
MODELING BRISTLE LIFT-OFF IN IDEALIZED BRUSH SEAL CONFIGURATIONS

VIJAY MODI
DF_,PAR_ OFMECHANICALENGINEERING

COLUMBIAUNIVERSITY
NEW YORK, NEWYORK 10027

1. Introduction

In the last decade, brush seals have emerged to be one of the most promising

technologies for the reduction of leakage flow in gas turbine engines. Recent bench

tests indicate a possibility of an order of magnitude reduction in leakage flow over

multiknife labyrinth seal, Holle and Krishnan (1990). Additional potential for

performance benefit arises from mechanical and maintenance considerations. The

efficiency of a labyrinth type seal depends upon the clearance between the tip of the

knife and the bore but this radial clearance may be difficult to control due to thermal

and dynamic conditions. A brush seal on the other hand is compliant, and hence has

the ability to recover after excursions, Flower (1990). An important question that

remains to be answered is the relationship between brush configuration/operation

parameters and some measure of its compliance. One measure of compliance is the

clearance that develops between the bristle tips and the rotating element due to the

pressure differential across the seal and due to the aerodynamic drag.

We attempt in this paper to develop a model for the flow through brush seals and

determine their elastic behavior in order to predict the dependence of brush/journal

clearance on geometry and operating conditions. Several idealizations regarding

• brush seal configuration, flow conditions and elastic behavior are made in the

analysis in order to determine closed form parametric dependence. This formulation

assumes that there is no initial interference between the bristle tip and the rotor.

Also interbristle, bristle-backing plate and bristle-rotor friction is neglected. The

bristle bundle or the brush seal as it is alternately called is assumed homogeneous

and isotropic on a macroscopic scale so that a physical property like permeability is

uniform. The fluid is assumed to be homogeneous, incompressible, viscous and is

flowing under steady conditions.

A schematic of a brush seal is shown in figure 1. If the nominal bristle-shaft

interference is absent then under static conditions the bristles may deflect axially

due to the imposed pressure differential. This axial deflection may create a clearance

permitting leakage flow in excess of that which occurs through the porous matrix
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formed by the bristle bundles. Under dynamic conditions the Couette flow created by

shaft motion could be strong enough to cause bristle deflection and once again a

clearance may develop.

The paper proposes a means to determine this clearance (or at least describe its

parametric dependence on geometry and operating conditions) under static as well as

dynamic conditions. The study can be thought of as consisting of three separate

modeling efforts. First a flow model that describes the coupled parallel flow through

the porous medium made of bristle bundles and the clearance region. This

development follows the earlier work of Beavers and Joseph (1967), Beavers et al.

(1970), Williams (1978) and Rudraiah (1985). This model provides the macroscopic

description of the flow field, i.e., a filter velocity in the porous medium. Second, a

model to relate this macroscopic flow field to a local flow field and its associated drag

on the bristle is developed. This model also permits us to determine an expression for

the permeability in order to characterize the physical property of the bristle bundle

in absence of an experimentally determined value. The forces on a single bristle due

to this macroscopic flow field are then estimated assuming idealized microscopic flow

behavior and a phenomenological description of drag on a bristle. Third, the elastic

behavior is modeled to estimate the deflection of the bristle tip due to the flow field or

the impressed axial pressure differential. A description of the clearance would in

principle require a simultaneous solution of the three models. It is, however,

assumed here that the physical property permeability remains unchanged both due

to the presence of leakage flow through and around the bristle bundle as well as due

to the deformation of the bristles themselves. Given this, it is then necessary to solve

only the flow and elastic models simultaneously to determine the clearance.

2. Circumferential Deflection

To determine the circumferential deflection of the bristles we must first estimate

the forces on each bristle. The forces in the circumferential direction are due to

drag caused by the flow around the bristle bundle. This flow is in turn driven by the

Couette flow in the bristle-shaft clearance as a result of the circumferential slip

velocity of the shaft itself. In the absence of a clearance, the shaft motion imposes a

circumferential velocity boundary condition directly at the bristle-shaft interface.

A model to determine the flow field in both these circumstances is introduced next.

This development assumes that the clearance ho if any is known. Its actual value will

be determined later along with considerations of the elastic behavior.
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2.1 Flow Model

Let us consider the geometry shown in figure 2, with a porous medium of height

h underlying a channel formed by a clearance of height ho. The clearance is

bounded above by an impermeable wall moving to the right at u o and the porous

region is bounded below by an impermeable stationary wall. The formulation

presented here follows that in Rudraiah (1985). The basic equations describing the

flow are obtained after the following approximations are made.

i) The fluid is homogeneous and incompressible.

ii) The flow in the channel and in the porous medium is driven by a shear produced
due to the motion of the upper plate. This flow is steady, laminar and fully
developed.

iii) The porous medium formed of bristle bundles is homogeneous and isotropic on a
macroscopic scale.

iv) The flow in the porous medium is adequately described by the Brinkman
equations and this flow is coupled to the channel flow by a boundary condition
given by Williams (1978).

A

Following Rudraiah (1985), we write equations for u, velocity in the gap and u,

filter velocity in the porous medium as:

d2u d2u 1

dY2 = 0 and u = 0dy2 _,k (1)

where k is a positive constant and k is the permeability of the porous medium. TheA

velocity u in the porous medium is related to u by

^

u - (1---_)u (2)

where (1-(_) is the porosity. Following Williams (1978). at the clearance-porous

medium interface we assume that:

du du

d"_= (1-$)_ _-_ (3)

The remaining boundary conditions arc the usual no-slip conditions at

impermeable walls and are:
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U=Uo at y=ho
u=O at y = -h (4)

Solving (1) subject to (2), (3) and (4) we obtain the velocity distributions in the

clearance and the porous regions to be

_'8 (h°'-Y) 1u=u o l-(tanh_h+_,_ho)j y>0

•, Uo _ cosh8yqu = sinh5y + _l Y < 0
(1--@)(tanh_h+ 7t ho)L (5)

where 8 = (_.k)"I/2. Here 8h = h (_.k)"I/2>> I isused. This relieson _.to be of order

unity and h to be a macroscopiclength scaleassumed to be severaltimes greaterthan

k I/2 (which is typicallyof order do, the characteristicdimension of the porous
^

matrix, i.e. bristle diameter). Hence we may approximate u by

^ Uo 8y
u=_-e y<0 (6)

where rl = (1-_)(1+_,8 ho). The exponential behavior of the filter velocity implies that

it decays to the Darcy value (which in this case is zero) within a boundary layer of

length scale 1/8, where 1/8 is of the order of k 1/2.

Here u represents a filter velocity, a macroscopic quantity defined in order to

avoid the more difficult question of what is the true velocity of the fluid in the

porous region between the bristles. We now make certain idealizations about the

bristle bundle geometry and subsequently model the flow through the interbristle

pores in order to determine the viscous drag force directly as a function of the filter

velocity.

2.2. Permeability Model

The drag force on a bundle of cylindrical bristles clearly depends upon the flow

through the pores which in turn depends upon the particular geometric

configuration. Let us first examine the situation for two particular geometric

arrangements. Let us assume that the cross-section of the bundle remains same in

the direction along the bristle axis and that the flow is normal to these axes. Let _ be

the solidity or here the area fraction and Z be the number of nearest neighbors.
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Then _ and Z are respectively x/4 = 0.79 and 4, for a square array and _/2_/'_"= 0.907

and 6 for a hexagonal array. For these arrays there is no possibility of any

transverse flow since all neighboring cylinders are in contact. Typical solidities

for brush seals are between 0.7 and 0.8, indicating a fairly close packed geometry. It

is very likely that the manufacture of bristle bundles and their relative movement in

the presence of leakage flow lead to bristle configurations that are close to random.

A particular means to generate a closely packed random array is by the following two

step process, described by Sangani and Yao (1988). In the first step, the process of

dropping a large number of equal-diameter cylinders in a container is simulated.

Note that in the configuration so generated any cylinder is in contact with its

nearest neighbors. Let _t be the solidity of such a closely packed random array.

Berryman (1983) summarizes the results of several simulations and reports q_t in the

range of 0.81-0.89, with most studies quoting a value of approximately 0.82. Sangani

and Yao (1988) have also simulated such arrays recently with upto 1600 cylinders in a

container and they report a value of _t = 0.824 and Z = 4.2. In the second step, the

diameters of all the cylinder centers are shrunk by a constant amount 2er, while

keeping the location of all cylinder centers fixed. Here r is the bristle radius. The

value of E is chosen so that the new configuration has the measured solidity _. For

this special kind of array the gap between neighboring cylinders is uniform and is

given by 2_r where

The resistance offered to the flow by the gap between pairs of nearly touching

cylinders determine the overall drag and hence the effective permeability of the

medium. The analysis below is due to Sangani (1990). The pressure drops as fluid

squeezes through a gap of width 2Er at a volume flow rate Q, as shown in figure 3.

Here Q is the two-dimensional volume flow rate. The profile of the cylinder surface

can be approximated by

f(x) x2

T e +2r 2 for x
= - 0(e

r (8)
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Assume that inertia terms are negligible, and that the viscous forces in the

streamise direction are small compared to those in the normal direction. Hence the
A

equation governing the x- direction velocity component u reduces to

02u dp

_)y2 ( 9 )

Integrating the above equation with. u = 0 at y = f(x) and y=. o at y = o we,.

o btain
^ 1 dp

u = 2l_ dx [f2 (x) - y2)] (lO)

Integrating the above velocity profile over the gap and identifying it with

volume flow rate Q, we obtain

9nl_Q e-5/2

(Ap) gap- 8_" r2 (11)

Thus the force exerted per unit length and width in direction of flow is Ap. The

direction, of flow however is normal to the line segment joining the centers of _e

cylinder pair in question. If such a line segment is oriented at an, angle 0i as shorn

in figure 4, then the force vector Fi per unit length arising over width 2r due to each

gap for volume flow rate Qi is given by

9n_tQ i Ei-5/2

Fi = 8_" --r"_ (2r)
(12)

The component of the force (per unit length) in the direction of mean _ow

(assumed to be along 0i=0) is then obtained after noting that Qi=(2tlsin0i) r

9n_ e-5/2 2usin20i
Fli = IFil sin0 i =, _ '

(13)

Here u is the filter velocity or the superficial velocity. Hence, the mean force <FI> is
given by

9n tuZ e_st2
<FI>= 8_" (14)

+
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where Z is the average number of nearest neighbors and the mean value of sin20i

averaged over all Oi is 1/2. If the number of cylinders per unit cross-section area is

4_/_do 2 where do is the diameter then

IVplI= <FI> 4_ 97-_1.t -5/2 u

If one was interestedin the permeabilityk of the medium definedas k = Bu/IVplthen

which is identical to the expression in Sangani and Yao (1988) except for _ in the

denominator.

2.3 Elastic Behavior Model

The expression in (15) permits us to calculate IV pl, as a function of the filter

velocity u which may vary along the bristle axis as given by (6). Hence, we are in a

position to determine the loading on thc bristle due to thc inter-bristle flow driven

by the Couette flow in the clearance region. We define a co-ordinate system shown

in figure 5. The deflection of the bristle tip, At, can be obtained from

straightforward application of linear elasticity theory. The radial component of the

deflection he = Atcos_ is then the clearance, and is given by

9Z .5/2l.tuocosJ_ 1 1 h3
he=Acosl3 e- .13 (sin[3)3 EI _i 3 (17)

Recall that 13 = (l-q_) (t+;L_ho), fi = (;Lk) "1/2, I = _do4/64. Since the above equation is

implicit in ho, consider ho >> k 1/2 first, so that _,_ho>>l providing an explicit form,

2

(ho_ 9Z gUo k cos_ h3

_,)_oo =2"-_'_ [1- _'7_t't_-5/2 ....(1-_b) d_ (sin_3)3 3EI (18)

If permeability k is experimentally determined for the medium then that

measured value can be used in the above expression. The recommended values of t_t
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and Z are 0.82 and 4.2 for a random array of cylinders. Hence the expression is valid

for t)< t_t(=.82). If, however, k is not known, permeability can be estimated from (16)

allowing us to determine ho from

ho,_2 liUo cosl3 h3 ho
_oJ =0(-'_ (sin_) 3 3EI (19)

In the absence of any clearance ho vanishes and any initial increase in ho must

occur with ho << k 1/2. Under circumstances that permit us to assume _.Sho <<1 we

obtain

ho 9Z r ._:_-.._ gUo _ cos_ h3
- _ L! 1 - _/(_/@t i-5/2J _ _do (1-9) do (sinl3)3 3EI (20)

Once again k can either be measured or evaluated from equation (16). In the above

expression in addition to Z and _t we also need an empirical estimate for the constant

),I/2 The constant _1/2 can be identified with ot in Beavers and Joseph (1967) and is a

dimensionless quantity depending on the material parameters which characterize

the structure of the porous medium within the boundary region where the filter
velocity decays to zero, its Darcy value. The value of 0t reported by Beavers and

Joseph are for Foametal and Aloxite, with effective pore sizes varying between 0.013

inches and .045 inches. The value of _ for these materials was found to vary between

0.1 and ¢ with lower values observed at lower pore sizes.

Preliminary estimates of the clearance due to tangential loading can be made

from either (19) or (20) and if it turns out that ho is of the order of k1/2 then the

quadratic equation (17) can be solved for ho. Before discussing the results for the

tangential deflection we will develop the analysis for axial deflection. This will

permit us to determine their relative magnitudes and establish conditions under

which, it may be possible to neglect the clearance due to deflection in one of the
directions.

3. Axial Deflection

The axial deflection of the bristles is due to the pressure differential along the

axis of the rotating element. It is the purpose of the brush seal to minimize what

would otherwise be a leakage flow due to this pressure differential. The axial loading

on the bristle is straightforward to estimate since the pressure differential impressed

upon the bristle bundle can be assumed to remain unaltered in the presence of

leakage flow. If the pressure differential is A p = Ph-Pe over the width w of the
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bristle bundle (in the axial direction) then the force per unit length, q, acting on the

bristle is given by q = Ap do2/W. This force acts uniformly over the overhanging

length a of the bristle, i.e. exposed portion between the backing ring of inner

diameter Db and the shaft, diameter Ds. Since the bristle bundle is clamped at the

retaining plate inner diameter Dr, the bristle behavior can be modeled as a bar

clamped at origin and simply supported at Db with an overhanging distributed load

between D b and Ds. If we define L to be the bristle length between the retaining

ring ID and the backing ring ID, L = (Dr-Db)/2 sin _ then the bristle geometry with

its axial loading diagram is as shown in figure 6. We wish to determine the

displacement, A h, due to the axial deflection of the unloaded member, as shown in

figure 7. This quantity is the clearance produced due to the axial loading and would

be observed in a static leakage test. In dynamic tests the clearance would be

produced by a combination of effects, the tangential as well as the axial loading.

Linear elasticity theory assumes small angles of rotation for the beam and thus

would only permit the calculation of the vertical displacement A v while A h would

remain zero. Typical axial loading and the bristle length to diameter ratios are

however, such that it becomes necessary to use large deflection theory in order to

model the problem. Thus the differential equation of the deflection curve becomes

- ('21)dx 2

"dy'2" 3/2

[1+(_) J = _M(x__._)

The exact shape of the elastic deflection curve given by the solution to this

equation, is called the elastica. The mathematical solution to the problem of

determining the elastica has been obtained for many different types of beams and

loading conditions, see Frisch-Fay (1962). The solutions to the specific loading of

interest here was not available in the existing literature. A particular difficulty is

that the problem is statically indeterminate and the reaction force where the bristle

is simply supported is unknown. While a linear theory may provide a value of the

reaction, it will be approximate at best. This value, however, could be of use as an

initial guess in an iterative determination of the reaction force into vertical

component R and horizontal component Rtan 0, where tan 0 is the bristle slope at

the support, see figure 7. To determine A h we need to solve for the elastica and
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terminate the curve at a point where the length of the curve is (L + a). Here we

assume that any elongation of the bristle is negligible or of an order smaller than

that under consideration. In the deformed position of the bristle the axial loading is

no longer applied over the overhang initial length 'a' but over the overhang length

a'= a- A h in the deformed position. The direction of the axial force, however,

continues to remain vertical in the deformed position.

Solution to the problem described above requires us to integrate (21), with a

moment distribution function M(x) given by

M(x) = qa' (a72 + L-x) -RCL-X)-Rtan0y 0 < x < L

M(x) = (q/2) (L + a' - x)2 L _,x < L + a (22)

where a' and tan0 are unknown and are determined as part of the solution y(x). The

reaction force, however, is still unknown because the problem is statically

indeterminate. This difficulty is easily overcome, especially since the solution is

perhaps most easily obtained on a computer. An initial guess of R is made from

linear theory. The preliminary solution thus obtained however, will in general fail

to pass through the support at (L,0). The magnitude of the reaction force is gradually

changed until the elastica does pass through, (L,0). It is convenient to normalize x

and y with length L, i.e. x* =x/L and y* = y/L. Dropping asterisk now equations (21)

and (22) become

y"/(l+y' 2)3/2 = -M(x) with y(o) = o y'(o) = 0, where

M(x) = Ceff { 1/2 + (1/a') (l-x)} - 0_ (l-x)- 0_ tan 0 y 0 < x < 1

M(x) = (Ceff/2) (1/a') 2 (1 + a'-x)2 1< x < 1 + a/L (23)

where Ceff = C (a'/a)2, C = qa2L/EI and a = RL2/EI

The problem shown above was solved numerically for various values of the

loading parameter C and the overhang ratio a/L. The elastica curves for a/L = 0.2 are

shown in figure 8. Note that the axis in the y-direction is stretched considerably for

clarity. The quantity of interest here is the clearance A h the variation of which with

loading parameter C is shown in figure 9 for several overhang ratios a/L. Note that

the small deflection theory value of Ah is identically zero for all C. We observe that

the departure from this value as loading is increased depends upon the overhang

parameter. It turns out that for typical gas turbine applications brush seals may be

operating in a parameter range where A h is rapidly increasing with C and a/L.



The actual value of the reaction force is not of immediate interest once the axial

deflection is known, however, it may be of use in the following manner. Earlier

analysis to determine the circumferential deflection assumed that the friction at the

bristle-backing ring interface was negligible. The bristle orientation under axial

loading shown in figure 8 indicates that the only point of contact may be at the inner

edge of the backing ring where the normal force acting on the bristle is given by

R/cos 0. An estimated value of the static Coulomb friction coefficient would permit

an approximate evaluation of the tangential restraining force. This force would act

on the bristle layer in contact with the backing ring. While in this paper we do not

account for this frictionforce in the calculationof the circumferentialdeflection

the valueof R and 0 may prove usefulfor futurework.

4. Discussion

Under dynamic conditions the actual deflection would be due to both the

circumferential and axial loads and a vector sum of forces has to be used to solve the

three-dimensional elastica problem. Additional simplification is possible if we can

demonstrate that the deflection in one of the directions is small compared to the

other. An explicit expression for their relative magnitude is not available because of

the lack of a closed form formula for the axial deflection.

The numerical results of figure 9 establish that the behavior of A h (C, a/L) is

indeed nonlinear, and may be of importance in the design of brush seal systems. In

addition to the expected non linearity in the response to loading parameters C the

displacement h is also sensitive to a/L ratios. Thus it is not just the overhang length

that is relevant even though it is the length exposed to a pressure differential but

also the size of the retaining plate. The analysis carried out here while making

several idealizations may provide insight into the dependence of the clearance on

geometry and operating conditions.
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