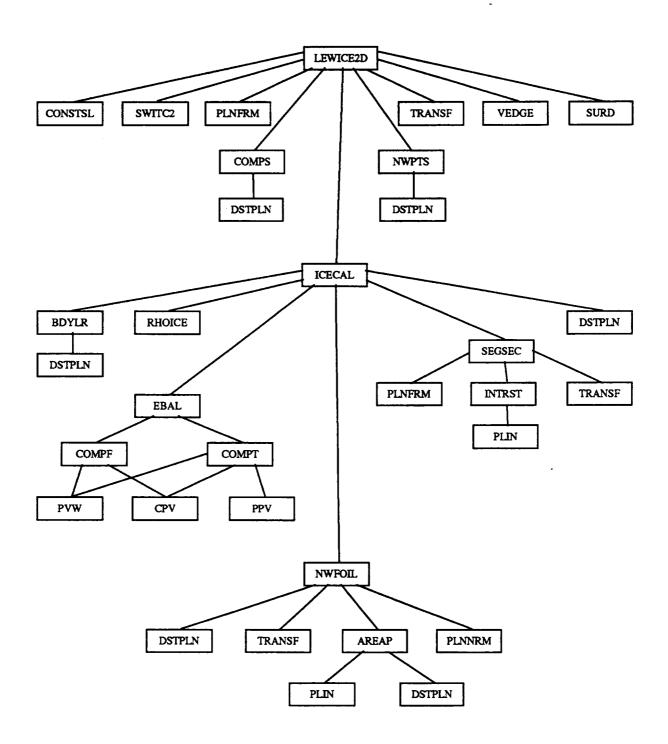


Figure 15. - LEWICE2D segmentation tree structure.

The ice accretion process consists of the deposition of super-cooled water droplets on an aerodynamic surface and the associated mass and energy exchange processes which result in the growth of ice on that surface. That process was first modeled by Tribus (ref. 9) and later developed into the model currently used in LEWICE, by Messinger (ref. 10). The Messinger model is also used in this code and is applied along streamlines, as calculated by the potential flow portion of the code. This chapter describes the Messinger model, the application of that model along streamlines, and the input and output files used by these subroutines.

a. Modeling The Ice Growth Process

The Messinger model of ice growth is based on the premise that all water impinging on the surface of interest exchanges energy with the surface and surrounding environment, resulting in freezing of some fraction of the incoming water and the remaining water running back along the surface. This model of ice growth on a surface exposed to an icing cloud is depicted in figure 16, showing the relevant mass and energy exchange processes.

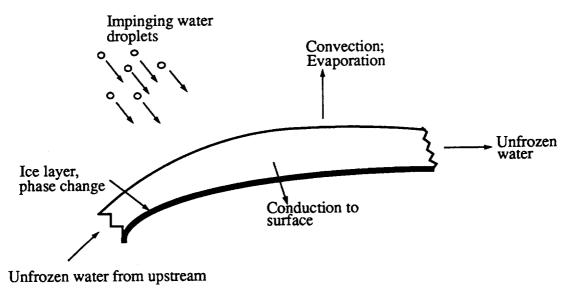


Figure 16. - Ice growth on a surface

The ice growth is modeled by dividing the surface into control volumes, along streamlines determined from the potential flow analysis, and performing a mass and energy balance on each control volume. The control volume extends from the ice-water interface out to beyond the boundary layer. Evaluation of the control volumes is started at the stagnation point and marches along the upper and lower surfaces to the trailing edge. The mass and energy balances at each station are considered quasi-steady processes. The ice growth is thus modeled as a series of steady-state processes with the duration of each step and the number of steps determined by the user.

The mass balance, depicted in figure 17, is described by the following equation

$$\dot{m}_c + \dot{m}_{r_{in}} - \dot{m}_e - \dot{m}_{r_{out}} = \dot{m}_i$$
 Eq. 6

where \dot{m}_c is mass flow rate of incoming water, $\dot{m}_{r_{in}}$ is the mass flow rate of runback water from the previous control volume, \dot{m}_e is the mass flow rate of evaporated water, $\dot{m}_{r_{out}}$ is the mass flow rate of water running back to the next control volume, and \dot{m}_i is the mass flow rate of water leaving the control volume due to freeze-out.

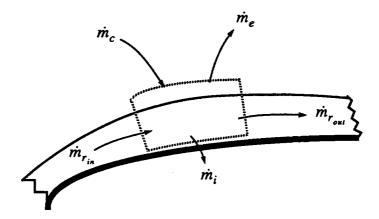


Figure 17. - Mass balance control volume

In this mass balance, the incoming water, incoming runback water, and evaporated water flow rate are previously calculated quantities. The amount of water changing phase to ice is determined from the energy balance and any remaining water is considered to move into the next control volume. The value of $\dot{m}_{r_{in}}$ is set to zero at the stagnation point, as this is the start of the marching process for both the upper and lower surfaces.

The energy balance is handled in a similar manner and is depicted in figure 18.

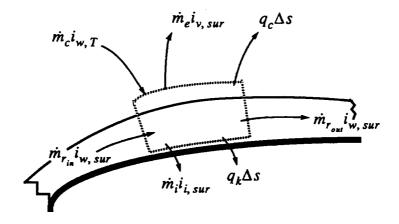


Figure 18. - Energy balance control volume

The equation describing the control volume energy balance is

$$\dot{m}_{c}i_{w,T} + \dot{m}_{r_{in}}i_{w,sur(i-1)}$$

$$= (\dot{m}_{e}i_{v,sur} + \dot{m}_{r_{out}}i_{w,sur} + \dot{m}_{i}i_{i,sur} + q_{c}\Delta s + q_{k}\Delta s)$$
Eq. 7

where $i_{w,T}$ is the stagnation enthalpy of the incoming water droplets, $i_{w,sur}(i-1)$ is the enthalpy of the water flowing into the control volume from upstream, $i_{v,sur}$ is the enthalpy of the vapor leaving the control volume due to evaporation, $i_{w,sur}$ is the enthalpy of the water running back to the next control volume, $i_{i,sur}$ is the enthalpy of the ice leaving the control volume, q_c is the heat transfer due to convection, and q_k is the heat transfer due to conduction.

The incoming energy due to water droplet impingement and runback are calculated from known information. The energy leaving the control volume due to evaporation and convection can be calculated independently. The heat transfer due to conduction is not considered in this analysis, as the ice layer is considered to act as an insulating surface. This leaves the energy loss due to freeze-out and the energy leaving the control volume due to runback as unknowns. In particular, the mass flow rates for these two terms are unknown, as was the case for the mass balance. This leaves two equations and two unknowns and the system can be solved. The details of the evaluation of each of the terms in the energy equation can be found in appendix A of the LEWICE Users Manual (ref. 7). A useful concept for evaluation of the nature of the ice accretion being calculated is the freezing fraction. This is the fraction of the total water coming into the control volume that changes phase to ice. The equation defining freezing fraction is

$$f = \frac{\dot{m}_i}{\dot{m}_c + \dot{m}_{r_{in}}}$$
 Eq. 8

This term can also be used to simplify the evaluation of the energy balance.

The convection heat transfer term plays an important role in the LEWICE3D energy balance. It is through this term that the aerodynamics and the roughness levels can influence the development of the ice accretion. Currently, the convection heat transfer is determined from an evaluation of the boundary layer growth on the surface, using an integral boundary layer method. The pressure distribution determined by the potential flow code is used as input to the boundary layer calculation. The boundary layer calculation determines the displacement thickness and the momentum thickness. The Reynold's analogy is used to determine the heat transfer coefficient. Roughness is accounted for by a correlation developed by Ruff. (ref. 7) The complete description of the integral boundary layer calculation is found in appendix B of the LEWICE Users Manual (ref. 7).

Expanding the terms in the energy equation as described in the LEWICE manual and combining Eqs.7 and 8 yields the following form of the energy equation

$$\begin{split} \dot{m}_{c} \left[c_{p_{w,s}} (T_{s} - 273.15) + \frac{V_{\infty}^{2}}{2} \right] \\ + \dot{m}_{r_{in}} \left[c_{p_{w,sur(i-1)}} (T_{sur(i-1)} - 273.15) \right] + q_{k} \Delta s \\ &= m_{e} \left[c_{p_{w,sur}} (T_{sur} - 273.15) + L_{v} \right] \\ + \left[(1 - f) \left(\dot{m}_{c} + \dot{m}_{r_{in}} \right) - \dot{m}_{e} \right] c_{p_{w,sur}} (T_{sur} - 273.15) \\ + f \left(\dot{m}_{c} - \dot{m}_{r_{in}} \right) \left[c_{p_{i,sur}} (T_{sur} - 273.15) - L_{f} \right] \\ + h_{c} \left[T_{sur} - T_{e} - \frac{r_{c} V_{e}^{2}}{2c_{p_{a}}} \right] \Delta s \end{split}$$

b. Ice Growth Along Streamlines

The application of this ice growth model in two dimensions is straightforward in the sense that the flow direction of runback water is unambiguous. In three dimensions, the flow direction of water out of a control volume is not so easily determined. The most rigorous approach would be to solve the air-water flow interaction problem, including the possibility of flow over large roughness elements. In this case, considerable computational effort would be required beyond the already significant effort of calculating the flow field, droplet trajectories, and ice growth. As such, some degree of approximation is appropriate in order to develop a tool which can be useful and not require more computational effort than necessary.

One alternative is to calculate the boundary layer development over the entire three dimensional surface. This approach requires significant computational expenditure. The approach taken for this code is to apply a two dimensional strip analysis along streamlines calculated by the three-dimensional panel code. There are differences in streamline direction between those determined from a boundary layer analysis and those from the panel code. The differences in ice shape development caused by use of the panel code results are most likely smaller than the accuracy level of the ice growth prediction method, given the geometric resolution limits established by the surface grid.

Thus, the integral boundary layer calculation is started at the stagnation line, as determined from the panel code results. Then the streamline is divided up into control volumes by using the intersection of the streamline with the fore and aft panel edges as the boundaries of the control volume and a unit length in the spanwise direction as the other dimension of the control volume. Then the β value at the midpoint of the streamline segment is used as the β for the control volume. This use of the streamline β value brings in the spanwise influence on the particle trajectory, whereas a simple cut perpendicular to the leading edge would result in a somewhat different β distribution for the ice growth calculation. A representative streamline used for an ice growth calculation on a swept wing model is shown in figure 19.

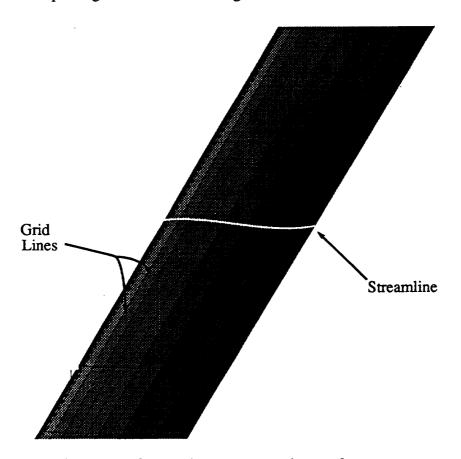


Figure 19. - Streamline on swept wing surface.

The control volumes thus correspond to a series of trapezoidal elements stacked side-by-side from the leading edge to the trailing edge on both the upper and lower surfaces. Figure 20 illustrates a series of control volumes for an arbitrary surface, including the streamline path through the center of each volume.

The β value for the element is taken as the β value at the midpoint of the streamline segment. The surface area of the bottom face of the control volume is that of a trapezoid (i.e. equal to the panel length times the panel width) and thus is equivalent to the corresponding panel area. This value is then used to determine the height of the ice accretion, using \dot{m}_i and the density of ice to determine the ice volume, resulting in the following equation for the height of ice deposited.

$$d_{ice} = \frac{\dot{m}_i \Delta t}{\rho_i A_{sur}}$$
 Eq. 10

The thickness is then considered to be uniform over the entire panel for determination of the new geometry. The new coordinates for the panel are obtained from the relation,

$$x_i = x_i + d_{ice}\hat{x}_i$$
 Eq. 11

where x_i is the coordinate of the center of the panel in the i-direction and \hat{x}_i is the i-component of the unit normal vector for the panel.

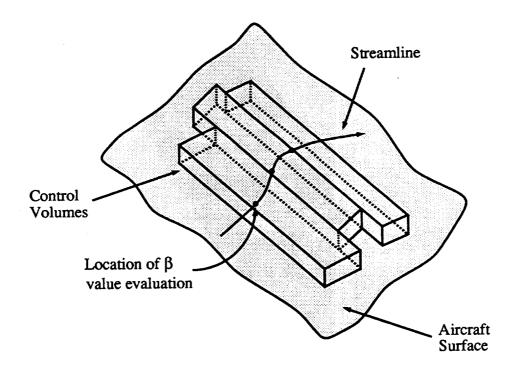


Figure 20. - Control volumes for mass and energy balance.

As the ice thickness increases, there is the possibility that the ice segments will intersect and thus this must be accounted for in the determination of the new geometry. Since this is a strip analysis, the ice thickness does not vary along the span at a given chordwise location. Therefore, the possibility of ice growth intersection is limited to the normal and chordwise directions. In that case, the line segments corresponding to the top of every other panel are examined for intersection. If the intersection is determined to occur, then a new panel is formed with its center halfway between the two old panels. This requires determination of the coordinates of the new panel and renumbering of the panels. This information is then used in subsequent potential flow calculations.

2. Printed Output

Output from LEWICE2D consists of iced streamline coordinates, surface distances, surface normals, trajectory tangents, edge velocities, collection efficiencies ice thickness, heat transfer coefficient, and static pressure and is written to units OUTPUT, JOBSUM.

J. Subroutine BODMOD

1. General Discussion

The module BODMOD generates the new geometry file (NGEOM) for the iced geometry using the ice accretion at each station of interest (generated in LEWICE2D) and the old geometry file (OGEOM). Figure 21 shows a schematic of the job stream for BODMOD. The module reads the old geometry file N-line by N-line and if no ice accretion is requested for the section (IMO-D(ISEC)=0) it is written to the new geometry file (NGEOM). If an ice accretion has been calculated for the section (IMOD(ISEC)=ICEC), then the entire section is modified to reflect the ice shape calculated for the two closest streamlines and is written into the new geometry file. In essence, the old geometry file (OGEOM) is transferred to the new geometry file (NGEOM) and it is overlaid only at sections where ice shapes have been calculated.



Figure 21. - BODMOD segmentation tree structure.

Subroutine BODMOD controls the modification of each N-line and is comprised of two steps. First it takes the ice thickness distribution from each of the iced streamlines and extrapolates or interpolates that distribution upon each N-line and second, it calculates the new N-line using the ice thickness distribution and either the surface normals or trajectory tangents. The algorithm uses a cubic interpolation of ice thickness as a function of surface distance in the flow direction and a linear interpolation of ice thickness as a function of spanwise position in the spanwise direction. Once the ice thickness distribution has been determined for each point on the N-line, the new N-line is generated by adding the interpolated ice thickness at each point to the old N-line in either the surface normal or the trajectory tangent direction as described in the LEWICE2D section.

The first step in generating the new N-line is to determine the closest iced streamlines to the N-line. If only one iced streamline was calculated then the N-line receives the ice thickness distribution calculated for that streamline (DICES(I,1) vs. SST(I,1), I=1 to NPTS). If multiple iced streamlines were calculated, then the two closest streamlines to the N-line will be found. This is

done by finding the two closest sections of interest to the N-line and using the iced streamlines associated with these sections. The two closest streamlines are denoted by IST1, IST2 and the ice thickness distribution and surface distance associated with each of the streamlines are stored in the arrays (DICE(I,IST1), SST(I,IST1), I = 1 to NPTS1, DICES(I,IST2), SST(I,IST2), I=1, NPTS2), where NPTS1, NPTS2 are the number of points in each of the iced streamlines, respectively. In addition to the above parameters the parametric distance of the N-line along the line connecting the two closest sections of interest is calculated (TL). This distance is used in the linear spanwise interpolation or extrapolation done later.

The second step is to normalize all of the streamline surface distance arrays to the surface distance arrays for the current N-line. This is done to avoid problems in the cubic spline interpolation which follows.

The third step involves interpolating the ice thickness distribution from each of the iced streamlines onto the N-line surface distance distribution. The interpolation is done using a cubic spline fit of the ice thickness vs. surface distance array.

The fourth step is to determine the ice distribution at the current N-line from the associated iced streamlines. If only one streamline is calculated then the N-Line will receive the ice thickness distribution from that streamline. If more than one streamline is calculated then a spanwise linear interpolation will be made from the two closest ice streamlines (ISTR1, ISTR2). This linear interpolation can be written

$$DICE(I) = (DICES(IST2, I) - DICES(IST1, I)) \cdot TL + DICES(IST1, I)$$
 Eq. 12

where TL is the parameteric distance of the N-line along the line connecting the two closest sections of interest (ISTR1, ISTR2), and DICE is the ice thickness distribution for the current N-line.

The fifth and final step is to generate the new N-line. This is done by adding the ice to the old geometry in either the surface normal or trajectory tangent direction. This is the same procedure used to generate the iced streamlines, and is discussed in the LEWICE2D section.

2. Printed Output

Output for BODMOD is written to unit NGEOM and contains the new iced geometry in DUGLIFT format. For an explanation of the information in the NGEOM file see table I.

K. Summary Of Subroutines

The following tables describe the subroutines used to do the flow, trajectory, streamline, impingement efficiency, impingement efficiency interpolation, ice accretion, and geometry modification.

TABLE I. - FLOW FIELD CALCULATION SUBROUTINES

<u>Subroutine</u>	Called by	Description
AIJMX	SIGMAL	Computes the matrix, Aij, of dot products of source induced velocities with normal vectors on the on-body elements.
BVORTX	CONTRL	Calls PKUTTA or FKUTTA to calculate vortex strength per unit path length around the k^{th} lifting strip, $B^{(k)}$, for all lifting strips.
CKARRY	CONTRL	Cross checks storage array capacities.
COLSOL	SIGMAL	Solves linear equation matrices for element source densities.
CONTRL	DUGLFT	Controls flow of the modified Hess code which processes body surface data for use by the flow and trajectory codes.
DATPRS	INPUTL	Translates, scales, and rotates about the y-axis surface description data immediately after input.
DKEKFK	PISWIS	Calculates D_k , E_k and F_k for use in calculating piecewise linear spanwise variation of $B^{(k)}$.
FAR3	FLOVEL	Vectorized subroutine which calculates the induced velocity from a lifting panel in the far field.
FARNL	FLOVEL	Vectorized subroutine which calculates the induced velocity from a non-lifting panel in the far field
FKUTTA	BVORTX	Computes vortex strength, $B^{(k)}$, for each lifting strip by the flow tangency method.
FLOVE2	TRAJEC CONFAC ARYTRJ FLOPNT	Returns flow velocity for a given point in space.
FLOVEL	TRAJEC CONFAC ARYTRJ FLOPNT	Returns flow velocity for a given point in space (vectorized version).
HEADER	CONTRL INPUTL	Writes a printout header.

TABLE I. - Continued.

Subroutine	Called by	Description
	NOLIFT LIFT VIJMX PNTVIJ DKEKFK UNIFLO SIGMAL AIJMX NIKMX VELOCY PRINTL	
INPUTL	CONTRL	Inputs surface quadrilateral corner coordinates and controls computation of the geometric properties of lifting quadrilateral elements. Also prints the first major DUGLFT output.
LIFT	INPUTL	Computes geometric properties of lifting quadrilateral elements.
MIS1	PKUTTA FKUTTA	Linear equation solver. Used in calculation of vortex strengths, $B^{(k)}$, of lifting strips.
NEAR	VFMLFT	Computes source and vortex induced velocities from an element in a lifting strip using the near-field equations.
NEAR5	FLOVEL	Vectorized subroutine which calculates the induced velocity from a lifting panel in the near field.
NEARF	VFLIFT	Computes source and vortex induced velocities from an element in a lifting strip using the near-field equations.
NEARNL	FLOVEL	Vectorized subroutine which calculates the induced velocity from a non-lifting panel in the near field.
NIKMX	SIGMAL	Computes the right hand sides of the A_{ij} matrix, $N_i^{(k)}$ and $N_i^{(\infty)}$, which are the dot products of the onset flows with the unit normal vectors to the on-body elements.
NOLIFT	INPUTL	Calculates geometric quantities for quadrilateral elements in a nonlifting section.

TABLE I. - Continued.

Subroutine	Called by	Description
PATPRS	PINPUT	Translates, scales, and rotates about the y-axis surface description data immediately after input.
PEADER	PINPUT	Writes a printout header.
PISWIS	VMATRX	Calculates $\overrightarrow{V}_{ik}^{(0)}$ and $\overrightarrow{V}_{ik}^{(1)}$ according to equation (11.2) of reference2, and calls DKEDKFK and PSONST to calculate vortex induced onset flows. Used only for piecewise linear spanwise variation of vortex strength.
PKUTTA	BVORTX	Computes vortex strength, $B^{(k)}$, for each lifting strip by the pressure equality method.
PNTVIJ	VMATRX	If so requested (for debugging purposes only), prints all source induced velocities, \overline{V}_{ij} , and all vortex induced velocities, $\overline{V}_{ij}^{(F)}$ and $\overline{V}_{ij}^{(S)}$.
PRINTL	VELOCY	Prints the final output of the DUGLFT computations.
PSONST	PISWIS	Computes vortex induced onset flows when the piecewise-linear method of spanwise variation of vortex strength is used.
READ1	SIGMAL COLSOL PKUTTA FKUTTA SUMSIG VELOCY	Reads in one singly subscripted array from a peripheral storage unit.
READ3	PNTVIJ STEPFN PISWIS PSONST UNIFLO AIJMX NIKMX	Reads three subscripted arrays from a peripheral storage unit.
SETFLO	FLOPNT ARYTRJ CONFAC TANTRA	Reads DUGLFT output data stored on unit18 that is required by SR FLOVEL for velocity calculations. If flow velocities are calculated by other than the Hess method, this code must be replaced with a dummy call.

TABLE I. - Continued.

Subroutine	Called by	Description
SIGMAL	CONTRL	Controls calculation of the element source densities, $\sigma_j^{(k)}$ and $\sigma_j^{(\infty)}$
STEPFN	VMATRX	Computes vortex induced onset flows when the step function method of spanwise variation of vortex strength is used.
STOR18	CKARRY	Store control and quadrilateral geometrical property data on storage unit 18 for use by the flow and trajectory codes.
SUMSIG	CONTRL	Computes the combined element source strengths, $\sigma_{(j)}$.
UNIFLO	VMATRX	Stores uniform onset flow velocities for use in calculating element source densities.
VELOCY	CONTRL	Computes the final velocity at the centroid of each element. and controls the final printout of the DUGLFT calculation.
VFLIF3	FLOVEL	Vectorized subroutine which calculates the induced velocity from a wake panel.
VFLIFT	FLOVE2	Controls computation of velocities induced at a point in space by elements of unit source density and unit vortex strength in a lifting section.
VFMLFT	VIJMX	Controls computation of velocities induced at all control points by elements of unit source density and unit vortex strength in a lifting section.
VFMNLF	VIJMX	Computes velocities induced at all control points by elements of unit source density in a nonlifting section.
VFNLFT	FLOVE2	Computes velocities induced at a point in space by elements of unit source density in a nonlifting section.
VIJMX	VMATRX	Controls computation of source induced velocities, \overrightarrow{V}_{ij} , and vortex induced velocities, $\overrightarrow{V}_{ij}^{(F)}$ and $\overrightarrow{V}_{ij}^{(S)}$, at the centroids of all elements.
VMATRX	CONTRL	Subexecutive code for computation of induced and onset flow.

TABLE II. - STREAMLINE CALCULATION SUBROUTINES

<u>Subroutine</u>	Called by	Description
CLINE	STAGF	Produces a set of equi-spaced points between the two endpoints of a line segment.
CROSP	STAGF	Determines the cross product of two vectors.
DISLN	INSTRM	Computes the minimum distance between two lines and the points on each of the lines where this minimum occurs.
DSTPLN	INSTRM AREAP	Calculates the minimum distance between a point and a line and the point along the line where this minimum occurs.
FLOVEL	INSTRM STAGF STINT STREM2D STREM3D STRMLN	Vectorized velocity subroutine. Returns a velocity at a given point. Description of dependent subroutines given in TableI.
FLOVE2	INSTRM STAGF STINT STREM2D STREM3D STRMLN	Returns a velocity at a given point. Description of dependent subroutines given in Table I.
INSTRM	STREM3D	Projects off-body integrated streamline points to on-body streamline points.
PANMIN	STREM2D STREM3D	Determines the closest panel to a given point.
PLIN	INSTRM STREM2D AREAP	Given three points, determines the parametric equation of a line parallel to two of the points and which passes through a third point.
STAGF	STREM3D	Determines the off body stagnation point at a section of interest.
STINT	STRMLN	4th order Runge-Kutta integration scheme for calculating streamlines.

TABLE II. - Concluded.

<u>Subroutine</u>	Called by	<u>Description</u>
STREM2D	MAIN	Calculates a 2D streamline based on the intersection of a given plane and the geometry.
STREM3D	MAIN	Controls the calculation of the 3D integrated on-body stream-lines.
STRMLN	STREM3D	Integrates a 3d streamline from a given point.
TRANSF	INSTRM STREM2D	Projects a set of points onto a given plane along a specified direction.

TABLE III. - COLLECTION EFFICIENCY CALCULATION SUBROUTINES

Subroutine	Called by	Description
ACORR	BETAC	Determines surface area correction due to sweep of surface for the "quasi" 2D impingement efficiency calculation.
ARYTRJ	BETAC	Calculates trajectories for a given set of release points.
AREAP	BETAC	Calculates the area of an N-sided polygon.
BETAC	LEWICE3D	Controls the calculation of surface impingement efficiency at a section of interest.
CDRR	PRFUN PARTCL	Given Reynolds number, returns Davies number for a sphere. Used for water drops for which Reynolds number is less than equal to 81.23.
CLINE	BETAC	Produces a set of equi-spaced points along a line between two given points.
CONFAC	BETAC	Determines the release point for a trajectory which passes within a specified tolerance of a target point at the section of interest.
DVDQ	TRAJEC	Integrates particle equations of motion for each time step.
FALWAT	PARTCL	Returns still-air, terminal settling speed for a water drop. Uses equation of Beard.
IMPACT	TRAJEC	Used in runs under control of CONFAC to adjust trajectory initial y, z coordinates to avoid impact on the body on the next trajectory after impaction has occurred. This is a problem-specific subroutine that must be programmed by the user.
IMPLIM	BETAC	Determines tangent trajectories at the section of interest.
MAP	CONFAC	Controls the iterative calculation of trajectories to a specified target point.
MATINV	MAP	Linear equation solver.
PARTCL	BETAC	Reads particle specification data and returns still-air, terminal particle settling speed and other particle data as required for the particular type of particle. This is a particle type-specific code.

<u>Subroutine</u>	Called by	Description
		The version provided here is for water drops.
POLYGO	CONFAC	Calculates area of plane polygon of N vertices. Provides cross- sectional areas of particle flux tubes which are used to compute concentration factors, concentration ratios and collection effi- ciencies.
PRFUN	TRAJEC	Given the particle Reynolds number, returns the factor which when multiplied by $\overline{V}_p - \overline{V}_a$ yields the first term on the right side of eq. (1). This is a particle type-specific function. The version provided here is for water drops.
STRPNT	TANTRA	Specifies a curve in three-dimensional space on which lie the initial points of all trajectories used in computing a tangent trajectory to the body. Also specifies coarse and fine step sizes to be used in traversing the curve in search of the tangent trajectory, and it steps along the curve to define new initial trajectory points under control of TANTRA. The version supplied here uses straight line curves.
TRAJEC	ARYTRJ IMPLIM MAP	Computes particle trajectories.
TRANSF	PRFUN MAP	Transforms coordinate system for the "flow system" to the "flux tube system", or reverse.
WCDRR	PRFUN PARTCL	Given Reynolds number, returns Davies number for a water drop. Used for cases where the Reynolds number is greater than 81.32.
BETINT	BSTREM	Determines which surface collection efficiency cell the stream- line point lies in if any and the weighting factors for the interpo- lation.
BSTREM	LEWICE3D	Controls the interpolation of surface collection efficiency onto the streamline.
DISLN	BSTREM	Determines the minimum distance between a point and a line and the point on the line where this minimum occurs.

TABLE III. - Concluded.

Subroutine	Called by	Description
PLIN	BSTREM	Given three points determines the parametric equation of a line parallel to two of the points and which passes through the third point.

TABLE IV. - ICE ACCRETION CALCULATION SUBROUTINES

Subroutine	Called by	
BDYLR	ICECAL	Determines heat transfer coefficients and transition points for streamline.
COMPF	EBAL	Solves the energy equation for the freezing fraction.
COMPS	LEWICE2D SEGSEC	Calculates surface distance for streamline.
COMPT	EBAL	Solves the energy equation for the ice surface temperature given a value of freezing fraction.
CONST	LEWICE2D	Sets constants in /ICECOM/ for ice accretion calculation.
CPW	COMPF COMPT	Calculates specific heat of water for a given temperature.
DSTPLN	BDYLR COMPS ICECAL NWFOIL NWPTS	Determines the minimum distance between a point and a line and where this point on the line occurs.
EBAL	ICECAL	Controls the mass and energy balance for each of the segments on the streamline.
ICECAL	LEWICE2D	Controlling routine for ice distribution thickness and new airfoil point calculations at each step.
INTRST	SEGSEC	Determines if two line segments in a line intersect and if so, at which point this intersection occurs.
LEWICE2D	LEWICE3D	Controls the ice accretion calculation for a streamline.
NWFOIL	ICECAL	Computes the new x, y, z coordinates for the iced airfoil in the surface normal or trajectory tangent direction.
NWPTS	LEWICE2D	Tests the iced streamline point distribution for refinement. If segments have become too large during a time step, they are subdivided into two segments of equal size.

TABLE IV - Concluded.

Subroutine	Called by	<u>Description</u>
PLIN	INTRST	Given three points determines the parametric equation for a line parallel to two of the points and which passes through a third point.
PLNFRM	SEGSEC	Produces a plane given three points.
PLNNRM	NWFOIL	Calculates cross product of two vectors.
PVI	COMPT	Calculates the vapor pressure over ice for a given temperature.
PVW	COMPF COMPT	Calculates vapor pressure over water for a given temperature.
RHOICE	ICECAL	Calculates local ice density using Macklin correlation (ref. 7).
SEGSEC	ICECAL	Removes segments that intersect due to ice growth.
TRANSF	NWFOIL SEGSEC	Projects a set of points onto a given plane along a specified direction.
VEDGE	LEWICE2D	Determines edge velocity, static temperature, and pressure along a streamline.

TABLE V. - GEOMETRY MODIFICATION CALCULATION SUBROUTINES

Subroutine	Called by	<u>Description</u>
BODMOD	LEWICE3D	Controls the geometry modification at each ice step.
CSPLINE	NLNMOD	Cubic spline interpolation routine.
DSTPLN	ISCFND	Determines the minimum distance between a point and a line and where this point occurs on the line.
GEOMOD	BODMOD	Controls the modification of each N-line on a lifting section and its subsequent loading into the new geometry file.
ISCFND	NLNMOD	Finds the two closest iced streamlines to a given streamline and its relative position between them.
NLNDAT	NLNMOD	Determines the surface normals for each point on a given N-line.
NLNMOD	GEOMOD	Controls the calculation of the ice thickness distribution and geometry modification for each N-line.
NORM	NLNMOD	Normalizes an array of surface distances to a given surface distance.
NWFOI2	NLNMOD	Calculates the new points on the N-line given the old N-line points, ice thickness distribution and either the surface normals or the trajectory tangents.
PANMIN	BODMOD	Determines the number of the panel closest to a given point.
PLIN	ISCFND NLNDAT	Given three points, determines the parametric equation of a line which is parallel to two of the points and which passes through the third.
PLNFRM	GEOMOD NLNMOD	Forms a plane given three points on the plane.
SURFD	NLNMOD	Determines the surface distance distribution from a set of points.
SWITC1	NLNMOD	Transfers points from a two-dimensional array into a one-dimensional array.
SWITC2	NLNMOD	Transfers points from a three-dimensional array into a one-dimensional array.

TABLE V. - Concluded.

<u>Subroutine</u>	Called by	Description
TRANSF	GEOMOD NLNMOD	Projects a set of points onto a given plane along a specified direction.
TRIB	CSPLINE	Solves for coefficients in a cubic spline curve fit.
WEIGT	NLNMOD	Determines the ice distribution at an N-line from weighted values of the two closest iced streamlines.

III. INPUT FILES

Two basic input files are required to run the code and a third is optional if the restart capability of the code is used (IRES=1). A geometry file (unit OGEOM) is required for the flow field generation. The job control file (unit INPUT) is required and contains flags and inputs for the trajectory, and ice accretion calculations. The third file, which is optional, is a restart file (unit RESTRT) which allows the user to continue from the point where the last run was terminated. This file is useful for long runs where it might be more advantageous to split the job into smaller runs. A brief description of the flow field input file is contained in Hillyer Norment's trajectory code manual (ref. 5) while a more detailed description is available in the Duglift users manual (ref. 4).

The run parameter file (unit INPUT) contains basically three namelists which control the trajectory and ice accretion calculations. A description of each of the variables and namelists is given in table VI.

The DUGLIFT flow field input file (unit NGEOM) contains geometry information in DUG-LIFT format. Table VII, which was taken from reference 5, gives a brief description of the input format of the variables.

In addition to the flow field and job control input files there is an optional restart file. This file allows a job to be restarted from its previous termination point. To restart a job the restart flag must be set (IRES=1) and the previous restart file must be provided on unit REST. This file contains collection efficiency and ice accretion information at each time step and section of interest. The restart file is read in subroutine REST. For information about the type and format of the data see subroutine REST.

TABLE VI. - LEWICE3D STANDARD INPUT FILE DESCRIPTION.

NAMELIST	Variables and Format	Description	on
IMPING	IRUN, IFLOW, ICE, ISTRF, ICEC, IRES, NPSEC, NBR, NBC, XSEC, YSEC, ZSEC, XSCI, YSCI, ZSCI, XTIP, YTIP, ZTIP, DSHIFT, SHFTF, PLNST (NAMELIST FORMAT)	IRUN	Flag controlling trajectory and streamline calculations.
		=1	Only streamline calculation will be carried out. Must input XSEC, YSEC, ZSEC. (Subroutines STREM2D or STREM3D will be
		=2	called depending on flag ISTRF). CONFAC run will be carried out to determine trajectories that pass XSEC, YSEC, ZSEC, (subroutine CONFAC).
		=3	Tangent trajectories will be determined. Must input XSCI, YSCI, ZSCI. (subroutine TANTRA).
		=4	An array of particles will be released and collection efficiencies will be calculated. Must input XTIP, YTIP, ZTIP. (subroutine ARYTRJ).
		=5	All of the above will be calculated. Must input XSEC, YSEC, ZSEC.
		=6	CONFAC run will be carried out, followed by a tangent trajectory, and a collection efficiency run.
		=7	Streamline calculation will be carried out followed by a tangent trajectory, and a collection efficiency run. Must input XSEC, YSEC, ZSEC.
		=8	Tangent trajectory calculation will be followed by a collection efficiency run. Must input XSCI, YSCI, ZSCI.Collection efficiency run will be carried out and will be followed by tangent trajectory run. Must input XSEC, YSEC, ZSEC.
		IFLOW	Flow field control flag.
		=0	Flow solver will not be run. Must provide geometry on OGEOM.
	•	=1	Flow solver will be run. Must provide geometry on unit OGEOM.
		ICE	Ice accretion calculation control variable.

NAMELIST Variables and Format Description

- =0 Lewice2D ice accretion calculation will not be run.
- =1 Lewice2D ice accretion calculation will be run. Must provide accretion calculation variables. (NAMELIST ICEIN)

ISTRF Streamline calculation control variable.

- =0 A 3D streamline will be integrated along the surface at the section of interest. Must input XSEC, YSEC, ZSEC.
- A 2D cut will be generated along the surface.
 The 2D slice will be the intersection between
 the surface and the plane input by the user
 (PLNST(ICEC,4)) where the plane is:

PLNST(ICEC,1)*X + PLNST(ICEC,2)*Y + PLNST(ICEC,3)*Z + PLNST(ICEC,4) = 0

The user must input PLNST, and XSEC, YSEC, and ZSEC.

ICEC The number of sections for which the above trajectory or ice accretion calculations will be made.

IRES Restart flag.

- =0 No restart will be made and job will run from the beginning.
- =1 Job will continue from last point of execution. Must link restart file (unit 26)

NPSEC Variable controlling the type of region at the section of interest.

=2 The region at the section of interest is a line and hence only two points are needed to describe it (i.e. XSEC(ICEC,1), YSEC(I-CEC,1), ZSEC(ICEC,1) and XSEC(ICEC,2),

NAMELIST Variables and Format Description

YSEC(ICEC,2), ZSEC(ICEC,2) fully describe the region at the surface). This type of calculation is justified for regions where no spanwise variation in the flow field or collection efficiency is expected. A single row of trajectories will be released along the section line and a 2D beta calculation will be used for determining collection efficiency. Flow field data are linearly extrapolated onto the streamline assuming no spanwise variation.

The region at the section of interest is a rectangle and hence four points are needed to describe the region of interest (i.e. XSEC(I-CEC,1), YSEC(ICEC,1), ZSEC(ICEC,1) and XSEC(ICEC,2), YSEC(ICEC,2), ZSEC(I-CEC,2), XSEC(ICEC,3), YSEC(ICEC,3), ZSEC(ICEC,3) and XSEC(ICEC,4), YSEC(ICEC,4), ZSEC(ICEC,4) describe the four corners of the rectangle at the section of interest. This type of calculation is for regions where the flow is expected to be fully 3D. A matrix of trajectories will be released into the rectangle of interest to generate a distribution of collection efficiencies on the surface. A 3D collection efficiency is made. The collection efficiency and flow field data are interpolated onto the streamline using linear interpolation.

NBR The number of rows of trajectories to be released at each section of interest NBR(ICEC). Typical value is 20.

NBC The number of columns of trajectories to be released at each section of interest NBC(I-CEC). For the 2D Approximation (i.e. NPSEC(ICEC)=1) NBC will be set to one and only a line of NBR(ICEC) trajectories will be released at the section of interest.

XSEC,

NAMELIST Variables and Format Description

YSEC,

ZSEC

Arrays describing the region of interest. Depending on NPSEC(I), I=1, ICEC either a line is desired (NPSEC=2) and two points along this line must be entered, or a rectangle is desired (NPSEC=4) and the four corner points of the rectangle of interest must be entered. The points must be off-body points. These arrays are needed to run the streamline and CONFAC calculations.

XSCI, YSCI.

ZSCI

Arrays either generated by subroutine CON-FAC or input by the user that define upstream release points for trajectories that pass through the points XSEC, YSEC, ZSEC at the region of interest. These arrays are needed to run the tangent trajectory routine.

XTIP, YTIP,

ZTIP

Arrays either generated by subroutine TANTRA or input by the user that define upstream release points for tangent trajectories for the upper and lower surface along the line defined by XSCI, YSCI, ZSCI at the region of interest. These arrays define the region to release impacting trajectories. These arrays are needed to run the ARYTRJ trajectory subroutine which generates collection efficiency data.

DSHIFT

Normal distance off-body where the streamline integration is started. Because of velocity gradient problems at panel edges, integration of a streamline at the surface is difficult. For this reason the streamline integration is made at a distance off the body equal to DSHIFT. Typical values are 0.002.

NAMELIST Variables and Format Description

MARIELIST	variables and Format	Description		
TRAJ	IPLOT, VINF, CHORD, RHO, VIS, HI, HMINI, IDIS, TPRINT, XSTART, XFINAL EPSE, NW, RW, TOL, XE, YE, XI, YI, DMDS, PLWC, FNR, DFINE, (NAMELIST FOR- MAT)	SHFTF	Variable which controls the amount the surface is shifted to overcome difficulties in integrating the trajectories due to high velocity gradients near panel edges. The surface is shifted in the flow direction an amount equal to SHFTF*DHSIFT. The default value for SHFTF is 0.0. Typical values may range from 0.0 to 1.0.	
		PLNST	Array defining plane which is to cut surface to generate 2D streamline at each section of interest. Plane is defined as	
			PLNST(ICEC,1)*X + PLNST(ICEC,2)*Y + PLNST(ICEC,3)*Z - PLNST(ICEC,4) = 0	
			Array PLNST must be entered if ISTRF=1.	
		IPLOT	Logical variable controlling output of trajectory information.	
		=TRUE	Trajectories are written to unit TEMP24.	
		=FALSE	ENo trajectory data is output.	
		VINF	Airspeed (M/S).	
		CHORD	Characteristic dimension of body (M).	
		RHO	Air density (Kg/M3).	
		VIS	Air viscosity (Kg/(M-S).	
		НІ	Initial time step for numerical integrator. Typical value is 0.1.	
		HMINI	Minimum time step for numerical integrator. Typical value is 0.00001.	

NAMELIST Variables and Format Description

IDIS

The number of the particle sizes in the particle distribution. If IDIS is greater than one, a particle distribution is assumed and DMDS(I), PLWC(I), I = 1, IDIS must be input. If IDIS = 1 than PWLC(1)=1.TPRINT Output time interval for trajectory plotting arrays. Typical value is 0.1.

XSTART Initial X release plane for trajectory calculations (non-dimensional).

XFINAL Termination X plane for trajectory integration (non-dimensional).

EPSI Array used to control local error in trajectory integration in each of the coordinated directions. Typical values are 0.000001.

NW Number of trajectories used to define the flux tube periphery. This parameter should only be greater than one if off body concentration factors are desired. If NW =1, then single trajectories are computed.

RW Radius of particle flux tube in target plane.
Only used if NW is greater than one.

TOL Tolerance for reaching a point on tangent plane. Controls how closely trajectories pass through points XSEC, YSEC, ZSEC in the CONFAC calculation.

XE, YE Target point coordinates of the last three guesses. Used in subroutine CONFAC in search for target point trajectories (see subroutine CONFAC).

XI, YI Initial point coordinates of the last three guesses. Used in subroutine CONFAC in search for target point trajectories (see sub-

TABLE VI. - Concluded.

NAMELIST	Variables and Format	Description	on
			routine CONFAC).
		DMDS	Distribution of droplet or ice aggregate diameters to be run: DDS(I), I=1, IDIS.
		PLWC	Distribution of percent liquid water content for the distribution of particles. If IDIS =1 then PLWC = 1.
		FNR	Froude number. If gravitational forces in the z-direction are to be considered then FNR = 1. The default value for FNR is 0 or no gravitational forces.
		DFINE	Step size used in search for tangent trajectory.
		LWC	Liquid water content of cloud (g/m ³).
ICEIN	LWC, TAMB, PAMB,	TAMB	Ambient temperature (K).
QCOND,TSTOP, DTIME, DTFLW (NAMELIST FOR- MAT)	DTIME, DTFLW (NAMELIST FOR-	PAMB	Ambient pressure (Pa).
		RH	Relative humidity of cloud (percent).
	MAI)	XKINIT	Roughness factor (m).
		SEGTOL	Maximum growth length of a surface segment before it is divided into two surface elements
		QCOND	ments.
		TSTOP	Length of icing encounter (sec).
		DTIME	Time stepping for ice growth (sec). Should be fraction of DTFLW.
		DTFLW	Time stepping for flow field calculation (sec). Should be fraction of TSTOP.

TABLE VII. - DUGLIFT INPUT FILE DESCRIPTION

Card No.	Variables and Format	Description		
Card No.	Variables and format	Description.		
1	TITLE(I), I=1, 18), A4	Run identification.		
2	CASE, LIFSEC, IATACK, NSYM1, NSYM2, MPR, LEAK, FRAC, MACH (A4,6I4,2X,2F10.0)	Run control	data:	
		CASE (col. 1-4)	Four	character body identification.
		LIFSEC (col. 5-8)	Total	number of lifting sections.
		IATACK (co. 9-12)	free s no. 4. press:	per of angles of attack (i.e., uniform tream flows) to be specified via cards. Maximum value is 10. If the comion correction is to be applied (MACH), it is necessary that IATACK = 1.
		NSYM1 (col.13-16) NSYM2 (col.17-20)	NSYI and N	of the three values 0, 1 or -1 is entered. M1 specifies the 1st symmetry plane, USYM2 specifies the second netry plane according to
			0	nonexistent.
			+1	a plus (ordinary symmetry plane.
			- 1	a minus (anti) symmetry plane.
		MPR (col. 21-24)		flag used for program debugging only.
			0	No debug print. This is the normal value for this parameter.
			1	Print the source induced velocity matrix, V_{ij} , and, if LIFSEC > 0, print the dipole induced velocity matrices, $V_{ik}^{(F)}$ and $V_{ij}^{(S)}$.
			>2	Print the dot product matrices A_{ij} , $N_i^{(k)}$ and $N_i^{(\infty)}$, and the element

Card No.	Variables and Format	Description	
			source densities, $\sigma_i^{(k)}$ and $\sigma_i^{(\infty)}$
			Print the onset flow matrices, $V_i^{(k)}$ and $V_i^{(\infty)}$
		LEAK (col. 25-28)	Number of inlet quadrilateral elements. These must be the first elements in the digital description set (cards no. 12).
		FRAC (col.31-40)	Fraction of unit free stream flow that passes through each of the LEAK inlet elements. If LEAK = 0, leave this field blank.
		MACH (col.41-50)	Mach number of the free stream flow. (Note that this is a floating point number.) If $N_{\rm M}$ < 0.5, leave this field blank.
3	IPROS, LOFF,	Logical con	trol flags:
	MOMENT, LIST, IOUT (5LI)	IPROS (col. 1)	If true, the card 12, 13, and 15 coordinates are to be translated, scaled, and rotated about the y axis before processing, and card no. 5 is to be input. If false, no translation, scaling or rotation is done, and card no. 5 is not input.
		LOFF (col. 2)	if true, velocities at off-body points are to be calculated. The off-body points are specified by the user via input of the no. 15 cards. If false, off-body velocities are not calculated and there is no input of the no. 15 cards.
		MOMENT (col.3)	If true, the moment origin is specified by input of card no. 6. If false, card 6 is not input and moments are computed about point (0,0,0).
		LIST (col. 4)	If false, specifies complete execution. If true execution is terminated after the first main part of the printed output.

Card No.	Variables and Format	Description		
		IOUT (col. 5)	If true, the 29 geometric quantities for each nonlifting element and 45 geometric quantities for each lifting element are printed. The normal value for this parameter is false.	
4	(ALPHAX(I), ALPHAY(I), ALP- HAZ(I), I=1, IATACK) (3E10.0)	Direction cosines of uniform onset (i.e., free stream) flow vectors. IATACK is the number of uniform onset flows specified in card no. 2. One set of direction cosine per card. If the compression correction is applied (MACH. 0.0), only one uniform onset flow vector can be specified. If more than one vector is specified, only the first is passed along via unit 18 for use by SR SETFLO and FLOVEL. The direction cosines are with reference to the airplane coordinate system (after rotation by ang ANGLE (card 5)). These vectors are equivalent to unif free stream velocities. Ordinarily, free stream unit velocity components are (1.0,0.0,0.0).		
5	ANGLE, XSCALE, YSCALE, ZSCALE, XTRANS, YTRANS, ZTRANS, (7F10.0)	Input only i 4 of progra	f IPROS = TRUE on card 3. Same as card no. m PBOXC.	
6	ORIGNX, ORIGNY, ORIGNZ (3E10.0)		s of the moment origin. This card is input only IT = TRUE on card 3.	
7	LKUTT, LASWAK, PESWIS, IGW (5L1)	Input only i	f LIFSEC > 0 on card 2. Logical control flags ection data	
		LKUTT (col. 1)	If true, the flow tangency method for application of the Kutta condition is selected. This means that one point in or near the wake of each lifting strip (not counting extra strips) must be specified via input of card no. 9. If false, the pressure equality method is selected, and cards no.9, 13, and 14 are not input.	

Card No.	Variables and Format	Description	
		LASWAK (col. 2)	If true, the trailing edge of the last wake element is automatically extended by the code to $x = \infty$. This is the semi-infinite last wake element option.
N N D	(NSORCE(J), NWAKE(J), NSTRIP(J), NLINE1(J), NLINEN(J), IXFLAG(J), J=1, LIF- SEC), (614)	PESWIS (col. 3)	If true, the piecewise linear method for calculating spanwise variation of lift vorticity is selected, and lifting strip widths must be input via cards no. 11. If false, the step function option is selected, and cards no. 11 are not input.
		IGW (col. 4)	If true, there are ignored lifting elements which must be defined via input of the no. 10 cards. If false, there are not ignored elements, and cards no. 10 are not input.
		This card on	aly input if LIFSEC > 0 on card 2.
		NSORCE (col. 1-4)	Number of on-body elements (including ignored) in each lifting strip of the Jth lifting section.
		NWAKE (col. 5-8)	Number of wake elements in each lifting strip of the Jth lifting section, including a semi-infinite final element if this option is selected.
		NSTRIP (col. 9-12)	Number of lifting strips in the Jth lifting section. Include extra strips only if they are defined via input of cards no. 12.
		NLINE1 (col. 13-16)	If the piecewise linear option is selected, (PESWIS = TRUE on card 7), NLINE1(J) specifies the edge condition of the first strip on the Jth lifting section. If the step function option is specified, ignore this field.
		NLINEN (col. 17-20)	Same as NLINE1(J) but for the last strip of the Jth lifting section.

Card No.	Variables and Format	Description		
		IXFLAG (col. 21-24)	IXFLAG(J) = 0 means that no extra strips are defined via input (i.e. via cards no. 12).	
			IXFLAG(J) = 1 means the first strip is an extra strip. If the piecewise linear option is selected, this also requires $NLINEN(J) = 4$ or 5.	
			IXFLAG (J) = 3 means the last strip is an extra strip. If the piecewise linear option is selected, (PESWIS = TRUE on card 7), this also requires $NLINEN(J) = 4$ or 5.	
			IXFLAG(J) = 2 means that both the first and last strips are extra strips. If the piecewise linear option is specified, this requires that both NLINE1(J) and NLINEN(J) = 4 or 5.	
		required for	specified on card 2. A separate card is each lifting section, and the cards are input order as input of the quadrilateral data via	
9	KUTTA(I4)	on card 7. New method for applied. It is ber of lifting used to reach	If LIFSEC > 0 on card 2 and if LKUTT = true Number of points which the flow tangency application of the KUTTA conditions is to be s required that KUTTA equal the total num- g strips, not counting extra strips. KUTTA is If the point coordinates, and the unit vectors he wake or airfoil surface at these points, via 3 and 14.	
10	((IG1(I,J), IGN(I,J), I=1, NSTRIP(J)), J=1, LIF- SEC), (12I4)	on card 7. I If on the Ith strip of igno	f LIFSEC > 0 on card 2 and if IGW = TRUE = lifting strip index: J = lifting section index. a strip of the Jth lifting section there is a sub- ored elements, the substrip is defined by spec- eginning and ending element indices via	
		IG1(I,J)	= index of the first ignored element on the lifting strip.	

Card No.	Variables and Format	Description	
			= index of the last ignored element on the lifting strip.
		fields blank: lifting strip i	o ignored elements on a strip, leave both but IG1 and IGN must be specified for every f IGW = TRUE on card 7. Six strips per fting section begins a new card.
		LIFSEC is sp	pecified on card 2, and NSTRIP(J) on card 8.
11	(WIDXTR(I,J), (WIDTH(I,J), I=2, NSTRIP(J)-K), WIDX- TR(2,J), J=1, LIFSEC), (7E10.0)	card 7. These strip for use	LIFSEC > 0 and if PESWIS = TRUE on e quantities are the widths of each lifting in calculating the spanwise variation of vorpiecewise linear method.
	K = 0 if $IXFLAG(J) = 0$	WIDXTR(1,	J) specifies the width of the first extra strip of the Jth lifting section. If NLINE1(J) NE 4, leave this field blank.
	K = 1 if $IXFLAG(J) = 1$ or 3	WIDTH(I,J)	specifies the width of the Ith lifting strip of the Jth lifting section.
	K = 2 IF IXFLAG(J) = 2	WIDXTR(2,	J) specifies the width of the last extra strip of the Jth lifting section. If NLINEN(J) NE 4, leave this field blank.
			pecified on card 2, and NSTRIP(J), NLINEN(J) and IXFLAG(J) are specified
12	X, Y, Z, STAT, LAB, XX,YY, ZZ, STATT, LABL, (3E10.0,2I2/ 3E10.0,2I2)	nates are spe nonlifting se wake surface (Note: there	ke quadrilateral element corner point coordicified by these cards for both lifting and ctions, one point per card. The body and panels are constructed from these data. must be an even number of no. 12 cards. card to the end of the card 12 deck if neces-
		X, Y, Z	Quadrilateral corner point coordinates.

Card No.	Variables and Format	Description	·
		XX, YY, ZZ (col. 1-30)	
		STAT STATT	Status parameter: Allowed values are 0, 1, 2,3:
		(col. 32)	O This point is on the same N-line as the last point.
			1 This point starts a new N-line.
			2 This point starts a new section.
			This is the last point in the card 12 input.
		LAB LABL	Specifies a lifting or nonlifting section
		(col. 32)	0 Nonlifting.
			1 Lifting. This field is relevant only when STAT or STATT = 2, that is, only on the first card of a new section.
13	(XC(I), YC(I), ZC(I), I=1 KUTTA) (3E10.0)	Input only if Li ified via the car per card) at wh use of the flow	KUTT = TRUE on card 7. KUTTA is spected 9 input. Coordinates of points (one point ich the Kutta condition is to be applied via tangency method. If IPROS = TRUE (card lates according to the card 5 input data.
14	(XN(I), YN(I), ZN(I), I=1, KUTTA) (3E10.0)	Input only if Lified via the car (one vector per at the points sp Kutta condition gency method. that of the no. 1 formation is au	KUTT = TRUE on card 7. KUTTA is spected 9 input. Components of the unit vectors card) normal to the wake or airfoil surface ecified by the no. 13 cards at which the is to be applied via use of the flow tan-The order of input must be consistent with 3 cards. If IPROS = TRUE (card 3), a transtomatically applied by the code to adjust for redinates by angle ANGLE (card 5).

TABLE VII. - Concluded.

Card No.	Variables and Format	Description	
15	XOF, YOF, ZOF, STAT, XOFF, YOFF, ZOFF, STATT, (3E10.0, I2/ 3E10.0,I2)	XOF, YOF, ZOF XOFF, YOFF, ZOFF (col. 1-30) STAT STATT (col. 32)	Coordinates of off-body points at which flow velocities are to be calculated, one point per card. Status parameter. A value of 3 signifies the end of the off-body points. Otherwise, leave this field blank.
		•	rd 3), the code automatically trans- tes these coordinates according to

IV. REFERENCES

- 1. Hess, J.L. "Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies," Report MDC J5679-01, Douglas Aircraft Co., Inc., Long Beach, CA.,Oct. 1972.
- 2. Hess, J.L. and Smith, A.M.O. "Calculation of Non-Lifting Potential Flow About Arbitrary Three -Dimensional Bodies," Report E.S. 40622, Douglas Aircraft Co., Inc., Long Beach, CA., Mar. 15, 1962.
- 3. Hess, J.L. and Smith, A.M.O. "Calculation of Non-Lifting Potential Flow About Arbitrary Bodies," Progress in Aeronautical Sciences, Volume 8, D. Kuchemann, ed., Pergammon Press, New York, 1967, pp. 1-138.
- 4. Mack, D.P. "Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies. Users Manual," Report MDS J5679-20, Douglas Aircraft Co., Inc., Long Beach, CA., Oct. 1972.
- 5. Norment, H.G. "Calculation of Water Drop Trajectories To and About Three-Dimensional Lifting and Non-lifting Bodies In Potential Airflow," NASA CR-3935, 1985.
- 6. Krogh, F.T. "Variable Order Integrators for Numerical solutions of Ordinary Differential Equations," Report NPO-11643, 1971.
- 7. Ruff, G.A., Berkowitz, B.M." Users manual for the NASA Lewis Ice Accretion Prediction code (LEWICE)," NASA CR-185129, 1990.
- 8. Kim, J.J. "Particle Trajectory Computation on a 3-Dimensional Engine Inlet," NASA CR-175023, 1986
- 9. Tribus, M.V. et al."Analysis of Heat Transfer Over a Small Cylinder in Icing Conditions on Mount Washington," ASME Trans., vol. 70, 1949, pp. 871-876.
- 10 Messinger, B.L. "Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed," J. Aeronaut. Sci., vol. 20, no. 1, 1953, pp. 29-42.

V. EXAMPLE CASE

For the test case, a swept NACA 0012 airfoil with a 30 degree sweep, an aspect ratio of 1.4, and a .4399 meter chord was used (fig. 22). Calculations at 0 degrees angle of attack were made for this configuration at two different airspeeds,150 MPH and 165 MPH. This choice allowed for direct comparison to experimental impingement data for the 165 MPH case and to ice accretion data for the 150 MPH case. Because the cases were very similar, only the ice accretion related run files have been included. The experimental impingement calculations are summarized in figure 23. The various steps in producing an ice shape for a 3D geometry are illustrated.

The ice accretion calculations were carried out in a single run on the Cray XMP at LEWIS. The calculation conditions were airspeed, 150 MPH; angle-of-attack, 0 degrees; drop size, 20 microns; LWC, .75 g/m³; icing time, 2 minutes. Three sections of interest were chosen to resolve the spanwise ice shape. Because of the relative shortness of the icing encounter a single step ice accretion calculation was chosen. These sections of interest were located at the 10, 50 and 90% span locations. The panel model contained one lifting section containing 14 lifting strips of constant width and 91 chordwise segments. This model yielded 1218 lifting elements. Figures 24 and 25 show the job control input file (unit INPUT) and the flow field input file respectively (unit OGEOM). Figure 26 contains the job summary file (unit JOBSUM). The entire calculation required approximately 1340 seconds on the Cray XMP.

The first step is to generate a flow field. If the same flow field will be used for several trajectory runs then it is suggested that the flow field be generated on the first run (IFLOW=1) and saved (unit FLOWF) for any runs thereafter (IFLOW=0). It is also a good idea when calculating flow for a panel model for the first time to do a flow field calculation only (IRUN=0, IFLOW=1) and inspect the quality of the panel solution. A summary of the flow field calculation is contained on unit (FLSUM). Criteria such as smoothness of the pressure and vortex distributions are used to measure the quality of the flow field solution. Because of the relatively small execution time required for the flow field generation (90 seconds on the Cray XMP) and the ensured quality of the panel model, the flow field was generated in a single run along with the trajectory and ice accretion calculation (IRUN=5, IFLOW=1) and was stored (unit FLOWF). The job control input file (unit INPUT), the DUGLIFT geometry file (unit OGEOM), and the job summary file (unit JOBSUM) are shown in figures 24, 25, and 26 respectively. Figure 27 shows the pressure distribution at the 0% spanwise location

The second through fourth steps involve various steps in finding the ice accretion at each station of interest. These steps are repeated for each station of interest.

The second step involves calculation of the streamline at the current section of interest. This requires finding the local stagnation zone, integrating upper and lower off-body streamlines from this stagnation zone and finding the on-body projection of the off-body streamline. This calculation required about 10 seconds for each section of interest. The coordinates for the off-body and on-body streamlines along with other information are contained in the job summary output (unit JOB-SUM). Figure 28 illustrates the off-body and on-body streamlines at the 0% span location.

The collection efficiency at the station of interest is determined in the third step. This

involves determining the upstream release points of the droplets that would pass through the points at the leading edge demarcating the section of interest, determining the tangent trajectories associated with these upstream release points, calculating the impact trajectories between these tangent trajectories, and calculating the collection efficiency resulting from these impact trajectories. The job summary output file shown in figure 26 summarizes the pertinent information from these runs. Approximately 448 seconds on the Cray XMP were required to complete the trajectory calculations for each section. Figure 29 depicts the impact trajectories generated in the collection efficiency calculation.

During the fourth step the surface collection efficiencies generated in step three are used to find the collection efficiencies along the streamline generated in step two. Depending upon the value of NPSEC chosen, the determination of the collection efficiency values along the streamline are calculated from either an extrapolation (NPSEC=2) or an interpolation (NPSEC=4). In the current example very little spanwise variation was expected hence a "quasi-2D" collection efficiency calculation was made (NPSEC=2). The interpolation or extrapolation proceeds quickly and only required .1 seconds on the Cray XMP. The results from this calculation are summarized in the job summary output file (unit JOBSUM) in figure 26. Steps two through four are repeated for each of the sections of interest.

Ice accretion along the streamline is calculated in step five for each of the streamlines. This involves calculating the ice thickness as a function of surface distance along the streamline at the current section of interest. The ice thickness distribution is calculated using a 3D version of the LEWICE heat transfer subroutine (ref. 7). The ice accretion at the local section is then calculated by adding the ice thickness calculated at a point to the point in either the surface normal or trajectory tangent direction. This results in a new off-body "iced-streamline" shown in figure 30. In addition to the calculation of the "iced-streamline" the ice thickness distribution for each streamline is stored for the geometry modification calculation in step six. The ice accretion calculation, which proceeds fairly quickly (.2 seconds), is summarized in the job summary output file (unit JOBSUM) in figure 26. Step 5 is repeated for each of the sections of interest.

The sixth and final step involves calculating the new goemetry from the ice thickness distribution at each section of interest. This involves a cubic chordwise interpolation and a linear spanwise interpolation. The geometry modification calculations took approximately 1 second on the Cray XMP. Figure 31 shows the resulting iced wing resulting from the calculations. Figure 32 shows a comparsion between the calculation and experiment for this case. In general the aggreement is good with the calculation predicting the shape, amount and postion of the ice.

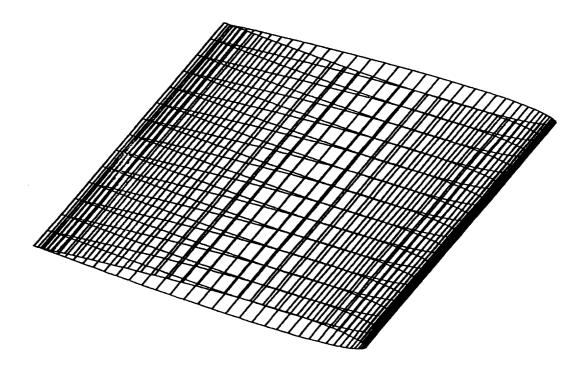


Figure 22. - Swept NACA 0012 panel model used in example case.

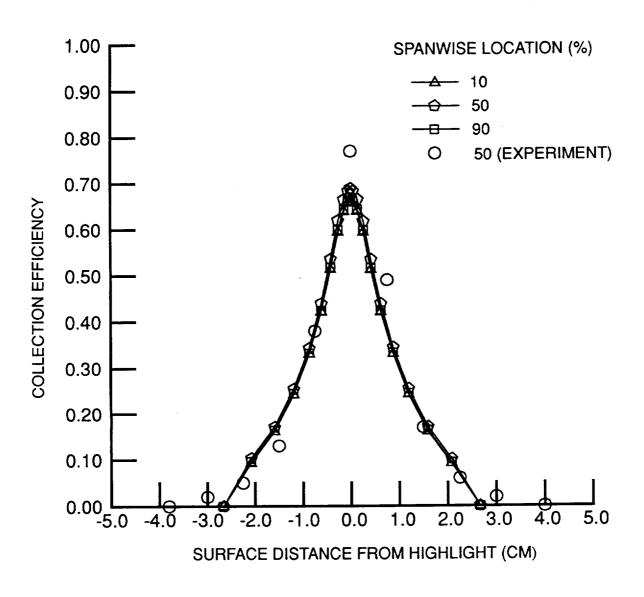


Figure 23. - Collection efficiency as a function of surface distance and spanwise location for the example case.

```
N012
SWEPT NACA0012 AIRFOIL (30 DEGREE SWEEP) EXAMPLE
   &TRAJ DFINE=.0001, DMDS(1)=20.,
     VINF=67.0,CHORD=.4399,
     RHO=1.29,RW=.1,TOL=.02,FNR=0.0,
     HMINI=.0001,HI=.01,XSTART=-20.,XFINAL=1.5,TPRINT=.1,EPSI(1)=2.E-07,
     EPSI(2)=2.E-07,EPSI(3)=2.E-07 &END
   &IMPING IRUN=5,ICE=1,ICEC=3,IFLOW=1,ISTRF=0,NBC(1)=1,NBR(1)=20,
     NBC(2)=1,NBR(2)=20,NBC(3)=1,NBR(3)=20,NPSEC(1)=2,NPSEC(2)=2,
     NPSEC(3)=2,SHFTF=0.,DSHIFT=.002,IRES=0,
     XSEC(1,1)=0.,XSEC(1,2)=0.,XSEC(1,3)=0.,XSEC(1,4)=0.,
     YSEC(1,1)=0.,YSEC(1,2)=0.,YSEC(1,3)=0.01,YSEC(1,4)=0.01,
     ZSEC(1,1)=0.07, ZSEC(1,2)=-0.05, ZSEC(1,3)=0.07, ZSEC(1,4)=-0.05,
     XSEC(2,1)=0.318, XSEC(2,2)=0.318, XSEC(2,3)=0., XSEC(2,4)=0.,
     YSEC(2,1)=0.55,YSEC(2,2)=0.55,YSEC(2,3)=0.01,YSEC(2,4)=0.01,
     ZSEC(2,1)=0.05, ZSEC(2,2)=-0.06, ZSEC(2,3)=0.07, ZSEC(2,4)=-0.05,
     XSEC(2,1)=-.318,XSEC(2,2)=-.318,XSEC(2,3)=0.,XSEC(2,4)=0.,
     YSEC(2,1)=-.55,YSEC(2,2)=-.55,YSEC(2,3)=0.01,YSEC(2,4)=0.01,
     ZSEC(2,1)=0.05,ZSEC(2,2)=-0.06,ZSEC(2,3)=0.07,ZSEC(2,4)=-0.05,
     PLNST(1,1)=0.0, PLNST(1,2)=1., PLNST(1,3)=0., PLNST(1,4)=0.,
     PLNST(2,1)=0.0,PLNST(2,2)=1.,PLNST(2,3)=0.,PLNST(2,4)=-.55,
     PLNST(3,1)=0.0,PLNST(3,2)=1.,PLNST(3,3)=0.,PLNST(3,4)=.55 &END
   &ICEIN LWC=.75,TAMB=267.,PAMB=89876.,RH=100.,
     XKINIT=.0045,SEGTOL=1.5,TSTOP=120.,DTIME=120.,DTFLOW=120. &END
```

Figure 24. - Job control input file for example case unit (INPUT).

0.910460 0.600000 -0.046791 0 0.867310 0.600000 -0.046791 0 0.761880 0.600000 -0.051390 0 0.623950 0.600000 -0.051390 0 0.623950 0.600000 -0.051390 0 0.525110 0.600000 -0.051390 0 0.525110 0.600000 -0.051390 0 0.525110 0.600000 -0.051391 0 0.525110 0.600000 -0.05131 0 0.525110 0.600000 -0.05131 0 0.525110 0.600000 -0.05131 0 0.525110 0.600000 -0.05131 0 0.525110 0.600000 -0.05131 0 0.525110 0.600000 -0.05131 0 0.525110 0.600000 -0.05131 0 0.5525110 0.600000 -0.05131 0 0.5525110 0.600000 -0.05131 0 0.5525110 0.600000 -0.05131 0 0.5525110 0.600000 -0.05131 0 0.5525110 0.600000 -0.05131 0 0.5525110 0.600000 -0.0113 0 0.5525110 0.600000 -0.0113 0 0.5525110 0.600000 -0.0113 0 0.5525110 0.600000 0.0113 0 0.5525110 0.600000 0.012 0 0.5525110 0.600000 0.012 0 0.5525110 0.600000 0.012 0 0.555110
7000000 0.019200 0 7000000 0.026795 0 700000 0.034243 0 700000 0.034243 0 700000 0.043908 0 700000 0.046462 0 700000 0.051320 0 700000 0.051320 0 700000 0.051320 0 700000 0.051320 0 700000 0.061463 0 700000 0.061463 0 700000 0.061463 0 700000 0.061463 0 700000 0.061463 0 700000 0.001463 0 700000 0.001463 0 700000 0.001463 0 700000 0.001463 0 700000 0.001463 0 700000 0.00162 0 700000 0.00162 0 700000 0.00162 0 700000 0.00163
0.452010 0.55201755 0.65201755 0.65201755 0.65201755 0.65201755 0.65201755 0.65201755 0.65201755 0.65201755 0.65201755 0.65201755 0.65201755 0.6520175
HACAUU12 (30 DEG) 90-x

	0.400000 0.008695 0.400000 0.011996 0.400000 0.012900 0.400000 0.022984 0.400000 0.026795 0.400000 0.036713 0.400000 0.043908 0.400000 0.043908 0.400000 0.046972 0.400000 0.046972 0.400000 0.046972
1.179549 1.1195499 1.10718469 1.10718469 1.00718469 1.00718469 1.00718499 1.00718499 1.00718499 1.00718499 1.00718499 1.00718499 1.00718499 1.007184999 1.007184999 1.007184999999999999999999999999999999999999	25428 23737 2428 26188 25658 25658 31268 31268 332296 40163
0.500000 -0.005716 0 0.500000 -0.005716 0 0.500000 -0.001117 0 0.500000 0.001117 0 0.500000 0.001117 0 0.500000 0.001175 0 0.500000 0.0015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.015519 0 0.500000 0.051918 0 0.5000000 0.051918 0 0.5000000 0.051918 0 0.5000000 0.051918 0 0.50000000 0.051918 0 0.500000000 0.051918 0 0.500000000 0.051918 0 0.50000000 0.051918 0 0.50000000000000000000000000000000000	500000 0.006175 500000 0.004027 500000 0.002031 500000 0.00031 500000 0.000000 500000 0.000000 60000 0.000000 60000 0.000000 600000 0.000000 600000 0.000000 600000 0.000000 600000 0.000000 600000 0.000000 600000 0.000000
0.291985 0.2886725 0.2886725 0.2886725 0.2886725 0.291985 0.291985 0.291985 0.306985 0.306985 0.306985 0.306985 0.5318695 0.6682085 0.66	287274 265534 265534 266534 286674 286675 286675 2886675 288839 28839 212169
000 0.028458 0 000 0.028907 0 000 0.015825 0 000 0.017935 0 000 0.017935 0 000 0.016535 0 000 0.016535 0 000 0.016535 0 000 0.016535 0 000 0.016535 0 000 0.000000 0 0000 0.0000000 0 0000 0.00000000	100 -0.05129 100 -0.056212 100 -0.046575 100 -0.045908 100 -0.037733 100 -0.034243 100 -0.034243 100 -0.036803 100 -0.012984 100 -0.012984 100 -0.012984
00000000000000000000000000000000000000	551055 0.5000 653075 0.5000 643075 0.5000 643075 0.5000 370355 0.5000 370355 0.5000 37465 0.5000 37465 0.5000 37465 0.5000 376705 0.5000

	_
0.000000000000000000000000000000000000	.015519
0.32000000 0.220000000 0.220000000 0.220000000 0.220000000 0.220000000 0.220000000 0.220000000 0.220000000 0.220000000 0.220000000 0.2200000000	.2000
1.164834 1.171104 1.171104 1.171204 1.1723205 1.1233205 1.105401 1.064073 1.064073 1.064073 1.064073 1.064073 1.064073 1.064073 0.926830 0	. 12649
-0.046462 0 -0.0454088 0 -0.0453088 0 -0.0347233 0 -0.0365733 0 -0.015984 0 -0	002295
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30000
0.3238 0.2354835 0.2354835 0.2354835 0.2354835 0.1268235 0.1268235 0.176635 0.176635	. 15445
	=
0.051329 0.0519301 0.0519301 0.051390 0.051390 0.046791 0.046791 0.046792 0.028458 0.028458 0.017935	0.048575
0.400000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.4000000 0.40000000 0.400000000	.300000
0.473310 0.508470 0.508470 0.626480 0.626480 0.758830 0.758830 0.758830 0.758830 0.758830 0.758830 0.758830 0.757589 1.0276750 1.1076850 1.1076850 1.12780939 1.2280939 1.2280939 1.2280939 1.12780939 1.2280939	.351

000000000000000000000000000000000000000
$\begin{array}{c} 6000000000000000000000000000000000000$
\$20,000
744 88 88 88 88 88 88 88 88 88 88 88 88 8
13.00
0.000000000000000000000000000000000000
27252222222222222222222222222222222222
5.521.05.05.05.05.05.05.05.05.05.05.05.05.05.
20000000000000000000000000000000000000
1810 1810 1810 1810 1810 1810 1810 1810
6476894468946894689494949494949494949494949

100000 0 0.51329 0 1 100000 0 0.051329 0 1 100000 0 0.051329 0 1 100000 0 0.051329 0 1 100000 0 0.051329 0 1 100000 0 0.051328 0 1 1000000 0 0.051328 0 1 1000000 0 0.051328 0 1 1000000 0 0.051328 0 1 1000000 0 0.051328 0 1 10000000 0 0.051332 0 1 10000000 0 0.051332 0 1 10000000 0 0.051332 0 1 10000000 0 0.051332 0 1 1000000000000000000000000000000
0.184635 0.2197935 0.3356175 0.3356175 0.4521155 0.553135 0.553135 0.553135 0.553135 0.553335 0.553335 0.553335 0.553335 0.553335 0.553335 0.553335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55335 0.55355 0.55455 0.5535 0.5535 0.55355 0.5535 0.5535 0.5535 0.5535 0.5535
0.890875 -0.100000 -0.00635 0.863605 -0.100000 -0.011535 0.763805 -0.100000 -0.017335 0.768805 -0.100000 -0.026497 0.633365 -0.100000 -0.026497 0.633365 -0.100000 -0.026497 0.633365 -0.100000 -0.026497 0.633365 -0.100000 -0.046679 0.633365 -0.100000 -0.046679 0.63315 -0.100000 -0.046679 0.64315 -0.100000 -0.046679 0.64315 -0.100000 -0.046679 0.64315 -0.100000 -0.046679 0.643165 -0.100000 -0.046679 0.643165 -0.100000 -0.046679 0.643165 -0.100000 -0.046679 0.643165 -0.100000 -0.066799 0.72265 -0.100000 -0.066799 0.72265 -0.100000 -0.066799 0.721025 -0.100000 -0.05989 0.721025 -0.100000 -0.016599 0.721025 -0.100000 -0.016599
000000000000000000000000000000000000000
-0.008695 -0.001335 -0.003135
0.000000000000000000000000000000000000
0.003310 0.001420 0.000420 0.000420 0.000420 0.0004310 0.0004310 0.0004310 0.011020 0.015510 0.015510 0.015610 0.015610 0.015020

0.012920 0.025745 0.025746 0.025746 0.025746 0.055746 0.0	0.03536 0.03862
0.3	. 40000 . 40000
0.155865 0.124465 0.137175 0.137175 0.107265 0.001185 0.0018205 0.002615 0.002	376110
000000000000000000000000000000000000000	
0.000000 0.000000 0.000000 0.000000 0.000000	011986
2.2000000 2.2000000	.300000
882430 882430 882430 8826430 8826430 8826733 8826733 8826793 8826793 8826793 8826793 8826793 8826793 8826793 8826715 882683 882693 8826	775 - 185 -
	-:-
0.04662 0 0.0537733 0 0.037733 0 0.037733 0 0.0376733 0 0.022986 0 0.015519 0 0 0.015519 0 0 0.015519 0 0 0.015519 0 0 0.015519 0 0 0.015519 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.004027
	000
	-0.200 -0.200
0.035130 0.0035330 0.0035340 0.0035520 0.0035520 0.0035520 0.003620 0.00362	.85139 .86578

- 1. 285365 - 0. 2886255 - 0. 2888655 - 0. 288865 - 0. 28
0.0284965 0 0.0284965 0 0.0284907 0 0.0114635 0 0.01061725 0 0.01061725 0 0.0106172 0 0.0106027 0 0.0106027 0 0.0106027 0 0.0106027 0 0.0106027 0 0.0106027 0 0.0106027 0 0.0106027 0 0.0117355 0 0.0117350 0 0.0117351 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.041647 0 -0.046791 0 -0.048792 0 -0.051939 0 -0.051930 0 -0.051

289940 2246940 2246540 1026540 1026540 1026540 1016460 1016540 1021540 1021540 1021540 1021540 1021540 1021540 1021540 1021540 1021550

252545 -0.700000 -0.046462 0 322465 -0.700000 -0.034243 0 322465 -0.700000 -0.034243 0 3502115 -0.700000 -0.034243 0 3502155 -0.700000 -0.026803 0 3508155 -0.700000 -0.026803 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.01929 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 -0.019298 0 3508155 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.019298 0 350815 -0.700000 0.01928 0 350815 -0.70000	62715 -0.700000 0.004027 77105 -0.700000 0.002295
200 10 10 10 10 10 10 10	4745 -0.700000 -0.050212 5385 -0.700000 -0.048575
	75 0 -0.1 12 0 -0.2
0.5602200 -0.600000 -0.00867 0.526140 -0.600000 -0.01753 0.635210 -0.600000 -0.02153 0.460220 -0.600000 -0.02153 0.460220 -0.600000 -0.02153 0.460220 -0.600000 -0.02153 0.217670 -0.600000 -0.021673 0.217670 -0.600000 -0.031673 0.017470 -0.600000 -0.0475 0.017510 -0.600000 -0.0475 0.017510 -0.600000 -0.0515 0.017670 -0.600000 -0.0475 0.017670 -0.600000 -0.0515 0.017670 -0.600000 -0.015 0.017670 -0.015 0.017	. 167660 -0.600000 0.0489 . 137020 -0.600000 0.0503

*	****	*	*		*	*	***	****	***	*	****
*	*	ж	*		*	*	*	*	*	*	*
*	***	*	*	u	*	*	*	***	**	*	*
*	*	*	*	*	*	*	*	*	*	*	*
****	* * *	*			*	ж	***	***	***	ж	*

LEWICE3D: A QUASI-3D ICE ACCRETION CODE BASED ON A 3D HESS SMITH PANEL CODE AND A 2D INTEGRAL BOUNDARY LAYER HEAT TRANSFER CALCULATION. FOR FURTHER DETAILS SEE LEWICE3D MANUAL OR CONTACT COLIN BIDWELL, MS 77-10 NASA LEWIS RESEARCH CENTER, CLEVELAND OH, 44135, PHONE 216-433-3947

NOTE : NO

NOTE: THIS CODE SHOULD NOT BE DISTRIBUTED NOTE: WITHOUT THE PERMISION OF NASA. ONTE: ALL REQUESTS FOR THIS CODE SHOULD BENOTE: FORWARDED TO C. S. BIDWELL NOTE: FINALLY DO NOT DISTRIBUTE THIS CODE NOTE: OUTSIDE THE UNITED STATES

******* LEWICE3D INPUT DECK ********

DEGREE SWEEP) EXAMPLE SWEPT NACA0012 AIRFOIL (30 **** TRAJECTORY CALCULATION INPUTS (NAMELIST TRAJ) ****

6.700000E+01 4.399000E-01 2.000000E+01 1.590000E+00 2.67000E+00 AIR SPEED= CHARACTERISTIC DIMENSION OF THE BODY= DROS SIZE; DIAM= DENSITY= TEMPERATURE OF AIR= AIR VISCOSITY= PHYSICAL INPUT DATA

NUMERICAL INTEGRATOR INPUTS (SUB DVDQ)

1.0000E-02 1.0000E-04 1.0000E-01 -2.0000E+01 1.5000E+00 TIME STEP=
MINIMUM TIME STEP=
PRINT TIME INTERVAL=
DOSTREAM STAT DISTANCE=
LOCAL ERROR TOLERANCES

2.0000E-07 2.0000E-07 2.0000E-07	0.10000 0.0200	- .00000E-04		0.002000 0.002000	20 1 2	0 ZSEC; 0.0700000 0 ZSEC; -0.0500000 20 1	0 ZSEC; 0.0500000 0 ZSEC; -0.0600000 20 1	0 ZSEC; 0.0500000 0 ZSEC; -0.0600000	ICEIN)
н a (FICATIONS - TUBE PERIPHERY=	IMPLIMO	INPUTS (NAMELIST IMPING)	Webow	2 2	YSEC; 0.0000000 YSEC; 0.00000000000000000000000000000000000	YSEC; 0.5500000 YSEC; 0.5500000	YSEC; -0.5500 YSEC; -0.5500	INPUTS (NAMELIST
EPS(1)* EPS(2)* EPS(3)*	TICLE FLUX TUBE TRAJECTORIES ON RADIUS AT TARGET	TANGENT TRAJECTORY TOLERANCE(SUBINCREMENT=	BETA CALCULATION INP	 n n Hu	SECTION NUMBER; 1	XSEC; 0.0000000 XSEC; 0.0000000 SECTION NUMBER; 2	XSEC; 0.3180000 XSEC; 0.3180000 SECTION NUMBER; 3		LEWICE2D CALCULATION
	PAR RUMBER OF FLUX TUBE TOLERANCE=	FINE 1	٠	IRUN= IFLOW= IRES= ICEE= ISTRF= ICEC= DSHIFT=	MBR; NBC; NPSEC	NBR 1 NBC: NPSEC	NBR; NBC; NPSEC;		

				VSTRM	0.991718 0.978585 0.978989 0.978989 0.956357 0.956357 0.940014 0.932883 0.912955 0.912955 0.987319 0.887319 0.887319 0.887319 0.887319 0.887319 0.887319 0.981551 0.981551
				CPSTRM	0.016496 0.027045 0.0538622 0.06538159 0.0653810 0.101269 0.116269 0.1168155 0.1681125 0.1681125 0.1681181 0.194818 0.229878 0.229878 0.229878 0.229878 0.283385 0.283385 0.167957 0.167957
				ZNSTRM	
				YNSTRM	
000E+02 600E+04 000E+04 000E-01 000E+00 000E+00 000E+02				XNSTRM	
2.6700 8.9876 1.00016 7.5000 7.5000 1.2000 1.2000	* * *		 	SSTRM	1.697766 1.476087 1.2329174 1.2329174 1.167577 1.066086 1.066086 1.066086 1.066086 1.066086 1.066086 1.066086 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817 1.02689817
3 7 0L*	COMPLETE 0.375	COMPLETE *** 89.934	OUTPUT FOR SLICE	ZSTRM	-0.000565 -0.000565 -0.000565 -0.000565 -0.000565 -0.000588 -0.000588 -0.000588 -0.000656 -0.000656 -0.000656 -0.000665 -0.00066 -0.0006 -0.00066 -0.00066 -0.00066 -0.00066
URE; TAMB= ; PAMB= Y; RH= TENT; LWC= OLERANCE; SECTC TER; XKINIT= FP= TEP; DTFLW= DTIME=	SUBROUTINE READIN CPU TIME =	SUBROUTINE FLOW C CPU TIME =	STREM3D	YSTRM	0.0064583 0.005533 0.005533 0.005533 0.005533 0.005553 0.005563 0.005563 0.005563 0.005563 0.005563 0.005563 0.005563 0.0055644 0.005564444
AMBIENT TEMPERATUR AMBIENT PRESSURE; RELATIVE HUMIDITY, LIQUID WATER CONTE SEGMENT GROWTH TOL ROUGHNESS PARAMETE ICING TIME; TSTOP= ICING TIME STEP; ICING TIME STEP;	*** SUBRC	*** SUBRC	SUBROUTINE	XSTRM	1.669816 1.448139 1.201231 1.201231 1.20397652 1.0597136 1.050480 1.050480 1.050480 1.005786 1.005781 1.005781 1.005781 1.005781 0.999610 0.992610 0.992610
AMBIEN RELATEN LIQUIE SEGNEN ICING ICING				POINT	232 232 232 233 233 235 235 235 235 235

0.000000			00000		0000			00000	00000		00000	0000	00000			0000	0000	0000		0000	0000		0000	0000	00000	0000	0000	0000	0000	0000		0000	0000		0000	0000	0000	
0.996524 1.016996 1.028984	04965	06990	9620	08346	09306	09874	10881	10766	11039	11625	11630	12166	12138	12505	13266	13568	13591	14020	13878	14148	1425	13966	1333	1362	1251	1178	1127	1109	0993	.0975	1060	9060	.0877	0990	.0646	.0587	0513	
0.006939 -0.034281 -0.058808	10177	13828	.16564	.17388	19479	.20724	. 22947	. 2269]	. 2328	2690	24616	2581	25749	2700	28280	. 2897	.2902	.3000	2968	. 3029	. 3054	2000	. 2843	2910	2658	1.2495	.2381	2341	2082	2045	1.1949	1.1895	0.1831	J. 1622 J. 1364	0.1334	7.1282 0.1208	0.1052	
0.000000	00000	0.0000	0.0000.0	00000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	00000	0.0000	0.0000	0.0000	0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000		0.0000	0.0000		0.0000	0.000	0000	0.0000	0.0000	0000	0000.0	0.000		0.0000	0.0000	0.0000	
0.000000			00000		00000	00000		00000	00000			00000	00000			0000	0000	0000		00000	00000		0000	0000		0000	0000		0000	0000		0000	0000		.0000	0000	0000	
0.000000			00000			00000		0000	00000			0000	0000			0000	0000	0000		0000	0000		0000	0000		0000	0000		0000	0000		0000	0000		0000	0000	0000	
0.880151 0.805774 0.755409	- 40 -	ວິດເ	ດທ	33	3	3	2	š	M	MM	'n	m	Ñ	Ñ	Š	i	-	, m	٦,	-	~	-	- -	-	90	0	0	-		0,0		90	0	-		-0		?
-0.016705 -0.024090 -0.028737																																						
-0.008151 -0.008305 -0.007979	0.00644	0.00426	0.00236 0.00236	0.00150	0.00041	00147	00220 00220	00376	00430	00486	0024	00663	00722	00799		01207	0131	0138	0145	0159	0168	0176	0187	010	0193	0198	0200	1020	0202	0202	0202	0203	.0203	0203	0202	0202	0201	. 0200
0.853343	62721	54054	5054 <i>/</i> 48197	45834	41076	38680	37078 35670	33856	32780	31699	2001	28447	27357	25999	14467	19183	17471	1633	15189	13000	1158	1017	0830	0768	07070	0590	0541	0508	0471	0457	0431	0401	0330	0374	0345	0336	0302	. 0203
2224	282	30	32	23	32	36	37 78	36	40	150	7 17	7 3 3	45	9,	÷ 0	200	20	52	252	24	52	26	28	59	09	629	63	9 Y	99	67	89	20	7	75	7.5	75	72	0

0.0000000000000000000000000000000000000	00000	00000	00000	00000	00000		00000		00000		00000	00000		00000	00000	0000	00000		00000	00000	00000	0000	00000	0000	00000	00000	00000	00000	00000	0000		0000	.0000
1.016421 1.009916 0.999154 0.989928	94623 94192	93172	90696	83306	78383	70550	65482	53688	54168	61866	62392	58720	66288	82239	90531	01472	05110	08807	10289	.10952	12387	13499	13708	1383	1378	13060	1319	1282	1211	1186	1098	.0995	9690.
-0.033112 -0.019929 0.001692 0.020043	10463	13189	17741 27651	30601	38561	46986 50226	57120	71175	70657	61725	61071	65519	56057	32366	18040 06687	0.02967	0.10482	0.14801	0.21637	0.23104	0.26308	0.28820	0.29296	0.3056	0.29479	0.2936 0.2984	0.2812	0.27298	0.2570	0.2513	0.2317	2090	0.1873
0.0000000000000000000000000000000000000	00000	00000	00000	00000	00000		00000	0000	00000		00000	00000	00000	00000	00000	00000	00000		0000		0000	0000	0000		0000		0000	0000	0000	0000	0000	0000	.0000
0.0000000000000000000000000000000000000	00000	00000	00000	00000	00000		00000		00000		00000	00000	0000	0000	0000	00000	00000	0000	0000		0000	0000	0000		0000		0000	0000	0000	0000	0000	0000	.0000
0.0000000000000000000000000000000000000	00000	00000	00000	00000	00000		00000	0000	00000		00000	00000	00000	00000	00000	00000	00000		0000	0000	0000	0000	0000	0000	0000		0000	0000	0000	0000	0000	0000	.0000
0.047894 0.045649 0.044166 0.042699	86	00	<u> </u>	00	0	50	0	30	0	ōō	ō	0	0	0	0 0	0	0	-0	0		0	0-	•		-	٦,	10	úυ	iνi	W W	MM	M 4	٠.
-0.018474 -0.017375 -0.016638 -0.015901	00	00	00	00	0	-	0	-	0	90	0	0.003035	0.007033	0.011211	0.013835	0.019110	0.021530	0.025885	0.027838	0.029621	0.033577	0.035662	0.040000	0.042162	0.046354	0.04830/	0.051008	0.051880	0.052932	0.053170	0.053034	0.052054	0.049957
0.019986 0.019826 0.019708 0.019579	01942	01903 01884	01866 01842	01793 01757	01721	01679610	01507	00953	00596	00000	0000	00272	96900	0116	01269	01377	01402	01417	0140	01388	0133	0129	0116	0109	0087	00/4	0049	0037	0013	0.0002	0.0018	0056	0.0068
0.026994 0.025043 0.023762 0.022499	02127	01911 01820	01729 01645	01501	01317	01236 01092	00959	00374	0.00012	00990	0.00990	0.00456	00469	0101	0137	0225	02756	0381	0436	0493	0637	0725	0948	1083	1423	1628	2036	2240	2645	3047	3249	3747	,4339
79 80 81	83	82 86	87 88	68	91	92	96	0 0 0 0	26	200																					129		

			. 00000	RCTRM	
.07975 .07070 .06184 .05337 .06024	. 95223 . 90529 . 90529 . 85819 . 86929 . 89593	0.910301 0.910301 0.925430 0.942187 0.942187 0.957455 0.986827 0.986900	. 99208	VSTRM	0.856038 0.856038 0.894771 0.919158 0.958737 0.968439 0.9684317 0.968439 1.018653 1.020952 1.020952 1.020895 1.055675 1.055675 1.055675 1.072894 1.0905133
.16587 .14640 .12750 .10959 .08210 .04048	. 19564 . 18044 . 18044 . 26349 . 24432 . 21662 . 19730	0.157659 0.157669 0.157669 0.124971 0.124971 0.0980283 0.082725 0.058286 0.058286	9/670.	CPSTRM	00000000000000000000000000000000000000
000000000000000000000000000000000000000				ZNSTRM	-0.999935 -0.999035 -0.9990364 -0.9910869 -0.9910869 -0.9910866 -0.992661 -0.992661 -0.992664 -0.992664 -0.992664 -0.992664 -0.992664 -0.992664 -0.992664 -0.992664 -0.9926833
000000000000000000000000000000000000000				YNSTRM	-0.070762 -0.070762 -0.06698255 -0.06698255 -0.0668982 -0.0668982 -0.0668982 -0.0668982 -0.0668982 -0.0668982 -0.0668982 -0.0688928 -0.0688928 -0.0688928 -0.07886868 -0.07886886 -0.0788886 -0.078886 -0.
				XNSTRM	0 122553 0 122553 0 1221564 0 117921 0 115193 0 105445 0 105445 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50015 54379 58707 63001 69380 78795 88003	02592 02591 02592 02592 02592 03307	1.050474 1.050474 1.050474 1.055692 1.075692 1.123777 1.1233786 1.233786 1.333786 1.333786	-	SSTRM	1.023690 1.021629 1.0014758 1.0034758 0.9889276 0.921822 0.921822 0.860758 0.860758 0.750827
.04781 .04547 .03939 .03436 .02605	.00456 .00193 .00180 .00180 .00175	0.001663 0.001642 0.001613 0.001586 0.001586 0.001550 0.001521 0.001521	PUT FOR SLICE	ZSTRM	0.000000 0.000260 0.002031 0.002035 0.006075 0.006075 0.006075 0.0020849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849 0.02849
0.00850 0.00993 0.01116 0.01220 0.01341 0.01438	0.01138 0.01064 0.00963 0.00929 0.00874 0.00850	-0.007972 -0.007554 -0.006511 -0.005866 -0.005866 -0.005967 -0.001690	STREM3D OUT	YSTRM	
. 47789 . 52144 . 56461 . 60743 . 6778 . 6478 . 85641	.96946 .98218 .99443 .99785 .00135	1 017579 1 025859 1 038453 1 051056 1 0510184 1 1428918 1 209105 1 460346	SUBROUTINE	XSTRM	0.998040 0.995806 0.995806 0.978420 0.963586 0.963586 0.963586 0.867996 0.867996 0.867996 0.867996 0.867996 0.867996 0.86522 0.665622 0.665622 0.665622 0.665622 0.665622 0.666522 0.666522 0.666522 0.666522 0.666522 0.666522 0.666522 0.666522 0.666522 0.666652
MMMMMMAA	むむむむひひひむ	152 152 152 153 153 160		POINT	22201111111122222222222222222222222222

1.115177 1.122595 1.122595 1.1226999 1.138114 1.1381146 1.137179 1.1381146 1.1381166 1.1381166 1.068797 1.068797 1.068797 1.068797 1.068797 1.068797 1.068797 1.068797 1.068797 1.068797 1.075876
-0.243620 -0.254639 -0.296362 -0.3023036 -0.3023033 -0.296362 -0.296363 -0.2964628
-0.999971 -0.999971 -0.999971 -0.99978551 -0.9978551 -0.9978552 -0.9978552 -0.9978552 -0.9978552 -0.9978552 -0.9978552 -0.9978552 -0.9978552 -0.9978552 -0.9978552 -0.9978562
-0.0037887 0.0144287 0.01442887 0.055165 0.055165 0.055165 0.055165 0.055165 0.122702 0.122702 0.122702 0.122702 0.122702 0.122702 0.122702 0.122702 0.122702 0.122702 0.122702 0.124265 0.455105 0.455105 0.455105 0.126653 0.456653 0.456653 0.456653 0.126665 0.45665 0.45665 0.126665 0.45665 0.45665 0.126
0.006559 -0.0083587 -0.0085887 -0.00869445 -0.00869445 -0.00869445 -0.00869445 -0.00869445 -0.00869445 -0.00869945 -0.00869963 -0.0089653 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.0089969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.0089969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969 -0.008969
0.340501 0.304631 0.2383833 0.2383833 0.1818326 0.1818326 0.1154068 0.1154068 0.0581246 0.058126 0.05
-0.051918 -0.051935 -0.051
0.006782 0.0067832 0.0106323 0.0106323 0.0114138 0.01170647 0.01170669 0.01170690 0.01170600 0.01170600 0.01170600 0.01170600 0.011706000 0.011706000 0.01170600000000000000000000000000000000
0.317468 0.281468 0.215539 0.185941 0.1318725 0.004987 0.0074987 0.0076987 0.0076987 0.0076987 0.0076987 0.0076987 0.0076987 0.0076987 0.00769888 0.007697
くくくくくくしくのかのかかかかからららららかいなっちゃちゃちゃちゃちもなるとなるとなるととこのもとくらくくくくくくくくくしょうかんないからいまないこのものできるできるというないといいない。このはからいまないこのもんがあるできることをはいいない。このは、このは、このは、このは、このは、このは、このは、このは、このは、このは、

0.980817 0.968531 0.956735 0.919287 0.894904 0.894904 0.8969114 0.990463	
0.037997 0.061947 0.061947 0.118574 0.154911 0.263700 0.263700 0.162773	
0.992044 0.991562 0.991662 0.990691 0.990164 0.997481 1.0000002 1.000000	
-0.062945 -0.066816 -0.066803 -0.069225 -0.069225 -0.035470 0.000000	
0.109024 0.112265 0.117890 0.117890 0.121166 0.121166 0.00100000 0.0000000	
-0.915288 -0.941194 -0.962357 -0.997297 -1.008197 -1.016855 -1.016855 -1.016855 -1.016855 -1.0168765	
0.011535 0.008695 0.006175 0.006175 0.002295 0.001031 0.000000 0.0000000	
-0.013374 -0.012847 -0.012887 -0.010942 -0.010942 -0.010819 -0.008892 -0.008899	
0.893488 0.919233 0.910124 0.960124 0.974933 0.985735 0.994687 1.002866 1.015324	

78 779 80 82 85 85 86 87 88 *** SUBROUTINE STREM3D COMPLETE ***

CPU TIME # 100.791

TRAJECTORY DATA ARE WRITTEN ON UNIT 10 FOR PLOTTING

2.00000E+01MICROMETERS	1.93333E-04 M/SEC
WATER DROP DIAMETER =	PARTICLE SETTLING SPEED=

*** SUBROUTINE CONFAC BEGINS ***

*** SUBROUTINE CONFAC RUNS COMPLETE, CPU TIME = 140.459 SECONDS ***

******** OUTPUT FROM SUBROUTINE CONFAC FOR ICEC= 1

X\$CI YSCI ZSCI XSCF YSCF ZSCF

-20.00000 -0.01042 0.06176 0.00000 0.00002 0.07013 -20.00000 -0.01143 -0.04314 0.00000 0.00003 -0.05034

*** SUBROUTINE IMPLIM BEGINS ***

*** SUBROUTINE IMPLIM RUNS COMPLETE, CPU TIME = 369.512 SECONDS ***

****** OUTPUT FROM SUBROUTINE IMPLIM FOR ICEC=

							TNORMZ	-0.24588 -0.22591 -0.20658 -0.18604 -0.16338 -0.10883
					*		TNORMY	-0.05566 -0.09531 -0.115131 -0.13088 -0.14387 -0.15551 -0.15551
		(NBRC, NBCC)	016225 0114522 0112818 0112818 01011114 0007706 0006033 0006299 0002595 000813 0005920 011036 011036 011036		SECONDS ***		TNORMX	-0.96770 -0.96948 -0.97162 -0.97379 -0.97602 -0.98025
ZTIF	0.03046 -0.03049	7	000000000000000000000000000000000000000		548.081	C= 1	ZBLF	0.03046 0.02286 0.01904 0.01592 0.01315 0.010809
YTIF Č	0.00700	1 Y(NBRC,NBCC)	-0.010858 -0.010875 -0.010801 -0.010904 -0.010957 -0.010957 -0.0100957 -0.011005 -0.011055 -0.011055 -0.011055 -0.011055 -0.011105		CPU TIME =	ARYTRJ FOR ICEC	YBLF	0.00700 0.00552 0.00484 0.00410 0.00583 0.00361
XTIF	0.05242	FOR SLICE:		BEGINS ***	COMPLETE, CR	SUBROUTINE ARY	XBLF	0.05242 0.02851 0.01989 0.01428 0.01031 0.00729 0.00501
ZTIP	0.01623	ARYTRJ INPUT FOR IN (HBCC) X(NBRC	8,000,000,000,000,000,000,000,000,000,0	ARYTRJ	ARYTRJ RUNS C	FROM	ZBLI	0.01623 0.01452 0.01282 0.01111 0.00941 0.00600 0.00430
YTIP	-0.01086	OUTINE		SUBROUTINE	SUBROUTINE ARY	*** OUTPUT	YBLI	-0.01086 -0.01089 -0.01089 -0.01091 -0.01096 -0.01096
XTIP	-20.00000	SUBRI ROW (NBRC)	0984694899984694891	* * *	*** SUBR	****	XBLI	-20.00000 -20.00000 -20.00000 -20.00000 -20.00000 -20.00000

	BNORMZ	-0.23590 -0.10631 -0.10631 -0.17671 -0.17671 -0.105052 -0.08140 -0.08140 0.08140 0.08140 0.12853 0.12857 0.12857 0.12857 0.12857	· <u>-</u>	BSTRM 0.00000 0.00000 0.00000
	BNORMY	0.07548 -0.10525 -0.123738 -0.13738 -0.16837 -0.17550 -0.		USTRM 0.85604 0.85496 0.89477 0.91916
226 226 339 339 70 70 70 70 70 70 70	BNORMX	96883 97264 97279 977279 97720 97720 98282 98282 98379 98379 9720 9720 97277 976886		CPSTRM 0.26720 0.25184 0.19938 0.15515
7550 -0.0672 7759 -0.0151 7759 0.0151 7759 0.0151 7159 0.0767 7159 0.163 75199 0.163 75199 0.163 75199 0.163 75199 0.163	(NBCC)	2009 2009 2009 2009 2009 2009 2009 2009		ZNSTRM -0.98993 -0.99016 -0.99016
8335 -0.17 8400 -0.17 8400 -0.17 8234 -0.17 8236 -0.17 8026 -0.17 8029 -0.18 7501 -0.18 7501 -0.18 7501 -0.18 7501 -0.18 7501 -0.18) BETA(NBRC			YHSTRM -0.07076 -0.06922 -0.06922
00341 -0.9 00113 -0.9 00113 -0.9 00341 -0.9 00572 -0.9 00809 -0.9 01315 -0.9 01592 -0.9 01592 -0.9 01592 -0.9	Z(NBRC,NBCC	0.02096 0.017489 0.011849 0.011849 0.000938 0.000938 0.000938 0.000938 0.000939 0.000939 0.000939 0.000939 0.000939 0.000939 0.000939		XNSTRM 0.12256 0.12215 0.11990
0.00335 0.00328 0.00327 0.00336 0.00336 0.00358 0.00358 0.00358 0.00463 0.00463 0.00523 0.00569	1 (NBRC, NBCC)	0.00626 0.00520 0.00466 0.00427 0.00372 0.00353 0.00353 0.00353 0.00353 0.00353 0.00363 0.003643 0.00407 0.00407		SSTRM 1.02369 1.02143 1.01476 1.00388
0.00246 0.00195 0.00194 0.00234 0.00334 0.00720 0.01972 0.01972 0.01972	OR SLICE: ,NBCC) Y	0.04047 0.02420 0.01229 0.01229 0.00615 0.00615 0.00292 0.00218 0.00289 0.00607 0.00607 0.00607 0.01218 0.01218	MPLETE 8.166	25TRM 0.00000 0.00000 -0.00026 -0.00230
9 0.00259 2 -0.00081 4 -0.00252 6 -0.00522 7 -0.00522 9 -0.0053 9 -0.01054 4 -0.01274 5 -0.01444	ETAC OUTPUT F (NJL) X(NBRC		BETAC	YSTRM -0.00339 -0.00420 -0.00490
	SUBROUTINE BETAC IL) COLUMN (NJL)	папапапапапапапапа	SUBROU	
20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000	SUB ROW (NIL)	10000000000000000000000000000000000000	* :	POINT 22 20 25 25 25 25 25 25 25 25 25 25 25 25 25

0.00000	0000		0000	0000	0000	0000	0000	.0000	.0000		.0000	.0000	. 0000		.0000	.0000	.0737	.1486	.2272	.4098	.4967	62775	6445	.6513 6665	. 6266	5775	4102	3212	2727.	.0737	0000	.0000	0000.	0000	. 0000
0.93874 0.95472 0.96844 0.98081	9920	0209	0385	0556	0639	0815	0905	1073	1151	1290	1341	1381	1411	1421	.1375	1305	.0992	.0688	.0237	8654	.7561	5615	. 5246	5193	5612	. 6458	. 8682	9595	6270.	. 1002	1194	.1386	1417	1421	. 1387
0.11877 0.08851 0.06213 0.03800	0.015	042	0.078	0.114	0.132	0.169	0.189	0.226	0.243	0.274	0.286	0.295	705.0	0.302	0.293	0.278	0.208	0.142	0.048	251	428	686	726	726	68	58	24(0.07	0.05	0.21	0.25	0.29	30.0	Š	0.29
-0.99069 -0.99111 -0.99156 -0.99204	992 993 993	994	995	966.0	0.997 0.997	966.0	0 998 0 999	0.999	999	966.0	966.0	166.0	966.0	986.0	0.979	0.969 0.955	0.934	0.903	707	0.69	0.56%	0.235	0.097	56	23	400	69	79	Š	93	956	97	86	99	,
-0.06651 -0.06651 -0.06481 -0.06296	0.0608 0.0587 0.0587	0.0539	0.0486	0.0422	0.0385 0.0343	0.0296	0.0242	0.0114	0.0037	0144	0251	0369	0507	0817	1007	1227	1783	2142	3066	3604	4130	4859	4976	4976	482	458]	3600	306	216	178	122	1000	081	020	.036
0.11792 0.11519 0.11226 0.10905	1054 1017 1977	0934	0841	0732	0667 0595	0514	0420 0316	0198	0.0065	0.0250	0.0435	0.0640	7000.0	0.1415	0.1744	0.2125	0.3089	0.3710	5308	0.6242	0.7161	0.8417	0.8618	0.8618	0.8417	0.7934	0.624	0.530	3710	0.3089	0.2569	174	0.141	0.0869	100.
0.98892 0.97017 0.94765 0.92182	8927 8607 8262	7894 7508	7106	6272	5847 5422	6665	4583	3783	3405	2703	2383	2086	1566	1340	11,40	0812	0681	057	0407	0339	0285	0178	9600	0.001	0.0100	0.0162	0.027	0.033	0.041	0.061	0.074	0.107	0.127	1740	0.2021
-0.00403 -0.00618 -0.00870 -0.01154	0.0146 0.0179 0.0179	0.0249	0.0319	0.0386	0.0416 0.0443	0.0467	0.0487	0.0513	0.0519	0.0513	0.0502	0.0485	0.040.0	0.0409	0.0377	0.0392	0.0268	0.0229	0.0155	0.0119	0.0087	0.003	0.001	.000	.003	.000	.01	.015	022	.026	030	037	040		. 040
-0.00567 -0.00631 -0.00701 -0.00743	0.0078 0.0081	0.0081	0.0074	0.0058	0.0048 0.0035	0.0021	2000.0 0.0011	0029	0048	0087	0106	0124	1,10	0170	0182	0191	0201	0202	0190	018	0165	0107	0.0039	004	003	000	0118	0129	013	0138	013	0110	010	007	, 000.
0.96359 0.94497 0.92260 0.89693	8680 8362 8018	7652	7989	9609	5612 5188	4766	3945	3552	3179	2479	215	1859	1367	1118	0921	0601	0476	0373	0222	017	013	000	0.002	005	.002	200	013	018	033	044	056	088	130	155	ŎŢ.
10.00	.	.NM	VT 1 6	יפי	~ 60	0.	- c	N:	n d	- W	9	, _	00		٠,	vm	.	S V	٥,	ω (<i>ر</i> د	·	~	, J	ro.	٥,	ω.	٥.	۰.	ı Qı	n a	. الم	٥,	600	•

		BSTRM	
1.13455 1.12907 1.12256 1.11514 1.00138 1.00138 1.00138 1.005392 1.005392 1.005392 1.005392 1.005980 1.005980 0.99199 0.99199 0.99893 0.99893 0.99893 0.99893 0.99893 0.99893 0.99893 0.99893 0.99893 0.99893 0.99893 0.99893		VSTRM	0.982761 0.975873 0.968664 0.961922 0.952717 0.945392 0.922936 0.9220063 0.9220063 0.87340 0.87340 0.87340
-0.28720 -0.27479 -0.26354 -0.225354 -0.169809 -0.169809 -0.150980 -0.150980 -0.150980 -0.058080 -0.06649 -0.06		CPSTRM	0.034181 0.047673 0.061690 0.074707 0.09233 0.108124 0.169800 0.169800 0.169800 0.169800 0.241458
0.999873 0.99958 0.99958 0.99974 0.99973 0.99978 0.99528 0.99689 0.99689		ZNSTRM	-0.989935 -0.9900025 -0.990164 -0.991114 -0.991114 -0.992161 -0.993081 -0.993081 -0.993611 -0.993611
0.02517 0.01447 0.014633 -0.013439 -0.01825 -0.02435 -0.02435 -0.03653 -0.05653 -0.05643 -0.05643 -0.05643 -0.05643 -0.05643 -0.05643 -0.05683 -0.06896 -0.06896 -0.06896 -0.06896 -0.06896 -0.06896 -0.06896 -0.06896 -0.06896 -0.06896		YNSTRM	-0.070762 -0.070526 -0.069955 -0.069082 -0.066507 -0.064814 -0.064814 -0.068718 -0.058718 -0.058718
-0.04359 -0.02506 -0.00836 0.010456 0.03161 0.05161 0.05161 0.05956 0.08407 0.08407 0.08352 0.08352 0.08352 0.08352 0.08352 0.08352 0.08407 0.08407 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.085673 0.08674	·	XNSTRM	0.122563 0.122156 0.121166 0.119901 0.117261 0.112261 0.10261 0.101703 0.097737 0.083400
-0.23171 -0.26368 -0.33305 -0.37169 -0.47169 -0.47169 -0.45169 -0.57613 -0.66276 -0.762888 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.762888 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.762888 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.762888 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288 -0.76288	* "		1.275275 1.205982 1.160122 1.129770 1.099781 1.067137 1.067137 1.030160 1.021910 1.013844 1.005606
0.05021 0.05133 0.05133 0.05139 0.05139 0.05034 0.04879 0.04879 0.04879 0.04879 0.05846 0.02846 0.02846 0.02138 0.02138 0.00618 0.00618 0.00600 0.00600	COMPLETE 548.273	ZSTR	-0.001786 -0.001804 -0.001814 -0.001829 -0.001829 -0.001829 -0.001829 -0.001829 -0.001829 -0.001829 -0.001829 -0.001829 -0.001829
0.00444 0.00255 0.00062 0.000831 -0.0008319 -0.000829 -0.000829 -0.01284 -0.01284 -0.01285 -0.01285 -0.01285 -0.01285 -0.01285 -0.01094 -0.01094 -0.01096	UBROUTINE BSTREM CPU TIME = !	YSTR	0.542293 0.542475 0.542475 0.542553 0.542670 0.542670 0.541873 0.541009 0.541009 0.541009
0.24384 0.27389 0.27389 0.31390 0.35170 0.35170 0.43158 0.47311 0.64212 0.64212 0.64212 0.79839 0.7233 0.79839 0.79839 0.79839 0.79839 0.96145 0.96145 0.96145 0.96145	ν <u>Ξ</u>	XSTRM	1.570271 1.500977 1.455117 1.424765 1.374777 1.355098 1.355094 1.353594 1.353594 1.316926 1.316926
665 665 665 665 665 665 665 665 665 665		POINT	122 110 122 132 133 133 133 133 133 133 133 133

0.000000 0.000000 0.000000 0.000000 0.000000
0.965046 0.965946 1.000879 1.0028203 1.0028203 1.0028203 1.0028203 1.0028203 1.0028203 1.0028203 1.1028383 1.1028383 1.1028383 1.1028234
0.144291 0.068194 0.027959 -0.096444 -0.096444 -0.096444 -0.096494 -0.096494 -0.096494 -0.096494 -0.096494 -0.096494 -0.096969
-0.995264 -0.995835 -0.9964135 -0.997627 -0.9982373 -0.9997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.99997373 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737 -0.9999737
-0.049604 -0.045584 -0.038528 -0.0345386 -0.0242316 -0.0242316 -0.0242316 -0.01426316 -0.01426316 -0.01426316 -0.01243254 -0.01243254 -0.0126323 -0.256665 -0.256665 -0.256665 -0.256665 -0.0126323 -0.026323 -0.026323 -0.026323 -0.026323 -0.026323 -0.026323 -0.026323 -0.026323 -0.026323
0.084184 0.073220 0.073220 0.059359 0.059359 0.059359 0.012396 0.012396 0.0128559 0.0128559 0.0128586 0.0128586 0.0128586 0.0128586 0.0128669 0.01286959 0.02569696
0.989705 0.9319462 0.9319462 0.9319462 0.93194637 0.598637 0.359868 0.359868 0.359868 0.359868 0.2583972 0.2583972 0.2583972 0.2583972 0.2583972 0.15958988972 0.1595899972 0.1595899972 0.15958999972 0.159589999999999999999999999999999999999
-0.005131 -0.017994 -0.017994 -0.034530 -0.048228 -0.0526622 -0.052622 -0.05262
0.5339619 0.5339619 0.5339619 0.5339619 0.5339619 0.5339619 0.5539619 0.5539619 0.55361819 0.55361819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5561819 0.5661819
1.284912 1.168388 1.168388 1.168388 0.995384 0.796241 0.796241 0.601036 0.6
66666666666666666666666666666666666666

0.000000	00000	00000	00000	00000		00000	00000	0000	00000	.00000	.0000		00000	.00000	00000	.00000		00000	.00000	.00000		.00000	00000.		.00000	00000.		. 00000	00000		.00000	.0000	00000	.00000	.00000	.00000	00000	
1.140805	.14495 .14166	14135	13696	13287	12358	11629	111107	10445	10101.	.09827	.09813	69469.	.08856	.08200	.07912	.07060	. 1007/J	.05016	.04456	.03534	00834	. 98365	. 96342	. 92453 89887	.87108	.86653	.86477	.87364	.88273	89817	.90478	.91268	.92175 93186	.94270	.95406	.96218 .96832	97506	
-0.301435	0.31092 0.30340	0.30268	0.29269	0.28341	0.26244	0.24611	758447	0.21982	0.21224	0.20621	0.20589	0.17626 0.18971	0.18497	0.17074	0.16451	0.14620	0.12742	0.10284	0.09110	0.07192	.01675	.03243	.07182	19202	.24121	.24911	. 25217	.23674	.22078	19329	18137	.16701	.15036	11130	.08975	.06235	.04924	
0.997027	99	6.6	6	96.	5	6.6		.6	6	9,9	,,	50	ĕ	5	ij	žě	ĕ	ĕ	5	55	9	ĕ	5	, i	ĕ	9	9	5	95	. 5	ĕ	9	55	ĕ	ĕ	55	55	
-0.038528	0.04558 0.04854	0.05139	0.05642	0.05871	0.06294	.06481	0.00050	0.06922	0.06995	0.07052	75000	00000	.00000	00000.	. 00000		00000	.00000	.00000		.00000	.00000	00000.	.00000	.00000		.00000	.0000		.00000	.00000	.00000		.00000	00000.	00000	00000	
0.066732	08407	08902	.09773	.10170 10566	10902	11226	11789	11990	12116	51221.	20000	.00000	.00000	.00000			.00000	.00000	. 00000		.00000	.00000		.00000	.0000		. 00000	.00000		.00000	.00000	.0000		. 00000	00000.	00000	.00000	
0.094333	-12	۲÷	-	≍ັ;	'n	200	J.M	m	Μij	ÿ	'n	'n	m	m.	3.5	3		Ŀ,	ĭ,	67	^	<u>چ</u>	. 0	Ö	0	90	Ö	ö	90	0	0	ě	ö	0			ÑÑ	
0.034934	04027	.04263 .04466	.04633	2//b0.	.05032	.05127	.05234	.05238	.05239	05240	05220	.05216	.05194	.05141	V 1000.	04807	.04621	.04428	.04215	03276	.02640	.01587	00700.	.00202	.00114	.00063	.00061	.00059	00058	.00057	.00056	95000.	.00054	.00054	00053	.00053	.00052	
0.566176	56543	. 56495	56395	56291	56219	56135	.55978	. 55955	. 55933	. 3390U 55867	55832	. 55799	. 55749	. 55673	. 22276 55686	55375	. 55264	. 55156	.55050	54678	.54486	. 54277	54221	54318	. 54355	. 54393	. 54406	.54418	.54430	.54453	. 54464	. 544/7	.54519	. 54540	54557	54563	.54555	
0.391450	42034	.456/2 .45311	666969	. 50221	. 52661	.55093 57513	59917	.60603	61287	11620.	64354	.65371	.66892	.69166	76800	78148	.81474	.84778	.88061	.00197	.07348	.17870	28703	30173	.30937	31551	.31765	.31980	.32417	.32750	.33085	7,666.	.35525	.37291	. 599/3	.45410	.55754	
69 70 12	121	7.5	75	97	7.0	5 G	818	82	83	ם מ	90	87	88	0 0	26	92	93	94	2 y y	97	98	66	35	0.5	203	50	90	200	60	0	Ξ:	75	15	51.	170	18	20	

SUBROUTINE STREM3D OUTPUT FOR SLICE: 2

BSTRM		. 00000 . 00000 . 00000	00000	00000		.00000	.00000	.00000	.00000	. 00000	00000	00000.	. 00000	.00000	00000	. 00000	.00000	000000.	00000	.00000	. 00000	.00000	00000.	00000	00000
VSTRM	0.864796 0.866154 0.88613 0.912994 0.932111	.94743 .96028 .97155	.98151	00655	02166	.03673	.05270	.07006 .07878	.08812 .09729	11522	12336	13690	.14109 .14299	.14166 .13645	12542	.07799	.96716	.8//s8 .77053	.66425	. 55559	.55560	.58857 .66500	.77132	.96801	. 03383 . 07862 . 10769
CPSTRM	0.252128 0.249778 0.210367 0.166443 0.131169	.10236 .07786 .05607	.03662	0.01315	0.04380	.09072	0.10819 0.12603	0.14504 0.16378	0.18401 0.20406	0.22427	0.26195	0.29254	0.30643	0,30340 0,29152	0.26659 0.22676	0.16207	0.06458	. 40627	.55876	.69131	69130	.65357.	.40505	0.06295	. 16343 . 22698
ZHSTRM	-0.989935 -0.990002 -0.990364 -0.990369	0.99111 0.99156 0.99204	0.99256 0.99308 0.99361	0.99416	0.99526	0.99641	0.99763	0.99881	0.99973 0.99997	0.99995 0.99958	0.99873	0.99494	0.98655	0.97949 0.96942	0.95511 0.93422	0.90356	0.79009	0.56228 0.56228	0.40069	0.09795	.09795	. 23535 . 40069	56228	79040	. 90354 . 93419
YNSTRM	-0.070762 -0.070526 -0.069957 -0.068962	0.06481 0.06295 0.06295	0.06087 0.05871 0.05642	0.05392	0.04860	0.04227	0.03438 0.02967	0.01825	0.0114/ 0.00378	.00482 .01446	02516	05019	.08171	.12270	.14811 .17834	21422	30649	.41347	45810	49759	. 49759	. 48595 . 45810	41347	30629	. 21424 . 17837
XNSTRM	0.122563 0.122154 0.121169 0.119904 0.117901	11226	.10543 .10170 .09773	09340	08418	.06673	. 05139	.03161	.00655 .00655	0.00836 0.02505	0.04358	0.08694	0.14153	0.21252	0.25653 0.30890	0.37109	0.53085	0.71615	0.79346 0.84169	0.86186	0.86186	0.89169 0.79346	0.71615	0.53051	37109
SSTRM	1.015452 1.013247 1.006716 0.996026 0.981351	96.	50.00	7.	99.	38.	0.02.	-5	J.W.	22	22	7.7		-18	60	200		32	5,5	5		90	00	000	
ZSTRM	0.000000 -0.000260 -0.001031 -0.002295	0.0086	0.0146 0.0179 0.0213	0.0249	0.0319 0.0353	0.0386 0.0416	0.0443	0.0503	0.0519	0.0519 0.0513	0.0502	0.0464	0.0409	0.0342	0.0305 0.0268	0.0229	0.0155	0.0086	0.0057 0.0031	0.0011	.001	.0057	0086	015	0223
YSTRM	0.540905 0.540758 0.540602 0.540007	53938	. 53968 . 54010 . 54071	.54154 .54249	. 54349 . 54466	54592	54996	55267	. 55523	. 55642 . 55754	. 55859	.56042	56186	. 56279	. 56299	. 56272	56118	. 55777	.55473 .54952	54589	54589	. 55899	56157	56481	. 56614 . 56637
XSTRM	1.312290 1.310106 1.303630 1.293022 1.278453	23806	. 18413 . 15275 . 11881	.08264 .04456	. 00486 . 96398	92224	79542	71300	63523	. 56428	.53190 .50181	47415	42642	38887	. 3/381 . 36107	.35049 .34189	33501	3253	. 32167 . 31768	31521	31521	32413	3275	3371	3524
POINT	-02540V	0 ~ 80	10	13	25.	912	100	352	323	22	26 27	58 50 50 50 50 50 50 50 50 50 50 50 50 50	30.	325	0 W	00 00 00 00	37	96.	4 4 7	45 35	4.0	. 4 . 6	44 48	9.5	227

0.000000	00000	00000	0000	00000	0000				0000	00000		10000														0000	0000	0000	0000	0000	0000	0000		
1.126003	-	142	141	136	130	122	11	ĭ	60	08	20	90	9	3	5,	30	200	2	38	3	,	, 0	00	20	90	93	6	88	86	86	88	6		
-0.267883	3.0	₹	.3	2.	2.		Ž.		2.	Ξ,		-	-		0.0	o. o	9	0.0	٠. د د	9	30	> 0	-	9 0	·	•	-	10	N	N	N	٦,	∹.	
0.954987	97954	98655	99148	99494	99726	99873	99950	99995	16666	9666	99933	99881	9982	9266	99705	9966	9958	9952	99471	1966	9000	2000	777	7760	6177	77000	000	9901	9900	9766	0000	.0000	.0000	
0.148324	19001	08171	06511	05020	03697	02516	95510	00482	00378	0.01141	01825	0.0243	02967	03438	03852	0.0422	0.04558	0.0485	0513	0539	0.0564	0.0587	0608	0.0029	0.0048	0000	0 4 0 2	0690	0705	0354	0000	0000	. 0000	
-0.256906	76561	0.14152	11278	96980	90590	04358	02505	00836	00656	01976	03161	04218	05139	0595	0667	0732	0789	0840	0880	0935	0977	1017	1054	1000	7771	1611	1100	1211	1221	0616	0000	0000	0000	
-0.076815	ŝΞ	-			5	10	0.2		M	m	4	4	S	0.5	J	9	9	0.7	0.7	0.7	<u>ه</u>	8	Φ,		6.0		ŗ		? =	•	? =		٠.	
0.030571	- c	òò	Č	<u> </u>			ے ،	•		0	0	0	0	0	0	0	0	0	0	0	0	۰	٠,	_	٠.	٠,٠	٠,	٠,٠	:-	: -	-	. –	Ξ.	
0.566352	995 272	מע מע	אנ צנ	א ע ע	֓֞֜֝֓֜֝֓֜֝֓֓֓֓֓֓֓֓֜֜֝֓֓֓֓֡֓֜֜֓֓֡֓֓֓֓֡֓֜֝֓֡֓֡֓֡֡֓֡֓֡֓֡֡֡֓֡֡	֡֓֓֓֟֝֓֟֝֓֓֟֓֓֟֓֓֓֟֓֓֓֟֓֓֓֓֟֓֓֓֓֓֟֓֓֓֟֓֓	774	15	Š	55	55	556	55	55	55	54	5	5	54	54	54	5	5	54	2	5,5	ĭ	ָה הו	מים מים	1	ָ קלל	7	5.	
0.375743	979	70007	65000	47605	5037	74487	56617	2007		4757	71691	7556	79730	8394	88180	9240	9658	9900	0463	0844	1206	1545	1858	2144	2397	2618	2801	7567	2110	2110	0110.	3466 3465	3648	
		_											. ~	~		_		. ^		•	'n	•	~	60	6	0	٦,	21	กง	,	٥,	٥,	- œ	

*** SUBROUTINE STREM3D COMPLETE ***

CPU TIME = 556.650

TRAJECTORY DATA ARE WRITTEN ON UNIT 10 FOR PLOTTING

WATER DROP DIAMETER * 2.00000E+01MICROMETERS PARTICLE SETTLING SPEED* 1.93333E-04 M/SEC

*** SUBROUTINE CONFAC BEGINS ***

				* *				
				SECONDS			Z(NBRC,NBCC)	016432 014709 012985 011265 011265 0109538 0106091 010664 0100920 0106691 0106527 010650 010650 0106691
C# 2	ZSCF	0.05101		784.205	C= 2 ZTIF	0.03026		60000000000000000000000000000000000000
CONFAC FOR ICEC=	YSCF	0.54997 0.54992		CPU TIME =	IMPLIM FOR ICEC= YTIF Z	0.55757 0.55768	2 Y(NBRC,NBCC)	0.532056 0.532066 0.532066 0.532068 0.532093 0.532110 0.53212 0.53213 0.53213 0.53213 0.53213 0.53213 0.53213 0.53213
	XSCF	0.31800	BEGINS ***	COMPLETE, CI		0.36962	UT FOR SLICE: X(NBRC,NBCC)	
FROM SUBROUTINE	ZSCI	0.04405 -0.05314	IMPLIM	IMPLIM RUNS C	FROM SUBROUTINE ZTIP	0.01643	SUBROUTINE ARYTRJ INPUT FOR BRC) COLUMN (NBCC) X(NBRC	000000000000000000000000000000000000000
** OUTPUT	YSCI	0.53191 0.53242	SUBROUTINE	SUBROUTINE IMP	*** OUTPUT YTIP	0.53206	ROUTINE ARY	
****	XSCI	-20.00000 -20.00000	* * *	*** SUBR	******	-20.00000 -20.00000	SUBR ROW (NBRC)	100087654321 1111110087654321

				BNORM	-0.22942 -0.21013 -0.19021 -0.14424 -0.114424 -0.08842 -0.03929 -0.03929	
				BNORMY	-0.09564 -0.12330 -0.14027 -0.15399 -0.17537 -0.18726 -0.18726 -0.189667 -0.189667	
		TNORMZ	0.23912 0.21972 0.21972 0.129854 0.15704 0.15704 0.07383 0.01550 0.01550 0.01550 0.01550 0.01554 0.15648 0.15648 0.15648 0.20041	() BNORMX	-0.96860 -0.97367 -0.97360 -0.97558 -0.97558 -0.97558 -0.98550 -0.98150 -0.98175	
	*	TNORMY	-0.07747 -0.11380 -0.15279 -0.16725 -0.16725 -0.18527 -0.18921 -0.18921 -0.18928 -0.17124 -0.17124 -0.17124 -0.17124 -0.17124 -0.17124 -0.17124 -0.17125	BETA(NBRC,NBCC)	0.07257 0.18368 0.26742 0.34426 0.41194 0.47941 0.64811 0.65275 0.65275	
).014592).016315	OB SECONDS **	TNORMX	26 -0.96789 13 -0.96890 13 -0.97054 23 -0.97451 25 -0.97451 25 -0.97451 27 -0.97890 27 -0.98164 27 -0.98164 27 -0.98164 27 -0.97890 27 -0.97890 27 -0.97890 27 -0.97890 27 -0.97890 27 -0.97890 27 -0.97890 27 -0.97890 27 -0.97890	Z(NBRC, MBCC) BI	0.02660 0.02104 0.01758 0.01193 0.00938 0.00661 0.00631 0.00231	
.532220 -0 .532229 -0	TIME # 957,498	J FOR ICEC= 2 Yblf zblf	55569 0.02294 55569 0.02294 555402 0.01602 555402 0.01602 555402 0.01602 555372 0.01662 553372 0.00815 55338 0.00349 55538 0.00349 55538 0.00340 55538 0.00340 55538 0.00340 55538 0.00340 55538 0.00340 55538 0.00340 55538 0.00340 55538 0.00340 55538 0.00340 55538 0.00340	: 2 YCHBRC, HBCC) ZCH	0.55663 0.55663 0.55663 0.55621 0.553807 0.55380 0.55320 0.55320 0.55322	
0 000000	.GINS *** .OMPLETE, CPU T	ROUTINE ARYTRJ FOR XBLF YBLF	0.346962 0.336636 0.33761 0.33761 0.327996 0.327996 0.319969 0.319999 0.32788 0.337988 0.337988 0.337988 0.337988 0.337988 0.337988 0.337988 0.337988	or slice ,NBCC)	0.35798 0.34198 0.32479 0.32594 0.32367 0.32170 0.32170 0.31969	
-20.	ARYTRJ BEI Irj Runs C	FROM SUB Zbli	0.01643 0.01471 0.01299 0.01299 0.01286 0.00637 0.00637 0.00637 0.006253 0.	BETAC OUTPUT F((NJL) X(NBRC		
	SUBROUT	****** I YBLI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BROUTINE) COLUMN	нанананана	
19	*** SUB	XBLI	20.00000000000000000000000000000000000	SU CNIL	1110997697	

0.05879 0.08781 0.11664 0.14366 0.16791 0.18988 0.21003		1	
0.18735 0.18270 0.17557 0.16589 0.15680 0.1577		Matax	- 8886666666666666666666666666666666666
9523 2562 3664 882 857		200	00000000000000000000000000000000000000
0.98 0.97 0.97 0.97 0.97 0.97 0.96		. 20	
0,61294 0.54830 0,48135 0,41412 0.34697 0.26819 0.18458		Nation	60000000000000000000000000000000000000
556 333 87 556 44		,	
-0.006 -0.006 -0.009 -0.011 -0.014 -0.017		- SIN	- ഗഗപരഗസഗരസപ്രസരേഷത്തെപ്രവര്ഷങ്ങൾക്കുന്നു
0.55330 0.55345 0.55367 0.55396 0.55431 0.55478 0.55544		2 Seton	- U1008040408080404040404040404040404040404
10 9 50 6 50 50 50 50 50 50 50 50 50 50 50 50 50	* * *	SLICE:	0000 0000 0000 0000 0000 0000 0000 0000 0000
0.3204 0.3217 0.32536 0.3263 0.3263 0.3347 0.3518	COMPLETE 957.581	FOR	- 0000000444000000044440000000000000000
	E BETAC IME =	Σ⊦	្នុក ស្រាស្ត្រស្រួល សេស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រសាស្ត្រ ស
HH44444	*** SUBROUTIN	OUTINE	. 1109720011100000000000000000000000000000
112 114 116 118	•		WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

0.15084	4133	5823	.6316	.6559	.6492	6314	. 505. 5014	4130	.3245	. 2318	.1515	0000	.0000	0000.	. 0000		0000	0000	.0000	0000		. 0000	. 0000		. 0000	.0000		0000	.0000	0000.	.0000	.0000	0000.	0000	0000	.0000	0000		000
1.07800	.8773	.6642	.5877	. 5502	. 5556	. 5885	7713	8782	.9680	.0338	.0/86	.1260	.1369	.1419	1427	1367	1303	.1230	.1148	.1060	0875	.0786	.0695	0523	.0440	.0364	0285	.0140	.0063	9866.	.9814	.9715	.9602	9474	9130	8886	.8665	8848	9108
-0.16208 -0.06790 0.06459	230	. 558	.654	.697	. 691	.655	202	. 228	0.062	0.068	0.165	0.267	0.292	0.304	202.0	202	0.277	0.261	0.242	223	0.182	0.163	0.144	0.163	0.000	0.074	0.057	0.028	0.012	010	.036	0.56	. 077	201.	.166	.210	.249	217	170
-0.90357 -0.85816 -0.79010	0.6931	0.4007	0.2353	0.000.0	0979	6662.	5622	.6931	.7904	.8581	9369	9549	9696.	20/05	9696	9966	.9972	.9987	. 9995	9999	.9997	. 9993	9988	99766.	9970	.9964	9952	. 9947	1966.	9930	.9925	. 9920	.9915	1166.	. 9903	.9901	9900	0000	0000
0.21422 0.25669 0.30649	3604	4581	. 4859 4974	5000	. 4976	6581	4134	.3604	.3062	.2566	1783	1483	. 1226	. 1006 7190	1661	0502	.0369	0251	.0144	0.0048	0.0114	0.0182	0.0245	0.0243	0.0385	0.0422	0.0485	0.0514	0.0539	0.0587	0.0608	0.0629	0.0648	0.06890.0	0.0692	0.0699	.0705 0356	0.000.0	0000
-0.37104 -0.44461 -0.53086	0.6242	0.7934	0.8417	0.8660	0.8618	7650	0.7161	0.6242	0.5305	0.4445	0.3089	0.2569	0.2124	74/T.O	0.1127	0.0869	0.0640	0.0435	0.0250	0.0065	0.0197	.0316	.0421 0516	. 0595	.0667	.0732	. 0840	.0890	2060. 7000	.1017	.1054	1090	7711	11178	1199	1211	1221.	. 0000	.0000
0.04825 0.03885 0.03098	0243	.0130	7005	0000.	0.0011	0.0177	0.0229	0.0285	0.0351	0.0429	0.0635	0.0768	0.0923	1306	0.1532	0.1785	0.2062	0.2364	0.2688	0.3398	0.3780	0.4176	7007	0.5424	0.5849	0.62/3	0.7102	0.7500	0.7003	0.8588	0.8903	0.9190	0.9445	0.9852	0.9998	1.0105	010	1.0275	1.0398 1.0701
-0.02298 -0.01921 -0.01552	0.011 0.008	0.005	0.00	000.	700	.00	.008	<u>.</u>	915	200	. 026	. 030	.039	040	.043	. 046	. 048	20.	2.5	.05	.051	.050	940	0.46	.041	300	.031	.028	20	.017	.014	. 011	900	000	.002	<u> </u>		00.	88
0.56272 0.56215 0.56118	.5597	. 5547	5458	5459	. 2426 5566	. 5589	.5615	. 5634	.5648	5661	. 5663	. 5663	.5661	5651	5645	.5637	. 5628	.5619	. 26U8 5507	. 5585	. 5572	. 5559	5532	.5518	.5504	5478	.5466	.5456	5639	5432	.5427	0,000	. 246. 5625	5427	. 5430	. 5434	. 5438	. 5443	. 5447 . 5453
0.35050 0.34190 0.33502	3295	3216	3152	3151	3205	3241	.3275	.3317	1/55.	3524	.3630	3757	7065.	4283	.4509	.4760	.5037	.5558	1000.	.6371	6752	.7149 7554	7973	.8394	.8818	9658	.0066	.0463	1206	.1545	. 1858	97.020	2618 2618	. 2802	. 2947	.3053	3140	.3222	. 3345 . 3648
336	39	6.	45	800	7 7	4.9	47	ۍ ر ش	, c	25	25	53	א מו	26	57	28	23	00	10	631	59	65 65	67	89	69	7.2	72	2/5	75	92	7.	9 0	80	81	82	83	80	98	84 88

*** SUBROUTINE BSTREM COMPLETE ***

CPU TIME = 957.692

	BSTRM	0.000000 0.000000 0.000000 0.000000 0.000000
	VSTRM	0.997351 0.995239 0.995239 0.988690 0.988796 0.977812 0.977812 0.951706 0.956667 0.956667 0.956667 0.956667 0.956667 0.956667 0.956667 0.910339 0.910339 0.910339 0.910339 0.910339 0.910539 0.966653 0.97663 0.97663 0.9
	CPSTRM	0.005291 0.005499 0.025493 0.025493 0.052145 0.052145 0.0571093 0.
	ZNSTRM	-0.989935 -0.990002 -0.990164 -0.9901864 -0.991114 -0.9901114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114 -0.9001114
	YNSTRM	-0.070562 -0.070526 -0.070526 -0.068927 -0.0689873 -0.0629813 -0.0629813 -0.0629813 -0.0629813 -0.0629813 -0.0629813 -0.0629873 -0.0629873 -0.068883 -0.058873 -0.0588718 -0.0588718 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.018254 -0.018254 -0.018254 -0.018252 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.058873 -0.06
	XNSTRM	0.122563 0.1221564 0.121169 0.1119921 0.1119921 0.115192 0.1050261 0.1050261 0.089915 0.089915 0.089915 0.089915 0.089915 0.089915 0.086941 0.08694
м :::	SSTRM	2.350709 1.9181109 1.5304255 1.3122552 1.3122552 1.1356492 1.0561474 1.0561474 1.0561474 1.0561474 1.05616120
OUT FOR SLICE	ZSTRM	-0.000226 -0.000227 -0.000227 -0.000227 -0.000232 -0.000235 -0.000
STREM3D OUTPUT	YSTRM	-0.526717 -0.526717 -0.526717 -0.5373617 -0.53736642 -0.53766642 -0.53766642 -0.53766642 -0.53766642 -0.53766642 -0.53766642 -0.5376642 -0.5476642 -0.5476642 -0.5476642 -0.5476642 -0.557642 -0.557642 -0.557642 -0.557642 -0.557642 -0.5576442 -0.557642 -0.
SUBROUTINE	XSTRM	1.995758 1.563167 1.563167 1.075479 0.957479 0.957428 0.766352 0.766352 0.766352 0.766352 0.766352 0.766352 0.766352 0.766352 0.766352 0.766352 0.696113 0.696113 0.696113 0.696113 0.696113 0.696113 0.696113 0.696113 0.696113 0.696113 0.77668 0.696113 0.696113 0.77668 0.696113 0.77668 0.696113 0.77668 0.696113 0.77668 0.77688
	IN T	

0.649235	.58307	.41299	.23188	15157	00000.	.00000	.00000		. 00000	.00000		. 00000	.0000	. 00000		00000	.00000	.0000	00000.		.00000	.0000	00000.	00000	.00000	00000.	. 00000	.00000		. 00000	.00000	00000.		.00000	00000.	00000	.00000		00000
1.106125	$\frac{11509}{11540}$	11565	.11692	.11784	.11825	11410	.11268	11332	10695	10329	. 10495 10001	. 09435	. 09092	.09055	07275	.06690	.06576	.06237	. 04583	.03845	.03089	. 99488	99448	.92150	96606.	.89/09 87055	.82309	.81487	./9819 78705	74747	.70697	.65584	. 55171	. 52991	.51990	52402	. 53226	.55393	56664
-0.223513	0.24344 0.24413	0.24468	0.24751	0.24958	0.25048	0.24122	0.25807	0.23949	0.22533	0.21726	0.22088	0.19761	0.19011	0.16886 0 15617	0.15079	0.14469	0.13585	0.12864	0.08958	0.07837	0.06274	.01020	. USU/9	15082	17199	22561.	32251	.33597	38056	.44128	.50018	.56987 65538	.69561	.71919	0/67/.	72540	71669	.69315	67891
0.097951	. 40069 . 56 228	.69312	85819	.90354	.95498	.96943	98655	. 99148	.99494	.99726	99958	99995	.99997	7777	.99881	.99823	.99763	20/66.	99583	.99527	.99470	.99415	19576. 99308	.99256	.99204	99111	99066	,99036	00066	. 99748	00000.		.00000	.00000		. 00000	.00000	.00000	00000.
0.497595	.4134	3604	. 2566	.2142 1783	1483	. 1226	0817	.0651	.0502	.0369	0144	0.0048	0.0037	0.0187	0.0243	0.0296	0.0343	0.000	0.0455	0.0485	0.0513	0.0539	0.0587	.0608	0.0629	0.0665	0.0680	0.0692	0.07050	0.0354	0000	0000	.0000	0000.	0000	.0000	0000	.000	.0000
-0.861861 -0.841699	0.71615	0.62929	0.44455	0.5/109	0.25690	0.21247	0.14152	0.11278	0.08696	0.06404	0.02505	0.00836	. UU656 27010	03161	.04218	.05139	.05955	07400.	07895	.08407	. 08902	16660.	10170	10544	.10902	.11518	.11789	121990	12215	.06143		. 00000	.00000	00000.	. 00000	.00000	00000.	. 00000	.00000.
0.269534	19992	. 18243 . 16493	15327	13382	12864	12345	.11572	.11038	.10504	01960	.09266	.08915	. US564	.07867	.07522	.07294	.07065	47690.	.06615	.06338	.06154	01000.	.05270	.05063	09850.	.04595	.04471	16560.	.04145	.04050	19650.	.03402	.03159	.02927	.02480	.02257	02106	.01796	.01635 .01326
-0.051281 -0.050256	0.04739	0.045/4 0.04383	0.04231	0.03941	0.03854	0.03/69	0.03613	0.03503	0.03385	0.03120	0.03081	0.02983	0.02662	0.02671	0.02554	0.02473	16520.0	0.02279	0.02219	0.02103	0.02025	2/010.0	0.01606	0.01493	0.01299	0.01223	0.01153	0.01104	0.00951	0.00894	0.00839	0.00527	0.00416	0.00330	0.00216	0.00180	0.00161 0.00146	0.00133	0.00122 0.00107
-0.541961 -0.540423 -0.548484	0.53764	0.53525 0.53525	0.53445	0.53310	0.53274	0.55239 0.53216	0.53188	0.53154	0.53120	0.53069	0.53049	0.53032	0.53000	0.52986	0.52976	0.52970	0.32964 0.52661	0.52960	0.52960	0.52961	U.52962 O.52960	0.52986	0.53000	0.53021	0.53048 0.53067	0.53087	0.53111	0.53167	0.53192	0.53218	63367	0.53490	0.53626	0.53766 0.53905	0.54040	0.54172	0.54335	0.54412	0.54485 0.54612
-0.082539 -0.108521 -0.134541	0.15189	0.18662 0.18662	0.19815	0.21734	0.22243	0.23090	0.23509	0.24031	0.2455U 0.2505E	0.25407	0.25749	0.26085	0.26754	0.27085	0.27408	0.27622	0.6/033	0.28115	0.28251	0.28503	0.20009	0.29259	0.29446	0.29619	0.29890	0.29994	0.30094	0.30265	0.30337	0.30408	30682	0.30866	0.31035	0.31362	0.31532	0.31708	0.31963	0.32099	0.32241 0.32523
4 4 4 4 70 4	75	2.5	22	25	2	n n	26	57	200	, 0 9	61	7 Y	9	65	99	` °	90	20	77	72	27	75	92	77	96	00	18 20	8 2 2	84	82	87	88	83	91	92	8	9.4	96	98

0.000000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000		00000	00000	00000	.00000		.00000	00000	.00000	.00000	00000	.0000	.0000		. 00000	.0000		. 00000	.0000		.0000	.00000	.00000		
0.617880 0.643346 0.687046	68833	. 60173 . <u>5</u> 6766	. 5/918 . 66555	82971	90820	.96890	02612	.03706	.04625	.06694	.07484	.08761	10118	10652	.10953	11596	.11425	11841	.11615	.11293	11039	.10607	10071	.09593	. 08998	08355	.07793	.07275	.06407	.05896	.05373	.04684	03983	.03149	99593	.89033	
0.618225 0.586105 0.527967	526	637	557	311	175	9.061	0.052	0.075	125	0.138	0.155	0.182	200	0.224	0.231	0.245	26.0	0.250	0.245	0.238	0.232	0.223	0.211	0.201	0.186	0.17	0.16	0.150	0.13	0.12	0.110	0.09	.08	0.03	0.5	22	
0.000000	00000	00000	00000	00000	00000		00000	.00000		.00000	00000	00000		. 00000	.00000	.00000		.00000	.00000	00000.	.00000	.00000		.00000	00000.	00000	.00000	00000.	00000	.0000	. 00000	.0000	.00000	00000	00000	00000	1
0.000000	00000	00000	00000	00000	00000		00000	00000		00000	00000			00000	00000	.0000		.00000	00000	00000	00000	.00000		.00000	00000.	.00000	.00000	00000.	.0000	.0000	. 00000	. 00000	00000.	00000	00000	00000	
0.000000	00000	00000		00000	00000		00000	00000		00000	.00000		00000	00000	00000	00000		00000	00000		00000	.0000		.00000	00000.	. 0000	.0000	00000.	.0000	.0000	.0000	.0000	.0000	.0000	00000	00000	
0.010028 0.006656 0.000000	506	569	300	50	ŏ	50	0	99	šě	ŏ	0	- 2	ó	Ξ	٦.	Η.		:-	Ξ,	٠,٠	Ñ	'n	٧M	M	Μ̈́M		4	<u>.</u> "	نمز	'n.	۰,	9.00	۲.	₽.	0.0		
-0.000961 -0.000877 -0.000769	0.002336	0.003655	0.008048	0.010151	0.015162	0.01//51	0.021454	0.022672	0.023848	0.026030	0.027579	0.029/01	0.033460	0.035136	0.037368	0.039396	0.041169	0.045490	0.047164	0.04854/	0.051527	0.052388	0.053188	0.053195	0.052954	0.051955	0.050743	0.049234	0.045525	0.043345	0.040993	0.035832	0.033066	0.021669	0.014200	0.002445	
-0.547277 -0.548318 -0.550000	.54832	54391	53866	. 53616 0. 53616	.53545	53475	3.53469	3.53468	1.53474	0.53481	3.53495	7.5556	0.53598	0.53640	0.53709	0.53780	53966	0.54079	0.54190	0.54299 0.54457	0.5460	0.54743	7846.0	0.55101	0.5520(0.55369	0.5547	0.55556	0.5566	0.5569]	0.55/0	0.55693	0.55667	0.5547	0.5528	0.5474	
-0.328255 -0.331461 -0.337900	33144	32032	31096	0.30480	0.30098	0.29205	0.28943	0.28674	0.28120	0.27835	0.27403	0.26/39	0.25381	0.24692	0.23647	22595	0.19941	0.18341	0.16738	0.15156	0.10323	0.07926	0.0555	0.00768	01602	.06320	.09839	15341	. 2029	.23738	2/1/2	33987	37369	4988	6435	6797	
100																																					

		BSTRM	
0.888476 0.913740 0.913740 0.932237 0.9412337 0.949836 0.958937 0.975616 0.975616 0.987394 0.987394 0.991879		VSTRM	0.882371 0.884060 0.955951 0.955962 0.965902 0.965902 0.991758 1.01584 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.023399 1.033399 1.033399 1.033399 1.033399 1.033399 1.03339
0.210611 0.183606 0.165079 0.130934 0.1138934 0.097812 0.080441 0.068173 0.0548173 0.0548173 0.0548173		CPSTRM	0.221421 0.218438 0.179252 0.134491 0.097758 0.067033 0.066330 0.068310 0.055420 0.056420 0.0
		ZNSTRM	-0.989935 -0.990002 -0.9900086 -0.990686 -0.990686 -0.990686 -0.99204114 -0.992081
		YNSTRM	-0.070762 -0.070526 -0.069955 -0.068082 -0.0680814 -0.066814 -0.0628118 -0.0628118 -0.062818 -0.
		XNSTRM	0.122563 0.122154 0.1121166 0.112193 0.115193 0.115193 0.105440 0.105440 0.093400 0.093400 0.093400 0.093400 0.093400 0.093400 0.093400 0.093400 0.093400 0.093400 0.093400 0.093400 0.06559 0.066559 0.066559 0.066569 0.066569 0.066569 0.066569 0.066569 0.066699 0.066699 0.066699 0.066699 0.066699 0.0666999 0.0666999 0.0666999 0.0666999 0.0666999 0.0666999 0.06669999999999
1.041303 1.045614 1.049984 1.056614 1.056514 1.063310 1.172022 1.1472022 1.147203 1.280877 1.585287 1.586292 1.860724	۳. ع	SSTRM	1.035728 1.033468 1.015835 1.015835 1.015835 0.9530152 0.9330152 0.9330152 0.70162 0.7
0.001998 0.001857 0.001794 0.001772 0.001772 0.001725 0.001661 0.001662 0.001633 0.001633	PUT FOR SLICE	ZSTRM	0.000000 -0.000260 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.0002255 -0.000225 -0.00025
-0.546536 -0.545816 -0.545816 -0.544931 -0.542693 -0.542693 -0.542693 -0.542693 -0.542693 -0.542693 -0.539859 -0.536260 -0.536289	STREM3D OUT	YSTRM	-0.542340 -0.542340 -0.542570 -0.545915 -0.545915 -0.545915 -0.545915 -0.54647 -0.55085 -0.55085 -0.55085 -0.55086
0.689190 0.693484 0.697846 0.711137 0.721254 0.736578 0.736578 0.736578 0.736578 1.268159 1.232986 1.508406	SUBROUTINE	XSTRM	0.686880 0.684647 0.6671819 0.6671819 0.657253 0.657253 0.585696 0.585696 0.585696 0.585696 0.585696 0.585696 0.772490 0
1155 1155 1165 1166 1166 1166 1166 1166		POINT	4442110987654442109876544421098765444211

1.066141 0.00802 0.00802 0.533241 0.618394 0.503290 0.50329065 0.627288 0.627288 0.729125 0.932036 0.932036 0.932036 0.932036 1.04528 1.1058298 1.058298 1.058298 1.058298 1.058298 1.058298 1.058298 1.058298 1.058298 1.058298 1.058298 1.058396 1.058396 1.058396 1.058398	9250 97920 97920 97920 97920 97920 97920 97920
-0.001605 0.292556 0.292556 0.466605 0.617588 0.718146 0.758046 0.758094 0.758094 0.758094 0.131308 0.131308 0.131308 0.131308 0.131308 0.131308 0.131308 0.131308 0.131308 0.131309 0.	
-0.903569 -0.693128 -0.693128 -0.693128 -0.693128 -0.097951 -0.097951 -0.097951 -0.097951 -0.097951 -0.097951 -0.097951 -0.097951 -0.097951 -0.99796 -0.99796 -0.99796 -0.99796 -0.99796 -0.997979 -0.997632 -0.997632 -0.997632 -0.997632 -0.997632 -0.997632	0.9926 0.9926 0.9916 0.9916 0.990 0.990 0.990 0.990 0.090 0.090
0.256693 0.366490 0.366490 0.366490 0.4934407 0.497595 0.497595 0.497595 0.497595 0.497595 0.497595 0.497595 0.497595 0.497595 0.4976907 0.1026490 0.1026490 0.1026490 0.1026490 0.036977 0.036977 0.036977 0.036977 0.036977 0.036977 0.036977 0.036977 0.0369786 0.036977 0.036977 0.036977 0.036977 0.036977 0.036977 0.0369786 0.036977 0.036978	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
-0.371043 -0.444065 -0.752856 -0.793461 -0.861869 -0.861869 -0.861861 -0.861861 -0.861861 -0.793461 -0.793461 -0.793461 -0.793461 -0.793461 -0.793461 -0.793461 -0.793461 -0.644557 -0.646557 -0.646651 -0.0646651 -0.0646651 -0.0646651 -0.0646651 -0.0646651 -0.064651	000000000000000000000000000000000000000
0.062628 0.053628 0.053629 0.02362924 0.029733 0.029733 0.029733 0.029733 0.029733 0.029733 0.029733 0.029733 0.0202339 0.023623	8651 8857 9267 9267 9367 1.020 1.027 1.037 1.037
-0.0122984 -0.0192084 -0.011986 -0.011986 -0.005115 -0.0	
-0.5297684 -0.53297684 -0.53201288 -0.53201288 -0.5381058 -0.5381058 -0.5581059 -0.5581059 -0.558566 -0.558566 -0.558566 -0.558566 -0.558568 -0.558568 -0.558568 -0.558568 -0.558568 -0.5585688 -0.5585688 -0.5585688 -0.5585688 -0.5585688 -0.5586888 -0.5586888 -0.5586888 -0.5586888 -0.5586888 -0.5586888 -0.5586888 -0.5586888	
-0.280186 -0.280186 -0.295050 -0.301029 -0.304042 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.314352 -0.29154 -0.269666 -0.26966	5221 5221 5221 6649 6649 6649 6682 7052 7052
とうない。 とくくくくくのかのかのではなられるないのものもなりもなるない。 とくくくくしょくないないないないないない。 とくないにもなっているものできるというない。	767 777 778 779 880 881 884 887 887 887 887 887 887 887

*** SUBROUTINE STREM3D COMPLETE ***

CPU TIME = 966,413

TRAJECTORY DATA ARE WRITTEN ON UNIT 10 FOR PLOTTING

WATER DROP DIAMETER = PARTICLE SETTLING SPEED=

*** SUBROUTINE CONFAC BEGINS ***

*** SUBROUTINE CONFAC RUNS COMPLETE, CPU TIME = 1003.258 SECONDS ***

****** OUTPUT FROM SUBROUTINE CONFAC FOR ICEC= 3 YSCI XSCI

0.05006 -20.00000 -0.54883 0.04462 -0.31800 -0.54989 -20.00000 -0.54851 -0.05417 -0.31800 -0.54992

*** SUBROUTINE IMPLIM BEGINS ***

*** SUBROUTINE IMPLIM RUNS COMPLETE, CPU TIME = 1178.084 SECONDS ***

****** OUTPUT FROM SUBROUTINE IMPLIM FOR ICEC= 3

ZTIP YTIP -20.00000 -0.54874 0.01713 -0.26688 -0.54555 -20.00000 -0.54863 -0.01702 -0.26721 -0.54544

SUBROUTINE ARYTRJ INPUT FOR SLICE: 3

ROW (NBRC) COLUMN (NBCC) X(NBRC,NBCC) Y(NBRC,NBCC) Z(NBRC,NBCC)

		TNORMY	-0.02918 -0.06317 -0.08147 -0.09585 -0.11860 -0.12705 -0.13737 -0.13735 -0.13735 -0.13735 -0.13650 -0.10850 -0.
17127 115529 115529 11754 09937 06140 06545 06545 006442 006442 010835 011632 011632	SECONDS ***	TNORMX	-0.96933 -0.97213 -0.97513 -0.98082 -0.98083 -0.98083 -0.99040 -0.99082 -0.990808 -0.9882 -0.98817 -0.97800 -0.97800
	. 37	CEC= 3 ZBLF	0.02314 0.02314 0.01929 0.01929 0.01334 0.00381 0.00581 0.00113 0.00581 0.00574 0.00578 0.00578 0.00578 0.00578 0.00578
-0.548742 -0.548736 -0.548718 -0.548718 -0.548718 -0.548671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671 -0.5486671	TIME =	FOR I	-0.54658 -0.54658 -0.54658 -0.54701 -0.54746 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54744 -0.54674 -0.54674 -0.54674 -0.54674
	w 111	SUBROUTINE ARYTRJ I XBLF Y	-0.26688 -0.29803 -0.29803 -0.3080 -0.31069 -0.31590 -0.3
0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	SNL SNL	FROM SUBR ZBLI	0.01713 0.01553 0.01553 0.01553 0.01773 0.00814 0.00824 0.00825 0.00854 -0.00864 -0.00864 -0.00864 -0.01643 -0.01643 -0.01644
	*** SUBROUTINE SUBROUTINE ARY	** OUTPUT YBLI	-0.54874 -0.54873 -0.54873 -0.54872 -0.54871 -0.54871 -0.54868 -0.54868 -0.54868 -0.54868 -0.54868 -0.54866 -0.54866 -0.54866 -0.54866 -0.54866 -0.54866
2008746987657821 20087654835100	*** *** SUBR(XXXXXXX	20.00000 20.00000

	BNORMZ	-0.23481 -0.19585 -0.19588 -0.14910 -0.012132 -0.06171 -0.03137 -0.03034 0.09122 0.19872 0.19872 0.19855 0.235448				BSTRM	· · · · · · · · · · · · · · · · · · ·
	BNORMY	-0.04618 -0.08866 -0.08866 -0.101935 -0.11333 -0.12973 -0.13680 -0.13680 -0.13690 -0.13690 -0.10218 -0.10218 -0.08900 -0.08900				VSTRM	0.88237 0.88406 0.90595 0.90595 0.96590 0.96590 0.9176 1.00240 1.02734 1.02734 1.04658 1.04638
	BNORMX	0.97093 0.97374 0.97663 0.97663 0.98230 0.98230 0.98230 0.98010 0.98010 0.98530 0.98530 0.97664 0.97551				CPSTRM	0.22142 0.1844 0.17425 0.0776 0.06703 0.01643 0.01643 0.01643 0.01643 0.0233 0.05542 0.05542 0.06891 0.06891 0.06891
	BETA(NBRC,NBCC) E	10.00		-		ZNSTRM	
		00000000000000000				YNSTRM	-0.07076 -0.07076 -0.06926 -0.06926 -0.066808 -0.066808 -0.068808 -0.068808 -0.068808 -0.068808 -0.068808 -0.068808 -0.068808 -0.068808 -0.068808
	Z(NBRC,NBCC)	0.02676 0.01772 0.01772 0.01772 0.01767 0.00564 0.00032 0.00032 0.00689 0.00689 0.00689 0.00689 0.00689 0.00767			-	XNSTRM	0.12256 0.12215 0.12117 0.11990 0.11519 0.11519 0.10545 0.10545 0.09340 0.09340 0.08995 0.08895
×	(NBRC, NBCC)	0.54641 0.54641 0.54671 0.54671 0.54671 0.54733 0.54734 0.54744 0.54744 0.54746 0.54746 0.54746 0.54746 0.54766 0.54717 0.54666 0.54666			м	SSTRM	1.03573 1.03347 1.002676 1.01583 0.98185 0.95308 0.95308 0.95308 0.7569 0.76928 0.76928 0.76928
UT FOR SLICE:	X(NBRC,NBCC) Y(-0.27811 -0.29368 -0.30681 -0.30681 -0.3183 -0.31576 -0.3	COMPLETE ***	1337.589	PUT FOR SLICE;	ZSTRM	0.00000 -0.00026 -0.000230 -0.000230 -0.006330 -0.00830 -0.02138 -0.02138 -0.02138 -0.02138 -0.02138 -0.02138 -0.02138
BETAC OUTPUT	(NJL)		TINE BETAC	U TIME =	BSTREM OUTPUT	YSTRM	10.54234 10.544234 10.5444321 10.5444321 10.5444582 10.55446582 10.5558823 10.5558823 10.555883 10.555883 10.55588 10.55888 10.5558 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10.55588 10
SUBROUTINE	CNIL) COLUMN		*** SUBROUTINE	CP	SUBROUTINE	XSTRM	0.68688 0.68465 0.68465 0.68465 0.66719 0.65725 0.67348 0.555883 0.555883 0.41300 0.37248 0.337248
	ROW (N)		*		S	POINŢ	12222000246322 65432200004654322

0.00000 0.000000 0.000000 0.000000 0.000000
1.05854 1.005854 1.005854 1.008344 1.008344 1.1005777 1.1008584 1.11005777 1.1008584 1.11005777 1.1005784 1.1100584 1.1100584 1.1100584 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587 1.1100587
-0.12050 -0.132050 -0.132050 -0.132050 -0.132050 -0.234223 -0.234223 -0.234223 -0.24486 -0.24828 -0.24
-0.99703 -0.99703 -0.99824 -0.99824 -0.99933 -0.999933 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.9999973 -0.999973 -0.999973 -0.999973 -0.999973 -0.999973 -0.999973 -0.999973 -0.999973 -0.999973 -0.999973 -0.999974
-0.034353 -0.034353 -0.034353 -0.01429 -0.011425 -0.011443 -0.014437 -0.014433
0.06573 0.05956 0.01988 0.019882 0.0198836 0.0198836 0.0198836 0.0198836 0.0198836 0.0198846
0.59199 0.56826 0.6627 0.76230 0.76230 0.26335 0.26335 0.26335 0.1365 0.1365 0.1366 0.0526 0.
-0.04465 -0.044679 -0.04679 -0.051833
0.24535 0.15980 0.11788 0.036496 0.036496 0.036496 0.036496 0.036496 0.036496 0.036496 0.036496 0.036496 0.036496 0.0364993 0.03649993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.0369993 0.03699993 0.036999993 0.036999999993
110466666666666666666666666666666666666

		ZNTRJ
1.04042 1.03417 1.02732 1.02732 1.01178 1.01178 0.99204 0.95618 0.95618 0.95624 0.88456 0.98122 0.90122		YNTRJ 0.0000000 0.00000000 0.00000000000000
0.08247 0.06952 0.05538 0.05537 0.00537 0.01586 0.01586 0.03968 0.09716 0.13395 0.17873 0.21755 0.18780 0.18780		XX
99528 99415 99415 99361 99368 99266 99112 99112 99016 99016 99000 99748		ZNSTRM -0.989935 -0.99001062 -0.99001068 -0.99101068 -0.99101068 -0.99101068 -0.99101068 -0.9950811 -0.9950811 -0.9999333 -0.99999333 -0.99999333 -0.99999333 -0.99999333 -0.9999933 -0.99999933 -0.99999933 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999993 -0.9999999 -0.999999
04854 05140 055399 05643 06687 06688 06686	000	VNSTRM -0.070762 -0.0690526 -0.06690525 -0.066907 -0.066907 -0.066907 -0.066907 -0.066907 -0.06807 -0.06807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807 -0.05807
25.774 27.744	. 120.	XNSTRM 0.122563 0.1221564 0.1221664 0.119901 0.115193 0.115193 0.115193 0.115193 0.0089015 0.07325 0.07325 0.06595 0.06595 0.01659 0.016595 0.016595 0.016595 0.01659 0.01659 0.01659 0.01659 0.016595 0.01659 0.01
	DE: 1 TIME:	DI CE
-0.71313 -0.753813 -0.753813 -0.85119 -0.86512 -0.926402 -0.97564 -0.97564 -1.00972 -1.02063 -1.05042 -1.05042	TE *** OUTPUT FOR SLICE	BETA 0.00000000000000000000000000000000000
0.02197 0.02846 0.02491 0.02491 0.02138 0.01564 0.01564 0.00618 0.00618 0.000103 0.00000 0.00000	COMPLE 337.698 OMETRY	2STSV -0.000000 -0.000295 -0.00295 -0.006175 -0.006175 -0.01538 -0.01538 -0.02849 -0.01538 -0.02849 -0.02
-0.556663 -0.556663 -0.5556663 -0.5556663 -0.555663 -0.555663 -0.555663 -0.555663 -0.555663 -0.555663 -0.555663	JIINE BSTR PU TIME = LEWICE2D	YSTSV -0.003594 -0.004502 -0.004502 -0.004902 -0.005311 -0.005311 -0.005311 -0.005811 -0.005813 -0.005813 -0.005818 -0.005813 -0.0
0.36970 0.41025 0.44924 0.44927 0.52102 0.52314 0.60838 0.60838 0.6464 0.67546 0.67546 0.68204 0.68204 0.7517	*** SUBROUCH	XSTSV 0.998040 0.998040 0.9982050 0.984205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944205 0.944420 0.944420 0.944420 0.944420 0.944420 0.944420 0.944420 0.944420 0.944420 0.944420 0.944420 0
722 743 776 776 779 881 882 884 886 886 886		POINT 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.00000000
0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
-0.997333 -0.9978733 -0.9978673 -0.9978679 -0.9656797 -0.9656797 -0.9656797 -0.9656797 -0.9667035 -0.8432829 -0.8432829 -0.8432829 -0.8432829 -0.8432829 -0.8432829 -0.8432829 -0.8432829 -0.997829 -0.997829 -0.997829 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929 -0.997929
0.026977 0.055024 0.055024 0.065024 0.001729 0.1027702 0.127702 0.027702 0.
-0.064587 -0.064587 -0.174468 -0.174468 -0.212526 -0.227303 -0.254966 -0.254966 -0.274088 -0.746488 -0.7468
0.000000 0.000000 0.000000 0.000000 0.000000
0.0000000 0.0000000 0.0000000 0.0000000 0.000000
-0.056462 -0.043908 -0.043908 -0.043908 -0.0570300 -0.025032 -0.025032 -0.025032 -0.025032 -0.025032 -0.005032 -0.005032 -0.0050330 -0.0050330 -0.0050330 -0.0050330 -0.0050330 -0.0050330 -0.0050330 -0.0050330 -0.0503030 -0.050303
0.010632 0.012438 0.012689 0.01301163 0.01091163 0.0207110 0.020869 0.0207110 0.020869 0.0207110 0.020869 0.020869 0.0120869 0.0168618
0.215539 0.185941 0.158763 0.158763 0.1058763 0.0074987 0.0074987 0.0074766
0.000 0.000

			-
		TEDGE	267.58732 267.51132 267.401530 267.309983 267.309983 267.1059747 267.1059747 267.1059747 267.1059747 266.966007 266.966007 266.709883 266.508263
		PEDGE	90569.86 90479.654 90479.654 900241.745 900241.746 90076.146 90076.146 90076.146 90076.126 89969.528 89889.528 89689.528 89689.528 89689.65
0.993611 0.993680 0.992680 0.992644 0.991562 0.991562 0.990691 0.997681 1.000000 1.000000	000.	HTC	314.98831 3514.56455 3515.66455 378.28056 401.80102 413.11174 424.57024 448.49642 448.49642 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 461.53107 646.46510 646.46510 646.46510 679.16510 679.
-0.056428 -0.056428 -0.0608718 -0.062845 -0.0682645 -0.0682645 -0.068265 -0.068265 -0.035470 0.000000 0.0000000	TIME= 120.	VEDGE	58 .835218 60 .676822 64 .403464 65 .106822 66 .1074682 66 .107464 67 .10754 68 .75959 69 .36484 69 .75959 69 .75959 72 .35959 71 .126484 71 .126484 72 .35959 73 .110359 74 .610484 75 .610484 76 .73569 76 .73569 76 .73569 76 .73569 76 .73569 77 .73569
0.097737 0.101703 0.105440 0.109024 0.112265 0.117890 0.12166 0.121166 0.121166 0.001000 0.000000	SLICE: 1 T	DDICE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	OUTPUT FOR	BETA	0.000000 0.000000 0.000000 0.000000 0.000000
	ANSFER OUTPUT	SSTRM	-00.388100 -00.3882489 -00.37832886 -00.37832886 -00.35542677 -00.35542677 -00.2626811 -00.2626811 -00.2626811 -00.2626811 -00.2626811 -00.2626811 -00.2626811 -00.2626811 -00.2626811 -00.2626866 -00.2626811 -00
0.021382 0.017385 0.017636 0.01635 0.006195 0.006105 0.001031 0.000000 0.000000 0.000000	HEAT TR	ZSTSV	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.014248 -0.014179 -0.013847 -0.012847 -0.012847 -0.0105847 -0.0105847 -0.010581 -0.008892 -0.008892 -0.008892	NE LEWICE2D	YSTSV	-0.0033594 -0.0053394 -0.006321 -0.0063211 -0.0063211 -0.0063211 -0.0063212 -0.0063212 -0.0063212 -0.0063222
0.798394 0.832724 0.854673 0.9194673 0.919483 0.94673 0.985735 0.996735 1.015366 1.015366	SUBROUTINE	. XSTSV	0.998040 0.995806 0.945406 0.945406 0.945406 0.945406 0.945406 0.845406 0.746706 0.746706 0.746706 0.746706 0.746706 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406 0.747406
00000000000000000000000000000000000000		POINT	574221098765422109876543210987654321 6442210987654222222222222222222222222222222222222

0042268 7774688 7774688 7774688 7774688 7781182 6533856 6533856 6533856 6533856 7725186 7726186
77777778888888888887777787878787878787
888 888 881 881 882 883 883 884 885 885 885 885 885 885 885
98990000 99100000 99100000 99100000 99100000 99100000 99100000 9910000000 99100000 99100000 99100000 99100000 99100000 99100000 99100000 99100000 99100000 99100000 99100000 99100000 991000000 991000000 991000000 991000000 991000000 991000000 991000000 9910000000 99100000000 991000000000 9910000000000
1888833 33388853 33388853 33388853 33388853 33388853 33388853 33388853 33388853 33388853 33388853 33388853 33388853 333885 33388 333885 333885 333885 333885 333885 333885 33388 333885 333885 333885 333885 333885 33388 333885 333885 333885 333885 333885 333885 33388 333885 33388 3338 33388 33388 3338 33388 33388 33388 33388 33388 33388 33388 3338
11111111111111111111111111111111111111
362951 16960225 16960225 172069 171216
0040448448446464646464646464646666666666
0.005466 0.005466 0.005466 0.005501 0.009501 0.0
800000000000000000000000000000000000000
245248 537186 562115 662561 6635601 647928 64792
-0.009749 -0.007128 -0.007128 -0.007128 -0.0013385 -0.001341 -0.00
-0.0195443 -0.0195443 -0.0195443 -0.0195443 -0.0195443 -0.0195443 -0.0195455 -0.0195554 -0.01955554 -0.0195554 -0.019554 -0.019554 -0.0195554 -0.0195554 -0.0195554 -0.019554 -0.019554 -0.019554 -0.019554 -0.019554 -0
0.0208833 0.0208833 0.01098557 0.01098557 0.01098557 0.01098557 0.010986811 0.010966616 0.01096667 0.01096667 0.01096667 0.01096667 0.01096667 0.01096667 0.01096667 0.01096667 0.0109667 0.01096937
0.019894 0.019894 0.0198110 0.003410 0.0034110
00000000000000000000000000000000000000

			ZNTRJ	0.000000 0.0000000 0.0000000 0.0000000 0.000000
267.533349 267.418888 267.316530 0.000000			YNTRJ	0.0000000 0.0000000 0.0000000 0.0000000 0.000000
90505.936 90370.482 90249.473 0.000			XNTRJ	0.000000 0.0000000 0.0000000 0.00000000
310.72428 330.37029 347.34762 0.00000			ZNSTRM	0.099935 0.0990164 0.0990164 0.0990164 0.0990164 0.0990164 0.0990167 0.0990167 0.0990167 0.09901767
0.000000.0		00	YNSTRM	-0.070526 -0.070526 -0.070526 -0.066808 -0.066808 -0.066808 -0.066808 -0.066808 -0.066808 -0.066808 -0.0680813 -0.0680813 -0.068087 -0.068087 -0.068087 -0.068087 -0.068087 -0.068087 -0.068087 -0.068088 -0.06808 -0.
0.000000 0.000000 0.000000 0.000000		ME= 120.00	XNSTRM	0.122563 0.122168 0.117925 0.117926 0.117926 0.117926 0.117926 0.105439 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093401 0.093301 0.0
0.000000.0		ICE: 2 TI	DICE	0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000	## **	OUTPUT FOR SL	BETA	0.000000 0.000000 0.0000000 0.0000000 0.000000
0.000000 0.000000 0.000000 0.000000	WICE2D COMPLETE # 1337.892	GEOMETRY OU	ZSTSV	0.000000000000000000000000000000000000
-0.009549 -0.008892 -0.008099 -0.006701	OUTINE LE CPU TIME	WE LEWICE2D	VSTSV	0.5540000 0.55400000 0.55400000 0.553096900 0.553096900 0.553090000 0.553090000 0.553090000 0.55309000000000000000000000000000000000
0.994487 1.002866 1.015324 1.046131	*** SUBR	SUBROUTIN	. XSTSV	1.3122 1.3122 1.25694
91 93 94			POINT	8948480109846584821098466948210984669108488810984848910984888888888888888888

0.0000000 0.00000000000000000000000000
-0.185184 -0.18818408 -0.18818408 -0.1899372 -0.18999372 -0.189999372 -0.19999155 -0.19999
-0.978129 -0.980734 -0.981734 -0.981737 -0.981752 -0.981752 -0.981753 -0.981753 -0.981753 -0.981753 -0.981753 -0.981753 -0.981692 -0.981693 -0.981
-0.598132 -0.598132 -0.307600 -0.307600 -0.307600 -0.205568 -0.0055059 0.055059
0.330436 0.400699 0.432653 0.458779 0.458779 0.498816 0.498816 0.498816 0.467950 0.467950 0.467950 0.12672 0.186698 0.122672 0.186698 0.122672 0.186698 0.122672 0.186698 0.122672 0.186698 0.122672 0.186698 0.122672 0.186698 0.122672 0.186698 0.122672
-0.572332 -0.794629 -0.794629 -0.847566 -0.867101 -0.867101 -0.867101 -0.867101 -0.867101 -0.867101 -0.867101 -0.721453 -0.721475 -0.721475 -0.721475 -0.721475 -0.721475 -0.721475 -0.721475 -0.721676 -0.721676 -0.721676 -0.065611 -0.065610 -0.065610 -0.065610 -0.065610 -0.065610 -0.065610 -0.065610 -0.065610 -0.065610 -0.065610 -0.065610 -0.067520 -0.067
0.0090733 0.0095733 0.0095733 0.0095735 0.0097555 0.0097555 0.0097575 0.0097575 0.0097575 0.0097575 0.0097572 0.0097572 0.0097572 0.0097573 0.0097
0.541754 0.606968 0.640415 0.640415 0.640415 0.652581 0.652581 0.67264 0.6072660 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.60726000 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.6072600 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.60726000 0.607260000 0.607260000 0.607260000 0.6072600000 0.60726000000000000000000000000000000000
-0.013346 -0.0079849 -0.00707849 -0.0076783 -0.0076783 -0.0076783 -0.00767840
0.556686 0.556686 0.556686 0.5566686 0.5566686 0.5566686 0.55666866 0.56666666666666666666666666666666666
0.320304 0.312609 0.312609 0.306974 0.306861 0.306861 0.306861 0.306861 0.306861 0.317086 0.317086 0.317086 0.3170861
\$4444444444444444444444444444444444444

0.00			
0.00000		TEDGE	267 - 56793 267 - 567934 267 - 567934 267 - 264024 267 - 264024 267 - 264024 267 - 105716 267 - 105716 267 - 105716 268 - 995770 268 - 995770 268 - 995770 268 - 995770 268 - 995770 268 - 2687531 268 -
0.000000		PEDGE	90546 90546 90546 90549 90549 90549 90549 90549 90515 90549 90554 90559
1.000000	. 000	HTC	0.00000 3316, 5316, 5323, 5323, 5324
0.00000	IME= 120.	VEDGE	57.857.867106 62.91466521106 62.91469652 64.258.86531106 65.658.87.86531106 65.4628.87.865320 66.0658.87.865320 66.0658.87.865330 67.758.885230 71.158.865320 72.746.658.87.87.87.87.87.87.87.87.87.87.87.87.87
0.000000	SLICE: 2 T	DDICE	0.000000000000000000000000000000000000
0.00000	OUTPUT FOR	BETA	0.000000000000000000000000000000000000
0.00000	FER OUTPUT	SSTRM	0.002446 0.002446
0.00000	HEAT TRANS	ZSTSV	0.000000000000000000000000000000000000
0.545308	TE LEWICE2D	YSTSV	0.550000000000000000000000000000000000
1.364833	SUBROUTIN	XSTSV	1.31229 1.331229 1.23129 1.23129 1
96		POINT	87655432109876554321098765543210987657432109876574321

268 .512330 268 .366591 268 .366591 267 .723148 267 .733148 266 .7332015 266 .731521 266 .731521 267 .732245 267 .732245
496.377 496.377 496.377 730.865 270.725 270.725 270.725 270.725 270.725 270.725 270.725 270.725 270.725 270.725 270.727 270
135445 135545 135546
989984 1469 450525 1469 004294 1676 623330 1725 824643 1725 824699 1691 741347 1336 741347 1336 741347 1336 741347 1336 741347 1336 7205906 1138 7205906 1138 7205906 1138 7205906 1138 7205906 1138 7205906 1138 7205906 1138 727380 528 727380 738 738 738 738 738 738 738 738 738 738
72 67 78 75 76 77 78 75 76 77 78 75 75 75 75 75 75 75 75 75 75 75 75 75
0.600000000000000000000000000000000000
0.012948 0.012948 0.021634 0.023667 0.023667 0.053660 0.059767 0.059767 0.059767 0.059767 0.059767 0.227649 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0.227689 0.227689 0.227689 0.227689 0.227689 0.2276899 0.227689 0
0.003130 0.004674 0.006542 0.015824 0.015824 0.015824 0.022077 0.022653 0.037333 0.046462 0.057663 0.0
0.5594884 0.56586446 0.5658446 0.5658446 0.5668446 0.56668446 0.566658446 0.566658446 0.566658446 0.566658446 0.5666584 0.5666584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566584 0.566586 0.566584
0.302923 0.3129838 0.317092 0.321866 0.321866 0.34286 0.34286 0.34286 0.34286 0.34286 0.34286 0.34286 0.34286 0.34286 0.34286 0.34286 0.34286 0.428320 0.428
4000000000000000000000000000000000000

*** SUBROUTINE LEWICE2D COMPLETE ***

UBROUTINE LEWICEZD COMPU CPU TIME = 1338.091

	ZNTRJ	0.000000 0.0000000 0.0000000 0.0000000 0.000000
	YNTRJ	0.0000000 0.0000000 0.0000000 0.0000000 0.000000
	XNTRJ	0.000000 0.0000000 0.0000000 0.0000000 0.000000
	ZNSTRM	-0.989935 -0.9900035 -0.99000366 -0.991114 -0.991114 -0.99204116 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.992041114 -0.99204114 -0.99204114 -0.99204114 -0.99204114 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.9920414 -0.99204 -0.99204
0	YNSTRM	-0.070562 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.06680876 -0.0680876 -0.0586976 -0.0586976 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.05869776 -0.0680876 -0.0680876 -0.068
TIME= 120.000	XNSTRM	0.122563 0.122563 0.12166 0.1119901 0.1119901 0.1119901 0.1017703 0.105440 0.105440 0.105440 0.105440 0.105440 0.0056732 0.005
ČĒ: 3	DICE	0.0000000 0.0000000 0.0000000 0.0000000 0.000000
OUTPUT FOR SLICE:	BETA	0.0000000 0.0000000 0.0000000 0.0000000 0.000000
GEOMETRY OU	ZSTSV	0.0000000 0.00000000 0.00000000000000
E LEWICE2D	YSTSV	
SUBROUTINE	XSTSV	0.68688 0.684647 0.6671010 0.6572583 0.6572583 0.5556832 0.5556832 0.5556832 0.5556832 0.5556832 0.5556832 0.5556832 0.556832
	POINT	このんのイクリカイととこのんのくりられなるでもののおくかいかなることのもくかられなることもあるとなるなどとなるとなるととなるととなるというないととしてしてしてして

-0.074637 -0.111037 -0.174512 -0.203510 -0.223749 -0.233740 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000	-		
-0.132383 -0.125230 -0.125230 -0.13834 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.0850000 0.085507 -0.0857 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.0857 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.085507 -0.0857		TEDGE	267.497798 267.450348 267.355287 267.262658 267.18667
-0.988382 -0.985892 -0.975621 -0.973113 -0.973		PEDGE	90463.849 90407.698 90295.278 90185.831 90095.195
0.555522 0.825005 0.825005 0.9290829 0.956208 0.956208 0.9562946 0.9562946 0.999246 0.9992581 0.9992581 0.9992581 0.9992581 0.9992581 0.9992581 0.9992581 0.9992581 0.9992581 0.9992581 0.995837 0.9992581 0.9992581 0.995837 0.995837 0.9992581 0.995837	.000	HTC	0.00000 328.52792 345.78848 362.97247 377.74487 390.95151
0.415751 0.347770 0.282563 0.1267969 0.126744 0.125092 0.106613 0.055163 0.	ME= 120	VEDGE	59.062838 59.864798 61.439953 62.936914 64.151082 65.167929
-0.720102 -0.602356 -0.393469 -0.393469 -0.3203469 -0.253476 -0.2156667 -0.2156667 -0.1174268 -0.1174268 -0.0186961 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.0187649 -0.018708 -0.01870	SLICE: 3 TI	DDICE	0.0000000000000000000000000000000000000
0.002020 0.0070241 0.0070206 0.0070206 0.00702000 0.00702000 0.00702000 0.00702000 0.00702000 0.00702000 0.00702000 0.00702000 0.00702000 0.00702000 0.00702000 0.007020000 0.007020000 0.007020000 0.007020000 0.007020000 0.007020000 0.0070200000 0.00702000000 0.007020000000000	OUTPUT FOR	BETA	0.0000000000000000000000000000000000000
0.561338 0.473212 0.289211 0.209321 0.120447 0.000000 0.0000000 0.000000 0.000000 0.000000	FER OUTPUT	SSTRM	-0.388100 -0.386489 -0.383286 -0.378527 -0.372247
0.008511 0.012377 0.015966 0.025204 0.025204 0.025209 0.0372733 0.045462 0.051309 0.051309 0.051309 0.051399	HEAT TRANS	ZST	0.000000 -0.000260 -0.001031 -0.002295 -0.004027
-0.534682 -0.534682 -0.5348847 -0.5348847 -0.5348887 -0.5348887 -0.5345988 -0.5445898 -0.5445898 -0.5445898 -0.5445898 -0.5445898 -0.5445898 -0.5445898 -0.554681 -0.554681 -0.554681 -0.5546898 -0.5546888 -0.55	NE LEWICE2D		-0.542570 -0.542570 -0.543206 -0.543969 -0.544915
-0.318192 -0.307685 -0.307685 -0.2087869 -0.2087668 -0.2087668 -0.2087682 -0.2087682 -0.2087682 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.1087878 -0.2087878 -0.	SUBROUTI	T XSTSV	0.686880 0.684647 0.678010 0.667189 0.652253
7001-00-00-00-00-00-00-00-00-00-00-00-00-		Ä	40W4U4

7.7.
75792 75
88998899 88998899 88998899 88998999 8899899999999
\$
1011125421508866685424554168816855417446198866681668541744619886668542111111111111111111111111111111111111
66.051956 67.1120197 68.1120197 68.1120197 69.122844 69.122849 69.122849 70.122849
00000000000000000000000000000000000000
0.000000000000000000000000000000000000
1751110811080400804040404040404040404040404
00000000000000000000000000000000000000
00000000000000000000000000000000000000
778827877877878787878787878787878787878
00000000000000000000000000000000000000
688844448889991100000111110000010188898888888888
_800-100404-800-10040404-800-100404-80-800-100404-800-1

430889	439	55,	7 0	170 777	310	505	615	647	677	. 708	737	766	79	824	85	888	926	96	3	063	Ξ	180	. 26]	35	448	46	[95]	37	273	.000	
266. 266.	26	36	3,4	2,4	26	26	2	2	26	2	2	2	2	2	2	2	2	2	2	26	2	2	26	2	26	2	2	2	7		
287	310	684	200	442	491	619	310	106	991	467	726	017	179	939	443	358	016	546	799	338	431	685	305	856	810	049	421	811	654	000	
89207.	21	23	n a	35	35	38	52	96	69	53	56	9	63	99	20	174	78	83	88	96	<u>0</u>	60	=	29	9	946	142	131	13	Ö	
17382 97326	61024	30970	20710	80878	,,,,	"	J	·	v	,-	w	25903	92917	73150	03389	81506	79334	73623	46366.	68970	33356	10561	32508	11565	91587	47761	20741	13903	09465	80412	
954.																															
73.766479	. 954	552	760.5	245	9.832	0.417	. 00.	3.588	3.138	3.656	3.123	7.52	8.845	5.072	5.186	4.17	2.957	1.459	9.891	9.103	9.669	1.113	2.763	0.000	9	8	000	9	90.	8	
	0	-	, c		. 0		0	0	0	0	0	0	0	0	0	9	0	9	<u>.</u>	0	으	=	<u></u>	0							
00000	000			000	000	000	000	000	000	2	8	8	0000	0000	8	000	000	8	8	000	00	000	9	000	000	000	00	000	000	=	
00		-						-																•					•	•	
0.000000	0000			0000	0000	.0000	. 0000	. 0000	. 0000	. 0000	. 0000	0000.	. 0000	. 0000	. 0000	. 0000	. 0000	. 0000	. 0000	. 0000	. 0000	. 0000	. 0000	.0000	.0000	.000	.000	.0000	.000	.000	
$0.119181 \\ 0.133660$	148	597	901	213	229	. 245	. 262	.277	. 292	.307	.32	.333	34	35	.36	37	.378	38	.386	.388	.39	39	.40	ĕ.	<u>.</u>	ĕ.	ĕ	ĕ	<u>.</u>	<u>.</u>	***
040972	29696	485/5	51329	51901	51918	51390	150342	148792	16291	144392	141647	38625	135368	31965	128458	124907	121382	117935	114636	111535	108695	106175	104027	102295	001031	00260	000000	000000	000000	000000	COMPLETE
0.0	0.0	- c			0.0	0.0	0.0	0.	0.	0.	<u>.</u>	<u>.</u>	-	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	0	-	-	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	0	0	•	<u>.</u>	FWICE2D
0.539054	9.5			50	5	9.5	<u>.</u>	2	20	0.5	.5	0.5	0.5	0.5	5.5	0.5	9.5	0.5	ņ	ij	5.5	ŵ	Š.	o Ñ	o.	ŵ	<u>ب</u> ښ	ē.	Ģ.	Ŋ.	DUTTINE LEW
203 - 114 -		57																•	•	37										- 5	SUBRI
0.209	0.162	100	0.073	0.039	003	. 034	,07	114	156	.199	. 242	285	.327	365	Ŧ.	449	.486	.52	.55	.58	. 60	.63	9.	99.	. 67	.68	.68	.69	2.	.73	***
NM	. T 1	^		. 60	6		_	2	m.	J	'n	9	_	~	6	0	_	~	m	J	'n	9	7	æ	6	0	_	~	m	•	

K** SUBROUTINE LEWICE2D COMPLETE ***

CPU TIME = 1338.289

*** SUBROUTINE BODMOD COMPLETE ***

CPU TIME = 1339.025

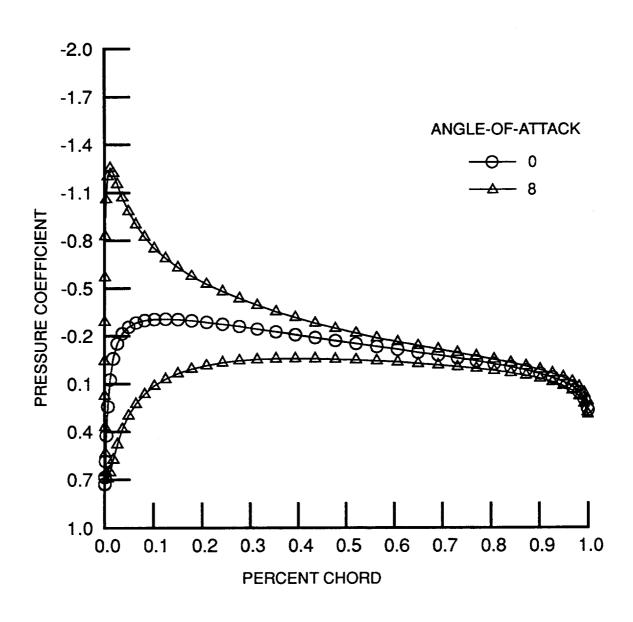


Figure 27. - Pressure distribution at 50% span location for example case at 0 and 8 degrees angle-of-attack.

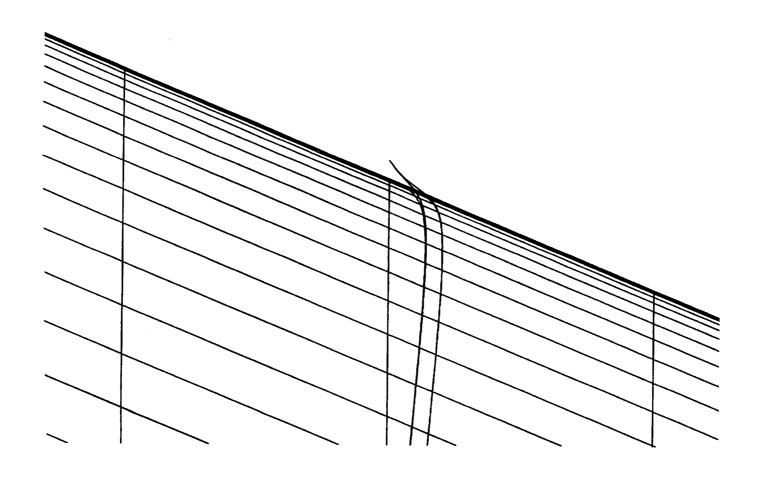


Figure 28. - Illustration of off-body and on-body streamlines.

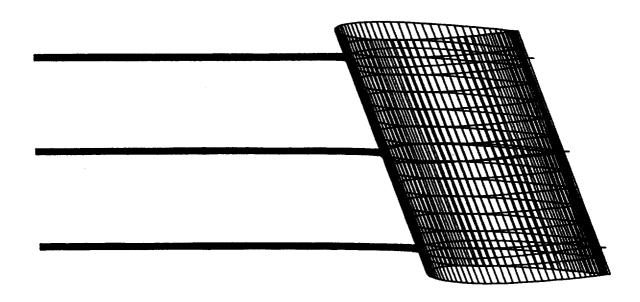


Figure 29. - Illustration of impact trajectories for the example case.

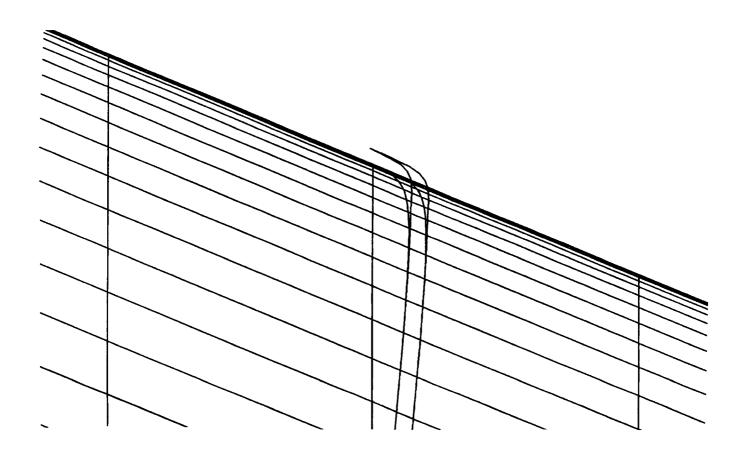


Figure 30. - Illustration of iced streamline for the example case.

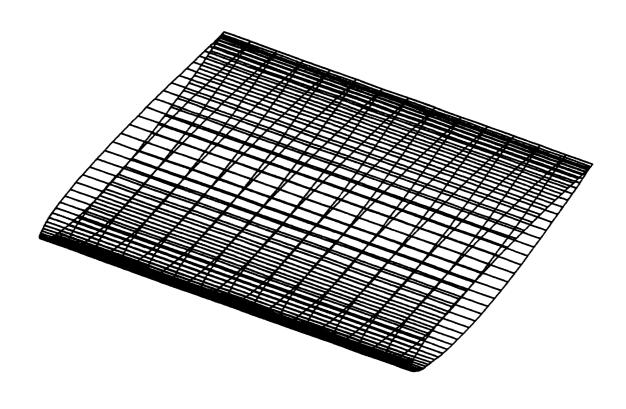


Figure 31. - Iced wing panel model for the example case.

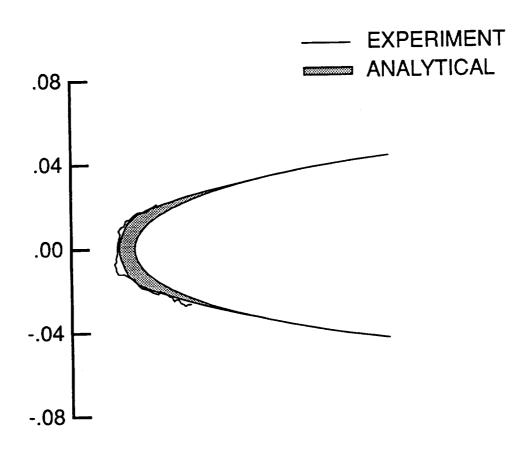


Figure 32. - Comparison of predicted and measured ice shape at the 0% span location for the example case.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis righway, Suite 1204, Allington, VA 222	02 100s; and to 110 0.1100 01 110 and											
1. AGENCY USE ONLY (Leave blank)	USE ONLY (Leave blank) 2. REPORT DATE December 1993 Technical											
4. TITLE AND SUBTITLE	December 1773		FUNDING NUMBERS									
	Lewis Three-Dimensional Ice A	1 -										
6. AUTHOR(S)			WU-505-68-10									
Colin S. Bidwell and Mark (G. Potapczuk											
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION REPORT NUMBER									
	National Aeronautics and Space Administration											
	Lewis Research Center											
Cleveland, Ohio 44135-31	91											
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	10	. SPONSORING/MONITORING AGENCY REPORT NUMBER									
	National Aeronautics and Space Administration Washington, D.C. 20546-0001											
11. SUPPLEMENTARY NOTES Responsible person, Colin S	S. Bidwell, (216) 433–3947.											
12a. DISTRIBUTION/AVAILABILITY S	STATEMENT	12	b. DISTRIBUTION CODE									
Unclassified - Unlimited												
Subject Categories 02, 03												
13. ABSTRACT (Maximum 200 word:	s) ·											
ice accretion code (LEWICE3) methodologies and the use of t shapes on three-dimensional et of calculating flow about arbitt used to calculate arbitrary strea arbitrary trajectories. Schemes of interest for single droplets o to calculate ice accretions alon geometry based on the ice accr the LEWICE 2D calculation. I streamlines. For both codes the stagnation point, and solved fo streamlines, hence starting at the next control volume. After the	D) has been produced. The manual he code. The LEWICE3D code is a external surfaces. A three-dimensional rary 3D lifting and nonlifting bodies amlines. An Adams type predictor-confor calculating tangent trajectories, or droplet distributions have been income surface streamlines. A geometry metions generated at each section of its 30th codes calculate the flow, pressure the transfer calculation is divided or each region assuming a flat plate whe stagnation zone any water that is	as been designed to help the conglomeration of several collecternal flow panel code is with external flow. A 4th or corrector trajectory integration collection efficiencies and corporated. A LEWICE 2D be nodification scheme is incorporated. The three-dimension re distribution, and collectio into two regions, one above with pressure distribution. We not frozen out at a control vo	example case, for the NASA Lewis 3D user understand the capabilities, the odes for the purpose of calculating ice incorporated which has the capability der Runge-Kutta integration scheme is a scheme has been included to calculate oncentration factors for arbitrary regions ased heat transfer algorithm can be used corated which calculates the new all ice accretion calculation is based on an efficiency distribution along surface the stagnation point and one below the later is assumed to follow the surface olume is assumed to run back into the ted the geometry is modified by adding									
14. SUBJECT TERMS	15. NUMBER OF PAGES 143											
Aircraft icing; Ice accretion	Aircraft icing; Ice accretion prediction											
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATI OF ABSTRACT	ON 20. LIMITATION OF ABSTRACT									
Unclassified	Unclassified	Unclassified										