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1. INTRODUCTION 

This report covers technical progress during the second year of the contract 
entitled "Determination of Coronal Magnetic Fields from Vector Magnetograms," 
NASW-4728, between NASA and Science Applications International 
Corporation, and covers the period January 1, 1993 to December 31, 1993. Under 
this contract SAIC has conducted research into the determination of coronal 
magnetic fields from vector magnetograms, including the development and 
application of algorithms to determine force-free coronal fields above selected 
observations of active regions. The contract began on June 30, 1992 and has a 
completion date of December 31, 1994. This contract is a continuation of work 
started in a previous contract, NASW-4571, which covered the period November 
15, 1990 to December 14, 1991. 

During this second year we have concentrated on studying additional 
' active regions and in using the estimated coronal magnetic fields to compare to 
\ coronal features inferred from observations. The following is a summary of our 

research during the past year: 
• We have redone the force-free field (FFF) fit to active region 5747 on 

October 20, 1989 using the (new) non-periodic version of the code; 
• We have documented the coronal field structure of AR5747 and 

compared it to the morphology of footpoint emission in a flare, 
showing that the "high-pressure" Ha footpoints are connected by 
coronal field lines (Mikié & McClyinont 1994); 

• We have shown that the variation of magnetic field strength along 
current-carrying field lines is significantly different from the 
variation in a potential field, and that the resulting near-constant 
area of elementary flux tubes is consistent with observations of 
coronal loop in soft X-rays (McClymont & MikR 1994); 

• We applied the evolutionary technique to an exact analytic force-free 
field of Low and Lou (1990), showing that the scheme converges 
when data for an exact field is supplied (Mikié & Barnes 1994); 

• We generated realistic models of force-free fields which model active 
regions. These models will be used to study the performance of the 
evolutionary technique to measurement errors and inconsistencies 
in the data, as well as to study the effect of photospheric shear on 
active regions, and their possible role as flare triggers (Mikié 1993). 

• We deduced coronal fields for two additional vector magnetograms, 
of AR6919 on 15 November, 1991, and of AR7260 on 18 August, 1992. 
These regions had coincident soft X-ray Yohkoh observations. 

• In conjunction with an NSF-funded grant, we studied the theoretical 
properties of an arcade field in spherical geometry. We found that 
photospheric shear can lead to magnetic nonequilibrium, causing an



arcade to disrupt. This effect may explain how coronal mass ejections 
are initiated (Mikié & Linker 1994). 

During this year we have presented our research results at the following 
scientific meetings, workshops, and seminars: Seminar at the University of 
Hawaii, April 1994; Invited talk at the Physics Computing '93 Conference, 
Albuquerque, June, 1993; Talk and Poster at the AAS/Solar Physics Division, Palo 
Alto, July, 1993; Invited talk at the Gordon Conference, Plymouth, New 
Hampshire, August 1993; Talk at the Sacramento Peak Workshop on Active 
Region Evolution, Sunspot, August/ September, 1993; Invited talk at the 
American Geophysical Union Conference, San Francisco, December 1993. 

All the vector magnetograms used so far have been obtained at Mees Solar 
Observatory (MSO) of the University of Hawaii using the Haleakala Stokes 
Polarimeter. This project has benefited tremendously from cooperation with the 
staff of the Institute for Astronomy, University of Hawaii. Dr. Alexander 
McClymont has been our point-of-contact and principal collaborator during this 
project. 

Section 2 of this report contains an brief account of progress during the 
research performed under this contract. Section 3 contains the proposed 
statement of work for the third year of the project.



2. TECHNICAL PROGRESS 

2.1 Active region 5747 on October 20, 1989 

As described in last year's progress report, we have developed a non-
periodic version of the computer code which implements the evolutionary 
technique. This represents a major advance in the realism with which we can 
model the coronal magnetic field. Previously, for numerical convenience, we 
had assumed that the transverse dimensions (the x—y plane, which is parallel to 
the photosphere) were periodic. We have been able to remove this constraint by 
using a more sophisticated numerical algorithm. We have redone our estimate 
of the coronal field for AR5747 using this new code. The analysis described below 
is based on this improved estimate. 

2.2 The Coronal Field above AR5747: Comparison with Observations 

We have made use of the coronal field computed from the magnetogram 
of AR5747 in two studies of relevance to flare and active-region physics. First, we 
compare the connectivity implied by the coronal field with Ha data obtained at 
Mees Solar Observatory (University of Hawaii) during an M2 flare (Leka et al. 
1993) which occurred 3 hours after the magnetogram scan was completed. 
Secondly, we studied the area variation along current-carrying elementary flux 
tubes, and showed that the presence of current in the corona can account for the 
observed constant thickness of soft X-ray loops (McClymont & MiW 1994). 

Figure 1 shows observed Ha flare features superimposed on the 
magnetogram of AR5747. The three small pseudo-circular features in Fig. 1(a) 
enclose areas in which specific Ha signatures were detected. The small feature on 
the neutral line at position (3.0,5.0) showed the signature of particle precipitation 
and coincided temporally with hard X-ray emission. Figs. 1(b) and (c) (refer to the 
caption) show that the footpoints of a coronal loop in the estimated force-free 
coronal field are in much closer agreement with the observed high-pressure 
regions than footpoints of a loop in the potential magnetic field (Mikié & 
McClymont 1994). 

It is unfortunate that there are no soft X-ray observations of AR5747 to 
confirm the existence of a high-pressure coronal loop joining the Ha footpoints. 
However, we have made use of this dataset in a generic way, by examining the 
variation of cross-sectional area along elementary flux tubes which carry 
substantial currents through the corona [principally from the positive spot at (3,4) 
to the negative spot at (6,8) in Figure 1(a)], and comparing the results with recent 
soft X-ray observations. Since the Skylab era it has been noted that images of 
coronal loops seen in soft X-rays or extreme ultraviolet emission appear to be of 
remarkably uniform thickness, a result recently confirmed by high-resolution 
observations (Golub 1991; Klimchuk et al. 1992). If the emitting volume outlines 
a bundle of field lines, or flux tube, the implication is that the magnetic field does 
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Figure I.—(a) Ha flare features superimposed on the magnetogram of AR5747 
(from Leka et al. 1993). The neutral line is marked by a broken line; regions of 
strong vertical current are shown as shaded contours, and the three small 
pseudo-circular features enclose areas in which specific Ha signatures were 
detected. The features marked "A" at position (2.9,5.6) and "B" at (2.2,3.4) 
mark sites of high pressure "footpoints." (b) Field line traces in the estimated 
force-free coronal field, showing that the high-pressure sites A and B are close 
to the footpoints of a coronal loop. (c) Field line traces in the potential coronal 
field, with the same initial footpoint positions (at A) as in (b), showing that the 
agreement between the high-pressure sites and coronal loop footpoints is 
much better for the estimated force-free field than for a potential field. The 
contours in (b) and (c) show the vertical current density in the photosphere. 
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not expand in height as it would if the field were potential. Recently Klimchuk et 
al. (1992) have quantified this characteristic, finding for several loops observed by 
the Soft X-ray Telescope on the Yohkoh spacecraft a thickness variation along 
their lengths of only 10-20%. We have demonstrated that this observation is 
consistent with the characteristics of current-carrying field lines in a highly 
sheared active region. By tracing field lines in the computed coronal field for 
AR5747 we have shown that magnetic loops which are highly sheared do not 
expand rapidly in height, as they would in a potential field (McClymont & Mikié 
1994; this preprint is attached in Appendix A). 

2.3 Low and Lou's Exact Force-Free Field 

We have verified that the evolutionary technique can correctly estimate 
the coronal field when the boundary data corresponding to an analytic force-free 
field is used. The boundary data from the analytic force-free field of Low and Lou 
(1990) was used to specify Bz and Iz at z = 0 in the evolutionary technique, which 
was then used to estimate the coronal field. Figure 2 shows a comparison 
between the field lines in the analytic solution and those in the coronal field 
determined from the boundary data. This simulates the application of the 
evolutionary technique to a vector magnetogram, albeit to one with perfectly 
consistent data. The good agreement between the estimated coronal magnetic 
field and the analytic solution verifies that the evolutionary technique is based on 
a well-posed formulation (Mikié & Barnes 1994). 

2.4 Realistic Force-Free Field Models of Active Regions 

In order to study the effect of inconsistencies in the boundary data on the 
coronal field estimates obtained with the evolutionary algorithm, it is first 
necessary to create exact force-free coronal fields against which the estimates can 
be compared. We require models which have the properties of observed active 
region fields (complexity, no symmetries, compact flux and current distributions, 
three-dimensional variation). We have created an idealized model of a force-free 
field whose properties are similar to those of active region 5747 of 20 October 1989 
(Mikié 1993). This solution will be used for the additional purpose of constructing 
a realistic model of an active region to study flare triggers. 

We first construct a flux distribution B(x,y) in the photosphere which 
captures the essential features seen in the vector magnetogram of AR5747. We 
construct the vertical flux Bz by superimposing four Gaussian distributions to 
match the two sunspots with negative flux and the one sunspot with positive 
flux; the net flux is zero. This flux distribution is used to compute a potential 
field in the corona. The flux distribution and the corresponding potential field 
lines are shown in Figure 3(a). 

A force-free field was generated by subjecting this potential field to specified 
footpoint displacements. The dynamical MHD equations were solved using our 
3D resistive MHD code. An equilibrium was found by introducing finite 
viscosity, a small amount of resistivity, and relaxing the field after the footpoints



Low and Lou Analytic
Force-Free Field 

(a) Field Lines in Exact Field 

(b) Field Lines in Estimated Field 

Figure 2.—Comparison between field lines in (a) the analytic force free field of 
Low & Lou (1990), and (b) the coronal field estimated using the evolutionary 
technique from the boundary data at z = 0. The contours show the vertical 
magnetic field. The good agreement shows that the evolutionary technique is 
based on a well-posed mathematical formulation.



of the field lines were displaced. The displacement was introduced by applying 
flow on the photospheric boundary (which was ramped on and off gradually). 
The choice of footpoint displacements (i.e., the applied photospheric flow profile) 
was guided by the observed topology of the estimated coronal force-free field. We 
chose a flow profile to twist the fields in a manner which reproduced the 
observed global twist in the coronal field. Figure 3(b) shows the applied flow 
profile in the photosphere. 

The resulting field relaxes to a force-free field with an energy that is 40% 
above that of the potential field, consistent with that estimated for AR5747. 
Figure 4 shows a comparison between the observed vector magnetogram data and 
the photospheric profiles from this model. The vertical current density profile J 
is remarkably similar to that deduced from the observations. In addition, the 
photospheric values of the transverse magnetic fields Bx and B are similar to 
those from the observations. Figure 5 shows the field lines for the model field 
and those for the estimated coronal field for AR5747. It is apparent that the global 
features seen in the model are similar to those observed in the data. This is 
therefore quite a realistic model of the field above an active region. 

2.5 Active Region 6919 on 15 November, 1991 

We have determined the coronal field above NOAA active region 6919 on 
15 November, 1991, a region of intense interest with an extensive database of 
coincident Yohkoh and MSO observations. Figure 6 shows a projection of traces 
of the estimated coronal field above this active region, compared to the potential 
field. Note the complicated nature of this active region, which consists of several 
sunspots. The topology of the computed coronal field is consistent with the 
morphology deduced from soft and hard X-ray Yohkoh images during an X class 
flare at - 22:40 UT (McClymont & Mikié 1993) 

2.6 Active Region 7260 on 18 August, 1992 

We have determined the coronal field above NOAA active region 7260 on 
18 August, 1992. This region was observed with Yohkoh as it made its transit 
across the solar disk during the period August 9-22. It was associated with several 
flares, and had evidence of emerging flux. This active region was the subject of 
intense coordinated study during a recent workshop in Hawaii (November 29-
December 3, 1993). Our calculations of the coronal field were presented at this 
workshop. 

Figure 7 shows a projection of traces of the estimated coronal field above 
this active region, compared to the potential field. Note that the field lines are 
significantly nonpotential. 

2.7 Disruption of Coronal Magnetic Arcades 

The ideal and resistive properties of isolated large-scale coronal magnetic 
arcades were studied using axisymmetric solutions of the time-dependent 
magnetohydrodynamic (MHD) equations in spherical geometry. We examined 

7



/ 

•	 / 
( 

4-

(a) Potential Magnetic Field Lines 

- 2 - 

-.4-

(b) Applied Photospheric Flow 

.4

Figure 3.—(a) Contours of the vertical magnetic field Bz(x,y) in the 
photosphere z = 0, with traces of the potential magnetic field lines for an 
idealized model of an active region. (b) Projection of the transverse 
photospheric shear velocity that is applied to the magnetic field footpoints at 
z = 0 in (a) to create a force-free field.
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A Model Force-Free Field 
Matching Magnetic Fields Measured 

with a Vector Magnetograph 

(a)	 Bz, AR5747 (20 Oct. 1989)
	

Jz, AR5747 (20 Oct. 1989) 
Vector Magnetogram	 Vector Magnetogram 

(b) Bz, Model Force-Free Field
	

Jz, Model Force-Free Field 

I 

U 

mm	 0	 max 

Figure 4.—Comparison of the normal magnetic field and current density at 
z =0 between (a) the vector magnetogram of AR5747 on 20 October 1989 and 
(b) an idealized force-free field model. The similarity between the main 
features in the magnetogram and the model indicate that this is a realistic 
model of an active region.
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(a) Estimated Coronal Field, AR5747 

_."----- Ir 
IAI

 
V"17TANVwR.WWII I_ I., 	 A, 

(b) Model Force-Free Field 

Figure 5.—Traces of the field lines in (a) the estimated coronal field of active 
region 5747, and (b) the idealized force-free model of this active region. Note 
that the model field is qualitatively similar to the field of AR5747. 
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AR6919 9 15 November, 1991
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Figure 6.—Traces of the field lines in (a) the potential coronal field of active 
region 6919 on 15 November, 1991, and (b) the estimated force-free field as 
determined from a vector magnetogram of this region. 
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Figure 7.—Traces of the field lines in (a) the potential coronal field of active 
region 7260 on 18 August, 1992, and (b) the estimated force-free field as 
determined from a vector magnetogram of this region. 
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how flares and coronal mass ejections may be initiated by sudden disruptions of 
the magnetic field. The evolution of coronal arcades in response to applied 
shearing photospheric flows indicates that disruptive behavior can occur beyond 
a critical shear. The disruption can be traced to ideal MHD magnetic 
nonequilibrium. The magnetic field expands outward in a process that opens the 
field lines and produces a tangential discontinuity in the magnetic field. In the 
presence of plasma resistivity, the resulting current sheet is the site of rapid 
reconnection, leading to an impulsive release of magnetic energy, fast flows, and 
the ejection of a plasmoid. These results are related to previous studies of force-
free fields and to the properties of the "open-field" configuration. The field lines 
in an arcade are forced open when the magnetic energy approaches (but is still 
below) the open-field energy, creating a partially open field in which most of the 
field lines extend away from the solar surface. Preliminary application of this 
model to helmet streamers indicates that it is relevant to the initiation of coronal 
mass ejections. Appendix B contains a preprint of this article (Mikié & Linker 
1994).
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3. STATEMENT OF WORK (3RD YEAR) 

During the third year of this project we intend to continue development 
and application of the "evolutionary technique" for the determination of coronal 
magnetic fields. Next year's plan is centered around the following principal goals: 

3.1 Comparison of Estimated Fields with Coronal Observations 

We will continue to compare the properties of the estimated coronal 
magnetic fields with observations. Initially we will compare the magnetic fields 
already computed for AR6919 on 15 November, 1991, and AR7260 on 18 August, 
1992 (as described in Sections 2.5 and 2.6) to Yohkoh soft X-ray images of these 
regions, and also to Yohkok hard X-ray emissions and Ha brightening during 
flares. 

3.2 Application to Additional Vector Magnetograms 

We are in the process of using the excellent data from the Advanced Stokes 
Polarimeter (ASP), which was built at HAO, and is presently used for solar 
observations at the Sacramento Peak Observatory in Sunspot, New Mexico. This 
instrument has very high spatial resolution, and is a "next-generation" 
polarimeter with the capability of measuring photospheric and chromospheric 
magnetic fields with high accuracy. We will be analyzing magnetograms taken in 
June 1992, and also those taken recently in November 1993. 

3.3 Effect of Emerging Flux 

We will continue a theoretical effort, which was begun this Fall, to study 
the effect of emerging flux. Significant emergence of magnetic flux was observed 
during the evolution of AR7260 in August 1992. (Recall that we have estimated 
the coronal field above this region on August 18, as described in Section 2.6.) The 
theoretical role of emerging flux is not well know. We are developing our code 
to include the effect of emerging flux, and we will study its effect during the next 
year. 

3.4 Accuracy of Computed Coronal Fields 

We will continue to study the accuracy and limitations of the evolutionary 
technique. The effect of errors will be studied by applying the technique to 
"synthesized magnetograms," which will be constructed by adding random errors 
to fields with known solutions. The solutions we will use are those described in 
Sections 2.3 and 2.4.

14
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ABSTRACT 

It has been noted for many years that images of active region coronal loops seen in soft 
X-rays or extreme ultraviolet emission suggest a pipe-like appearance. Recently Kllmchuk et 
al. (1992) have quantified this characteristic, finding for several loops observed by the Soft X-
ray Telescope on the Yohkoh spacecraft a thickness variation along their lengths of only 10-
20%. We demonstrate here that this observation is consistent with the characteristics of 
current-carrying field lines in a highly sheared active region. Vector magnetogram data on 
NOAA active region 5747, taken with the Stokes Polarimeter at Mees Solar Observatory on 
1989 October 20, provided photosphenc boundary conditions from which a force-free coronal 
magnetic field was computed. By tracing field lines, we show that magnetic loops which are 
highly sheared do not expand rapidly in height, as they would in a potential field. In addition, 
the expanding sections close to the footpoirns of current-carrying twisted loops tend to be more 
vertical than in a potential field, so that when seen projected against the solar disk, the loops 
appear to terminate more abruptly. Consequently current-carrying loops exhibit a near-uniform 
cross-section with thickness variations of order 30% along their lengths. 

Subject headings: Sun: Corona - Sun: Magnetic Fields - Sun: X-Rays, Gamma Rays 

1. INTRODUCTION 

Coronal soft X-ray emitting loop structures are generally believed to identify the paths of 
magnetic field lines. Since the Skylab era it has been noted that some coronal loops appear to. 
be of remarkably uniform thickness, a result recently confirmed by high-resolution observations-  
(Golub 1991, Klimchuk et al. 1992.) If the emitting volume outlines a bundle of field lines, or 
flux tube, the implication is that the magnetic field does not expand in height as it would if the 
field were potential. An alternative interpretation is that the emitting volume does not outline a 
flux tube, but that emission near the footpoints of the loop encompasses a thicker bundle of 
field lines than emission from the upper part of the loop. The temperature/density structure of 
a loop in energetic equilibrium (Craig, McClymont & Underwood 1978, Rosner, Tucker & 
Vaiana 1978) could reduce the diameter of the emitting region which is above the threshold for 
detection as height increases. However, it seems very unlikely that the distribution of emis-
sivity along the loop would compensate so precisely for the change in magnetic cross-section, 
or that the apparent constant thickness of the loop would be preserved in observations sensitive 
to different temperatures. Here we assume that the emission outlines a flux tube, and show 
that the coronal field of a highly sheared active legion, reconstructed from actual vector mag-
netograph data, is consistent with this interpretation. 

The variation of magnetic field strength along a flux tube is of interest from several other 
points of view. One is the effect of area variation on the thermal conductive energy balance of 
the plasma in a quasi-static hot loop (e.g., Dowdy, Emslie & Moore 1987). Area variation 
may also have important effects on mass flows, particularly in the context of blue-shifted soft 
X-ray emission in the impulsive phase of flares, which can be interpreted as the signature of 
chromospheric evaporation (see Doschek 1990, Antonucci, Dodero & Martin 1990). Another 
important consequence of area variation is the magnetic mirroring of high energy particles 
accelerated in the impulsive phase of a flare (e.g. Petrosian 1985, LaRosa & Emslie 1988, Lu 
& Petrosian 1990). Theoretical investigations of these effects to date have adopted simple ad 
hoc models of the area variation. The results of these studies also seem to be contradictory to 
some extent. For instance, LaRosa & Emslie (1988) conclude that to explain the low bright-
ness of the chromosphere relative to coronal emission in the impulsive phase of a flare, a loop 
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into which nonthermal elections are injected must narrow considerably towards its footpoints. 
On the other hand, Petrosian (1985) suggests that the field must be nearly uniform to explain 
impulsive y-ray directivity. 

We present here the first theoretical study of area variation along magnetic flux tubes 
based on observational data. The reduction of the vector magnetograph data is described in § 
2, and the interpretation of these data in terms of photospheric boundary conditions on the 
coronal magnetic field is discussed in § 3. The method for constructing a forte-free represen-
tation of the coronal field is described in § 4, and the analysis of loop thickness variations is 
presented in § 5. Our results are described in § 6, and our conclusions summarized in § 7. 

2. OBSERVATIONS 

The data used in this analysis were obtained with the Stokes Polanmeter at Mees Solar 
Observatory on Haleakala (Mickey 1985). NOAA active region 5747, which produced a series 
of major flares, was observed 1989 October 18-22. Here we use the data obtained on 
October 20 (scanned from 17:41 to 18:33 UT), which are of superior quality compared to the 
other days. 

A full account of the observations and data reduction techniques has been given by 
Canfield et al. (1993) and Leka et al. (1993). Briefly, the Stokes Polanmeter obtained full 
Stokes profiles in the magnetically sensitive Fe I lines at 6301.5 and 6302.5 A. building up a 
raster by scanning point-by-point over the active region, in steps of 5.6", with a field of view 
at each pixel of 6". The data were reduced using the least-squares fitting code of Skumanich 
& Lites (1987). Raster points at which the polarization was too low for a least-squares fit 
were reduced using the integral method (Ronan, Mickey & Orrall 1987). The ambiguity in 
direction of the transverse magnetic field in the resulting vector magnetogram was resolved as 
described by Canfield et al. (1993), and the magnetogram transformed to disk center. The 
vertical magnetic field and current density, computed from the curl of the horizontal field, 
define the photospheric boundary conditions needed to reconstruct the coronal force-free field. 

We have also used observations of a near-potential active region for comparison with the 
highly nonpotential AR 5747. These observations, of AR 7490, magnetic classification ot, 
were scanned with the Haleakala Stokes Polanmeter on 1993 April 28 from 17:31 to 19:03 
UT, and reduced using the same procedure outlined above. 

3. INTERPRETATION OF OBSERVATIONS 

Since the photosphere is probably not force-free at the observed level (i.e. the depth of 
formation of the spectrum lines used in the analysis), is it then possible to use this data to 
compute a force-free field? The effect of mechanical forces can be considered in the limit of 
two spatial scales: (1) individual flux tubes which are much smaller than both the spatial reso-
lution of the instrument and the global size scales of the active region, and (2) the large scale 
field of sunspots. 

Outside sunspots, the magnetic field at the photosphere does not vary smoothly, but 
occurs in flux tubes of high field strength (1500 G) but very small size scale (=150 kin), 
separated by field-free photosphere (Stenflo 1989). Therefore the field lines fan out rapidly as 
they leave the pressure-confining photosphere. Since the field spreads out to become force-free 
only a few hundred km above the photosphere, the discrete nature of the field at the lower 
level should not affect the global structure of the corona. The "spread-out" field is the 
appropriate one to use as a boundary condition in computing the coronal field. The question is 
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whether we can approximate this field using the data available. Since the spatial resolution of 
the polarimeter, 4-5 Mm, is much coarser than the fine scale photospheric structure and is of 
order the smaller size scales important to the global structure of the active region, the polarune-
ter does indeed yield a suitably smoothed field, provided it correctly measures the average field 
strength. The circular polarization signal is pmporuona1 git udinal fie strength, and 
so measures the average field directly. The linear polarization signal, however, is proportional 
to the square of the transverse field, and thus overestimates the average transverse field when 
the filling factor is low (Stenflo 1985). In strong field regions (sunspot umbrae), this is not a 
problem, since the filling factor is very close to unity. Over most of the area of significant flux 
in the active region (penumbrae, plage), we can use the information in the line profiles to 
determine the filling factor (Skumanich & Lites 1987), so that the average transverse field over 
a pixel can be derived, at least to first order. In weak field regions (where there is little visual 
indication of the presence of magnetic field), the polarization signal is too small for a least-
squares fit, and we use the integral method (Ronan. Mickey & Orrall 1987), which does not 
yield a correction for the filling factor. Since the filling factor is generally small in these areas, 
the transverse field may be overestimated. However, the contribution to the active region flux 
from these weak field regions is of order 1% in the present dataset, so these errors will not 
have an appreciable effect on the accuracy of the force-free solution. 

Turning to the large scale mechanical forces present in the photosphere, i.e. the gas pres-
sure confining sunspots, the distribution of the photosphenc magnetic field must satisfy a 
number of constraints to be compatible with an overlying force-free field (e.g. Low 1985, Aly 
1989). First, in order for the region to be considered isolated, the magnetic flux and verdcal4 
current must balance within the field of view. In the present case, both balance to within at 
few percent Second, the total force and torque exerted on the photosphere by the overlying: 
magnetic field must vanish. For this dataset, the horizontal forces and the vertical torque ale 
of order a few percent (normalized by the mean magnetic pressure integrated over the photo-
sphere, and in the case of torque multiplied by the size of the active region), but the vertical 
force and horizontal torque are of order 10%. These particular discrepancies are not unex-
pected however, since the photosphere is manifestly not force-fie, in the sense that the mag-
netic field in sunspots would be expelled from the photosphere by the buoyancy force if it was 
not attached to a subphotosphenc flux tube. The total vertical force on the photosphere is 
given by F. = f(B,,—B,2) dA /8i, where B,, and B, are the magnetic field components normal to 
and parallel to the photosphere. In a sunspot, the field lines are pushed together into a more 
vertical orientation than if they were force-free, yielding a positive F,,. However, the currents 
associated with this force circulate horizontally around the flux tubes, extending at most a few 
pressure scale heights (a few hundred km) above the observed level. They do not enter the 
corona, and therefore do not influence in a direct way the global structure of the coronal mag-
netic field. These currents cannot be detected in a vector magnetogram made at one level in 
the atmosphete, which can measure only the vertical component (.1,,) of the current. The non-
force-free nature of sunspots is not expected to change the structure of the coronal field in any 
substantial way (Aly 1989). 

Another constraint which the photospheric field must satisfy if the coronal field is to be 
force-free concerns the distribution of a=J,,/B,,. Since a is conserved along each field line, 
there must be the same number of footpoints of field lines with a given value of a in each 
magnetic polarity. A study of this same magnetogram (Canfiek al. 1991) revealed 
discrepancies in the distributions of flux over a which seemed to be significantly above the 
noise. One of our long-term aims is to investigate the response of the numerical model to such 
discrepancies in the data.
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4. COMPUTATION OF THE CORONAL MAGNETIC FIELD 

To compute the coronal magnetic field, a 313 resistive MHD code (Mikic, Barnes & 
Schnack 1988, Mikic & Barnes 1993) is used to evolve the field until it satisfies the desired 
boundary conditions at the photosphere. The magnetogram, which does not map onto a rec-
tangular region of the solar surface, is first interpolated onto a Cartesian grid. This is embed-
ded in a larger field-free region to isolate the active region from the effect of the computational 
boundaries. The grid is nonuniform in the horizontal dimensions, to remove the boundaries as 
far as possible while maintaining resolution in the region of interest. The grid is also nonuni-
form in the vertical direction, to resolve rapid variations in the field close to the photosphere. 
The 313 grid (60x60x40 mesh points) forms a cuboid 366 Mm on a side, roughly four times 
the extent of the strong-field region of the spot group, and 244 Mm high. The potential field 
defined by the normal component of the photospheric field, B,1 , is computed first, then voltages 
are applied at the photosphere to drive currents through the corona. The voltages are ramped 
up over time and adjusted adaptively to drive the currents towards the desired normal current 
density, .1,1 . Resistivity allows the evolving field lines to change their topology as required to 
reach a force-free state. Once the field is close to its final configuration, the resistivity can be 
reduced, and if the boundary data are perfectly consistent, a force-free field will ensue. 

In practice, data imperfections, the effect of discretization, aid possibly mechanical forces 
in the photosphere, prevent a completely force-free state from being attained. We have found 
that a small remnant JxB force is present near the photosphere, although it decreases rapidly 
with height. The corresponding steady state solution has finite flows, with steady electric fields 
at the boundary to balance the resistive dissipation; the JxB force is balanced by (artificially 
large) viscous forces. In order to obtain a completely force-free field we have also tried a 
different prescription. Starting from the abovementioned steady state solution, we reduce the 
resistivity to zero while fixing the positions of the magnetic field footpoints, without applying 
boundary potentials, and allow the field to relax. We find that the field then relaxes to a 
force-free state in which the normal electric current density at the photosphere does not match 
exactly that deduced from the vector magnetogram. For the data reported here, the normal 
electric current density is within 20-30% of the magnetogram current density. The two mag-
netic fields produced by this technique can be considered as two (equally good) approximations 
to the true field. At heights greater than 5 Mm above the photosphere, the two coronal fields 
do not differ significantly. The latter field is used in the analysis described in this paper. 

S. ANALYSIS OF LOOP THICKNESS VARIATIONS 

To extract the information used in this study from the computed coronal field, we trace 
field lines by integrating the equation dr/d.c = B/lB I, where r is the position vector and .c is 
arclength along the field line, from selected photospheric footpoints. An adaptive-step second 
order Runge-Kutta algorithm, with trilinear interpolation to obtain the magnetic field between 
mesh points, proves to be of adequate accuracy (r.m.s. error in footpoint position of approxi-
mately 0.03 mesh points when tested on a dipole field). 

For the purposes of this study, we adopt the simple "microscopic" definition of flux tube 
cross-sectional area, A = 01B, where CD is the (infinitesimal) magnetic flux in an elementary 
flux tube. The variation in diameter (width) along an elementary flux tube, assuming, to a first 
approximation, a circular cross-section, is then given by w B'2. The variation of w along a 
field line (of interest for particle mirroring studies) can be studied by plotting w against s. 
The apparent thickness of soft X-ray emitting loops, seen in projection against the solar disk, 
can be studied by plotting w as a function of distance along the loop projected onto the 
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photosphere. We have not evaluated quantitatively the actual width o a "macroscopic" flux 
tube. A more detailed investigation would have to ac-- --Jnt for the changing shape of the bun-
die of field lines along the length of the loop. We do. owever, compare qualitatively macros-
copic flux tubes in the highly nonpotential AR 5747 with similar macroscopic flux tubes in the 
near-potential region AR 7490. 

In the complicated three-dimensional structure of the active regiofl .iagnetic field, many 
of the variables are correlated (e.g. the magnetic field falls with increasing height, strong 
currents only occur in regions of strong field, etc.), and it is difficult to demonstrate directly 
that field-aligned currents are responsible for changes in the shape of flux tubes. Here we 
adopt three approaches: 

First, we compare the thickness variation along field lines traced in the computed force-
free field with field lines traced in the potential field computed from the same boundary data, 
but ignoring currents entering the corona. We choose footpoints in the areas of strong photos-
pheric current density. Here we deal with the morphology of only one active region, but a 
drawback of this approach is that the potential field can be criticized as unphysical: for 
instance, force-free field lines starting from footpoints in a sunspot may end in a sunspot of 
opposite polarity, while potential field lines starting from the same foolpoints may end in a 
weak field region. 

Second, we have studied the correlation between current density at the footpoints of the 
field lines and the "expansion factor" (following the definition of Klimchuk et al. 1992, but 
applied to "microscopic" flux tubes). Klimchuk et al. "straighten" observed loops, seen pro-
jected against the photosphere, and define the expansion factor as the ratio of apparent loop 
thickness at the midpoint between the footpoints to the apparent thickness at the narrower foot-
point They define the "footpoints" to be the locations at which the soft X-ray intensity drops 
to half of the maximum intensity along the loop. Since we do not have a measure of the X-ray 
bnghmess of our model loops, we take the "footpoints" to be 15% of the loop length (pro-
jected) in from the true photospheric footpoints. This corresponds to the average distance 
between the half-intensity points and the apparent ends of the observed loops (Klimchuk, 
private communication). Because of the correlation of strong current with strong field, and 
stronger fields with lower heights, careful interpretation of these scatter plots is necessary. 

Third, to achieve a comparison with physically realistic potential field lines, and also to 
examine the characteristics of "macroscopic" flux tubes, we compare the shapes of flux tubes 
in the force-free field of AR 5747 (again rooted in strong current regions) with those in a 
different active region which is close to potential (AR 7490, observed with the Haleakala 
Stokes Polarimeter 1993 April 28). Although the potential field lines are physically realistic in 
this case, the active region has a very different character from AR 5747. 

6. RESULTS 

Figure 1 shows the magnetogram of AR 5747 with field lines projected against the photo-
sphere. Contours show the vertical component of the photospheric magnetic field. In the left 
panel, the field lines were computed using the reconstructed force-free field, while the field 
lines in the right panel were computed from the potential field obtained by ignoring the 
currents entering the corona. The same footpoint positions, chosen to lie in the areas of strong 
vertical current (in both magnetic polarities), were used ir. '-acing bc-a s o' Aleld lines. It 
will be noted that in the potential field calculation, field fincs originating in the left part of the 
positive spot cross the neutral line in a perpendicular direction, while in the force-free calcula-
tion, the same field lines are strongly sheared, nmning a long distance parallel to the neutral 
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line, to end in the upper of the two negative spots. 

Figure 2 shows the width (diameter) of elementary flux tubes (assuming that the cross-
section remains circular) as a function of distance along the loop, projected onto the photo-
sphere. The widths are normalized to unity at the foopoint with the stronger field. This simu-
lates the measured width of soft X-ray loops seen in projection against the solar disk. On the 
left are field lines from the computed force-free field; on the right, for comparison, are field 
lines from the potential field, computed by ignoring the currents entering the corona from the 
photosphere. The difference is striking. Most of the force-free flux tubes are of remarkably 
uniform diameter over most of their lengths, narrowing only close to their photospheric foot-
points (cf. Golub 1991). The potential field lines, in contrast, show no such attribute. The 
variation in thickness of the force-free flux tubes may be estimated by eye as being of order 
10-20% over most of their length, as observed by Klimchuk et al. (1992). A comparison of 
the computed shapes with the observed shape shown in Figure 2 of Klimchuk et al. (1992) 
seems compelling. 

To gain insight into the difference between the force-free and potential fields, it is useful 
to consider the variation in area along each field line as a function of arclength from each foot-
point Figure 3 shows such a plot, in which each curve represents the portion of a field line 
from its footpoint to its widest point. In both the force-free and potential fields, the initial rate 
of increase in diameter with distance from the footpoint is about the same up to a distance of 

10 Mm, which corresponds roughly to the radius of the large spots. Therefore, close to the 
footpoints the decrease in field strength is controlled largely by the fanning out of field lines as 
they leave the sunspots, independent of the character of the active region on the global scale. 
At greater heights, there is a significant difference, with the diameter of current-carrying flux 
tubes increasing much less rapidly than in the potential field case. 

We have attempted to quantify the effect of field-aligned current on the shape of flux 
tubes by using the "expansion factor" as defined by Klimchuk et al. (1992). As mentioned in 
§ 5, it is difficult to unambiguously relate the shape of the flux tube to current density, since, 
for example, the strongest currents occur only in the strongest magnetic fields; because the sun-
spot group is relatively compact in this case, these field lines are low-lying. Therefore scatter 
plots of expansion factors of selected field lines against current density at the photosphere (Fig. 
4a), and of expansion factor against maximum height attained by the field line (Fig. 4b), both 
show a correlation. The plot of expansion factor against field strength at the photosphere (Fig. 
4c) shows less correlation. In these plots, we have averaged the current densities and field 
strengths between the two footpoints, and normalized them to the peak values of approximately 
27.2 mA m' 2 and 2840 0 present in the magnetogram. The maximum heights were normal-
ized to 50 Mm, the distance between the centers of the two largest sunspots. The set of field 
lines used here is larger than the set shown in Figure 1, and includes field lines from regions 
of low photospheric current density. We excluded from the set a few field lines with apices 
higher than the maximum height shown in Figure 4b; some of these have much larger expan-
sion factors than shown here, and the highest tend to be distorted by the upper computational 
boundary, 

Can we conclude that current-carrying field lines are of more constant cross-section than 
non-current-carrying field lines, or should we conclude that lower-lying field lines are of more 
constant cross-section? It is clear from Figure 4a that on average the expansion factor 
decreases with increasing current density. For field lines carrying significant currents (> 1/4 of 
the maximum current density), the expansion factor is below 1.5, regardless of the height the 
field line reaches. The average expansion factor in the high-current range is approximately 1.3, 
somewhat larger than the value of 1.13±0.10 found by Klimchuk et al., but nevertheless 
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suggesting a significant result However, some loops carrying only small currents also exhibit 
small expansion factors (lower left area of Fig. 4a.) 

In Figure 4b we see that the smallest expansion factors of all occur for very lowlying 
loops (H < 0.1, or 5 Mm.) These are short loops (average length around 15 Mm) bridging the 
neutral line. Because of their small size compared to the global scale of the active region, the 
magnetic field strength does not vary much along these loops. Their small expansion factors 
are due to their situation in a two dimensional arcade field, while higher field lines exparu, in 
three dimensions. Although these field lines are strongly sheared in this case, they would have 
relatively constant cross-sections even in a potential field. If the potential field of an active 
region could be represented by a single buried horizontal dipole, at depth D, (not a good 
approximation in general) the field strength at the loop tops (for field lines lying in the vertical 
plane above the dipole) would fall off with height H, as (D+H)-3, implying an increase in 
flux tube diameter at the apex with height of (D +11 )3f2• Measured along an individual field 
line, the flux tube diameter would increase linearly with height, h, except close to the apex 
(h=H):

woc(D+h) (l- 314[(D+h)1(D+H)j 713 ) 14 .	 (I) 

This yields the expansion factor
f=1+(513)HID HD 

f='I(1+HID) H>D 

Estimating a dipole depth of 50 Mm, the distance between the biggest spots, then leads us to . 
conclude that field lines (in the vertical plane) with apex heights below 10 Mm (0.2 norinaliml 
units) will have expansion factors of less than 1.33 solely because their lengths are short coin-
pared to the scale size of the global field. This is consistent with the behavior seen in Figure 
4b. For higher-lying field lines (those with 0.2cH <0.7, corresponding to maximum heights 
of 10 Mm to 35 Mm) we attribute small expansion factors to the presence of field-aligned 
currents. For H >0.7 (35 Mm) the lower limit on the expansion factor seems to drift upwards, 
becoming greater than 1.5 for field lines reaching heights of 50 Mm. The largest expansion 
factors shown in Figure 4b are consistent with the result of equation (2) for H = D. 

To clarify the relationship implied by these correlations, we have constructed a scatter 
plot of the expansion factors, 1. against the linear combination of the variables, 
u =a J + b B + c H, where a, b, and c are constants to be adjusted to minimize the scatter of 
points in a least squares sense. The function fitted to the data was chosen to be a curve 
defined parametrically by cubic polynomials u(t) and f(t). The best correlation between u 
and f, shown in Figure 4d, was found for the combination of variables, u = 
J -0.18 H -0.098. Figure 4d also shows the fitted curve. This confirms the results sug-
gested in Figure 4a-c: the magnetic field strength at the footpoint does not greatly influence the 
expansion factor, the height reached by the field line has a greater effect; but the primary deter-
minant of expansion factor is the current density. 

So far we have considered elementary flux tubes, assumed to be of circular cross-section. 
Lastly, we compare "macroscopic" flux tubes which carry substantial currents in the highly 
nonpotential active region AR 5747, with similar flux tubes traced in a near-potential active 
region. AR 7490. The differing appearances of the "loops" shown in Figure 5 supports our 
assertion that field-aligned currents are responsible for the near-invariant cross-sections of soft 
X-ray loops. The loops shown in the nonpotential active region probably have expansion fac-
tors of no more than 2, while the expansion factors of the loops in the potential active region 

(2) 
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are clearly greater than 2.

7. CONCLUSIONS 

The intriguing observation that many soft X-ray emitting loops, whose emissions prob-
ably outline bundles of magnetic field lines, appear to be of near-constant cross-section, can be 
explained if the loops lie on strongly sheared, current-carrying field lines. Not only does the 
magnetic field strength fall less rapidly with height when current is present in the corona, but 
the twist in the field lines tends to make the force-free field lines enter the photosphere at a 
steeper angle, foreshortening the tapered section of the flux tubes seen in projection against the 
solar disk. For the dataset examined here, the variations in loop thickness are of order 30%. 
While larger than the 13% variation observed by Klimchuk et al. (1992), the variations are 
significantly less than those of a potential field. We find also that field lines in the nonpoten-
tial active region which do not carry significant currents exhibit area variations more like the 
potential field than like the current-carrying field lines illustrated here. Thus the observation 
that bright soft X-ray loops tend to be of uniform width suggests, as mentioned by Klimchuk 
et al., that coronal heating is associated with strong field-aligned currents. Lowlying loops 
which are short compared to the global length scales of the active region form an exception to 
this statement, since they can have near-constant field strength along their Lengths. A goal for 
the future will be to model the coronal magnetic field in an active region for which cotemporal 
soft X-ray observations are available. We anticipate that the techniques of modeling 3D 
force-free coronal fields employed here will answer many other questions regarding active 
region magnetic topology and energetics. 

This research was supported by NSF grant ATM-9108369 to SAIC and by NSF grant 
ATM-9106052 to the University of Hawaii. We thank Jim Klimchuk for helpful information 
and comments, and Bob Rosner for constructive criticisms which have mreadv imnmveñ the 
analysis.	
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FIGURE CAPTIONS 

Fig. 1 - Magnetogram of NOAA active region 5747 on 20 October 1989, after resolution of 
the ambiguity in the azimuth angle of the transverse field and rotation to disk center. Solar 
North is approximately 200 anticlockwise from the top. Contours (at approximately 160x2" 
Gauss, n=0,I,2,3,4) show the vertical component of the magnetic field, with solid lines mark-
ing positive polarity and broken lines negative polarity. In the left panel field lines with foot-
points in areas of high photosphenc current density are shown projected against the photo-
sphere. In the right panel field lines with the same staiting footpoints, traced in the potential 
field obtained by ignoring the currents entering the corona, are shown for comparison. 

Fig. 2 - Diameters of elementary flux tubes along each of the field lines shown in Figure 1, 
as a function of distance along the field lines, projected onto the photosphere. The left panel, 
showing the field lines computed from the reconstructed force-free field, illustrates the widths 
of coronal loops seen in projection against the solar disk (if the active region was at disk 
center). The right panel shows the diameters of flux tubes on the potential field lines with the 
same set of starting footpoints. While the potential field exhibits the expected variation, the 
force-free flux tubes are of remarkably constant thickness over most of their lengths (cf. Fig. 2 
of Klimchuk et al. 1992). 

Fig. 3 - Diameters of flux tubes as a function of arclength, measured along the field lines 
from each footpoint, for the force-free field (left panel) and the potential field (right panel). 
The potential field flux tubes clearly expand much more rapidly than the force-free flux tubes. 

Fig. 4 - Expansion factor (the ratio of flux tube width at the apex of the loop divided by the 
width near the narrower footpoint), for a set of field lines traced in the nonpotential force-free 
field, with a range of magnetic field strengths and current densities at their footpoints, and a 
range of apex heights. Current densities and field strengths represent averages over the two 
footpoims, and are normalized to peak values of 27.2 mA m 2 and 28400. The apex heights 
are normalized to 50 Mm, the distance between the main spots. The expansion factor 
decreases with increasing foolpoint current density [panel (a)], and increases with increasing 
apex height [panel (b)J, but there is little correlation between expansion factor and field 
strength [panel (c)]. The combination of these parameters shown on the abscissa of panel (d) 
gives, in a simple linear model, the tightest correlation. The line represents the least-squares fit 
of a cubic parametric curve, (u(t),f(t)). For current densities> 1/4 of the maximum foot-
point current density in the active region, the loops expand only about 30%. While this is 
larger than the expansion factor of 13±10% found by Klimchuk et al (1992), it is considerably 
less than expected if the field were potential. Small expansion factors are also seen for lowly-
ing field lines in panel (b), even where the current density is small [the points to the lower left 
in panel (a)]. 

Fig. 5 - "Macroscopic" magnetic loops, formed by tracing bundles of field lines in (a) the 
strongly nonpotential active region AR 5747, and (b) the near-potential active region AR 7490, 
superposed on the photospheric magnetograms showing contours of the vertical magnetic field 
strength. The nonpotential loops appear to have a more uniform thickness than the potential 
loops.
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ABSTRACT 

The ideal and resistive properties of isolated large-scale coronal 

magnetic arcades are studied using axisymmetric solutions of the time-

dependent magnetohydrodynamic (MI-ID) equations in spherical geometry. 

We examine how flares and coronal mass ejections may be initiated by 

sudden disruptions of the magnetic field. The evolution of coronal arcades in 

response to applied shearing photospheric flows indicates that disruptive 

behavior can occur beyond a critical shear. The disruption can be traced to 

ideal MHD magnetic nonequilibrium. The magnetic field expands outward 

in a process that opens the field lines and produces a tangential discontinuity 

in the magnetic field. In the presence of plasma resistivity, the resulting 

current sheet is the site of rapid reconnection, leading to an impulsive release 

of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these 

results to previous studies of force-free fields and to the properties of the 

"'open-field" configuration. We show that the field lines in an arcade are 

forced open when the magnetic energy approaches (but is still below) the 

open-field energy, creating a partially open field in which most of the field 

lines extend away from the solar surface. Preliminary application of this 

model to helmet streamers indicates that it is relevant to the initiation of 

coronal mass ejections. 

Subject headings: MI-ID - Sun: magnetic fields - Sun: corona - Sun: flares 

Suggested running head: DISRUPTION CORONAL ARCADES



1. INTRODUCTION 

Coronal mass ejections and solar flares are spectacular manifestations 

of solar activity. It is believed that they are initiated by the sudden release of 

energy stored in the coronal magnetic field. The magnetic energy in the 

corona can be built up through shear introduced by photospheric motions. In 

principle, the free magnetic energy (that in excess of the energy in the 

potential field) is available for release. Although there is ample observational 

evidence for the existence of highly non-potential coronal magnetic fields in 

active regions (e.g., Gary et al. 1987; Hagyard 1988; Canfield et al. 1993; Leka et 

al. 1993), which consequently have considerable free magnetic energy, it has 

been difficult to demonstrate theoretically that this energy can be released 

impulsively. In addition, since coronal mass ejections drive solar material 

out of the corona, at least some of the magnetic field lines must also be 

opened. 

Many investigations have attempted to explain how energy can be 

released from the coronal magnetic field (Low 1981; Birn & Schindler 1981; 

Zwingmann 1987; Priest 1988; Priest & Forbes 1990; Forbes & Isenberg 1991; 

Forbes 1992; Isenberg, Forbes, & Démoulin 1993), including studies of force-

free equilibria (Barnes & Sturrock 1972; Yang, Sturrock, & Antiochos 1986; 

Klimchuk, Sturrock, & Yang 1988; Klimchuk & Sturrock 1989; Finn & Chen 

1990; Porter, Klimchuk, & Sturrock 1992; Klimchuk & Sturrock 1992; 

Roumeliotis, Sturrock, & Antiochos 1993), the dynamical evolution of 

arcades (Miki(, Barnes, & Schnack 1988; Biskamp & Welter 1989; Forbes 1990; 

Steinolfson 1991; Wu et al. 1991; Finn, Guzdar, & Chen 1992; Inhester, Birn, &
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Hesse 1992; De Vore & Antiochos 1993), the equilibrium properties of open 

and partially open fields (Wolfson & Low 1992; Wolfson 1993; Low & Smith 

1993), and the asymptotic properties of sheared coronal fields (Aly 1984, 1985, 

1988, 1990). However, a basic problem remains unresolved. Aly (1984, 1991) 

and Sturrock (1991) have found that the energy in an open-field 

configuration 1 is an upper limit to the magnetic energy for all force-free 

equilibria. 2 Therefore, an impulsive transition from a closed, force-free 

cc figuration to an open field would appear to be energetically impossible. 

How then can a phenomenon such as a coronal mass ejection be initiated by 

magnetic energy release? 

To answer this question we have investigated the dynamical evolution 

of an isolated arcade in axisymmetric spherical geometry using the ideal and 

resistive magnetohydrodynamic (MHD) models. Although this is an 

idealized model problem, it significantly extends previous models of coronal 

fields, and has allowed us to answer several important theoretical questions 

related to the disruption of coronal arcades. When a dipole field is subjected 

to a prescribed photospheric shear flow profile, its magnetic energy increases 

until it approaches the open-field energy, at which point the field 

configuration becomes very sensitive to additional shear, expanding 

considerably and producing a concentration of the electric current density. 

Past a critical level of shear, when the magnetic energy approaches, but is still 

IAn open field is a configuration in which one end of every field line intersects the 

photosphere, the other end extending out to infinity (e.g., Barnes & Sturrock 1972; Sturrock 

1991, and Section 5.2 of this paper). 

2When the configuration has field lines which are not connected to the photosphere, the force-

free field energy can exceed the open-field energy (e.g., Priest & Forbes 1990).



below, the open-field energy, the configuration experiences ideal MHD 

magnetic nonequilibrium, leading to an opening of the field and the 

formation of a tangential discontinuity in the magnetic field. The 

assumption of quasi-static behavior (in which the field is assumed to evolve 

through a series of equilibrium states) breaks down when the critical shear is 

exceeded, since the equilibration time for the expanding field becomes long, 

requiring a dynamical model to describe the system properly. The appearance 

of a tangential discontinuity implies that even a small plasma resistivity 

becomes important. The resistive MHD evolution shows that finite 

resistivity resolves the tangential discontinuity into a current sheet at which 

there is rapid reconnection of the magnetic field, leading to the release of 

magnetic energy, fast flows, and the ejection of a plasmoid, demonstrating 

that magnetic energy can be released impulsively in a coronal arcade. The 

opening of the field, and the subsequent reconnection, have been predicted 

on the basis of the asymptotic properties of sheared force-free arcades (Aly 

1985, 1990). 

There is considerable confusion in the literature in the terminology 

that has been used to describe the phenomenon of "absence of MHD 

equilibrium." The terms "loss of equilibrium" and "magnetic 

nonequilibrium" have become popular. Although they are used 

synonymously at times, we wish to distinguish between them. We refer to 

magnetic none quilibrium as the ideal MI-ID process by which a plasma with 

an initially smooth magnetic field evolves into a configuration with 

inevitable tangential discontinuities in the magnetic field (Parker 1972, 1979;
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Priest 1981; Moffatt 1985; Vainshtein & Parker 1986; Vainshtein 1987). In the 

presence of finite plasma resistivity these tangential discontinuities are 

resolved into thin layers called current sheets (e.g., Parker 1986). For 

simplicity we shall loosely refer to both the tangential discontinuities which 

occur in ideal MHD and the current sheets which occur in resistive MHD 

simply as current sheets. The term loss of equilibrium has been used to 

describe the disappearance of solutions to the equilibrium equations in 

response to the variation of an external ,arameter. [The external parameter 

could define the magnetic field or pressure profile (e.g., Low 1977; Birn & 

Schindler 1981), or the displacement of the magnetic field footpoints (e.g., 

Priest & Mime 1980).] Loss of equilibrium is characterized by the 

disappearance of a local extremum in the potential energy of the system when 

the external parameter reaches a critical value. While this "critical" behavior 

has been interpreted as an eruption of the configuration (Birn & Schindler 

1981), it does not necessarily have physical significance (Aly 1985; Klimchuk & 

Sturrock 1989; Finn & Chen 1990). 

In the definition of loss of equilibrium there is no explicit reference to 

the smoothness of the magnetic field. It is this property that distinguishes 

magnetic nonequilibrium from loss of equilibrium. Since it is necessary to 

know the potential energy surfaces of the configuration to determine whether 

loss of equilibrium has occurred, in our dynamical approach it is not possible 

to explicitly identify loss of equilibrium. On the other hand, since we can 

detect when a current sheet forms, it is possible to identify the onset of 

3Aithough this paper illustrates magnetic nonequilibrium, the phenomenon has unfortunately 

been translated from the original Russian as loss of equilibrium!
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magnetic nonequilibrium. It is conceivable that magnetic nonequilibrium 

and loss of equilibrium might be related, i.e., that magnetic nonequilibrium 

might result from loss of equilibrium, but this must be left as an open 

question. 

The topic of true interest is how an arcade evolves subsequent to 

reaching the critical point. The most appropriate model in this case becomes 

a dynamical one, in which the time-dependent behavior is followed 

explicitly. The dynamical approach resolves many questions that have arisen 

from previous studies of sequences of equilibria. In Section 5.2 we illustrate 

how magnetic nonequilibrium arises during the dynamical evolution of an 

arcade in response to photospheric flow. 

The main emphasis of this paper is to present a detailed study of the 

arcade disruption within the ideal MHD model and to indicate its 

relationship to previous theoretical work. However, we do discuss the 

general effect of finite plasma resistivity on the disruption in order to contrast 

it with ideal MHD behavior, and to emphasize the necessity of finite 

resistivity for impulsive energy release. The resistive behavior will be 

investigated more thoroughly in a future paper. In Sections 2, 3, and 4, we 

describe the plasma model, including the initial and boundary conditions and 

the plasma parameters. In Section 5 we describe our results, and in Section 6 

we discuss the implications for the solar corona. 

2. MODEL DESCRIPTION 

Our motivation is to extend previous studies of the dynamical 

evolution of coronal arcades (Mikie et al. 1988; Biskamp & Welter 1989; Finn
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et al. 1992). We adopt a spherical coordinate system, finite plasma pressure, 

mass evolution, and gravity, and we use nonuniform grid cells to minimize 

the effect of artificial computational boundaries. We solve the following 

time-dependent MHD equations numerically in spherical coordinates: 

VxB=J,	 (1) 

(2) 

E+vxB=?jJ,	 (3) 

at 
+V. (pv) = 0 ,	 (4) 

P+v . Vv)=JxB_VP+Pg+V. (vPVv)	 (5) 

at 
+V. (pv) = .-(y-1)pV.v + H,	 (6) 

where B is the magnetic field intensity, J is the electric current density, E is the 

electric field, v is the plasma velocity, p and p are the plasma pressure and 

mass density, g = —goRo2/r2 is the gravitational acceleration, g 0 = 2.74 x 

cm s 2 is the surface gravity, R0 = 6.96 x 105 km is the solar radius, 77 is the 

plasma resistivity, v is the kinematic plasma viscosity, and y is the ratio of 

specific heats. In practice, we use the vector potential A, where B = V x A, to 

implement the algorithm. This model is applicable to both ideal MHD, in 

which we set 77 =0, and to resistive MHD, when 71 is finite. The heating term 

in the energy equation (6) accounts for heating due to resistive and viscous 

dissipation, H = (7— 1)( 77 12 + vpVv:Vv). Since numerical resolution



constraints (see the Appendix) limit us to using enhanced values for the 

resistivity and viscosity compared to coronal values, the associated heating 

rate may be unphysically large. We therefore frequently neglect this heating 

by setting H =0; this was done for the simulation described in Section 5.1. We 

have verified that the magnetic field evolution is insensitive to the presence 

of this heating term. The plasma beta, defined by /3 = 8 irp / B 
2, measures the 

ratio of plasma to magnetic pressure. These equations are solved in 

axisymmetric spherical coordinates (r,9), in the domain (R 0 :5 r :5 R1; 

o :!^ 0 :5 180 1), where r is the distance from the center of the Sun, and 9 is the 

solar latitude (with 9 = 0 and 0 = 180° representing the North and South 

poles). In this two-dimensional approximation all quantities are assumed to 

be independent of the solar longitude 0. In the future we plan to extend this 

model to problems in which quantities may vary in all three dimensions 

(r,0,Ø). The Alfvén speed is given by VA = Distances are normalized 

by R 0, and the time scale is normalized by the Alfvén time, VA = Ro/vA, 

corresponding to a length scale R0, evaluated at the equator at the base of the 

corona (r = R0, 9= 900). 

The principal results in this paper were calculated using these full 

MHD equations. In order to understand the nature of the disruption, and to 

compare directly with previous theory of force-free fields, we have also used a 

subset of this model: in the zero-beta model we neglect the plasma pressure 

and gravitational forces by setting p = 0 and g = 0, and we assume a fixed 

plasma density profile p(r). This model approximates the behavior of the 

low-beta coronal plasma, and contains the same magnetic phenomena that 

are present in the full MHD equations. In particular, equilibria in the zero-
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beta ideal MHD model are force-free (J x B = 0), so that it is possible to 

compare our results directly to previous analytic and numeri -. a1culatons 

of force-free fields (see Section 5.2). 

3. INITIAL CONDITIONS AND PLASMA PARAMETERS 

The initial state is a plasma in hydrostatic equilibrium with a dipole 

magnetic field. The pressure and density profiles are chosen to be spherically 

symmetric, p = p(r) and p = p(r), with base values at r = R0 given by Po and Po' 

with a uniform entropy, pp = PoPo The dipole magnetic field, 

2B0R03cosO	 B0R03sin9 
Br =	 , B8=	 , B0=0, 

is a potential field (J =0) outside the Sun, r 2t R0. This initial state satisfies the 

static equations (1)-(6) with v = 0 and E = 0. The explicit solution for the 

pressure and density is 

P = 
po[1_-"goRopo,1 R0 11''_1) ypo 

P = Po() 

The "photospheric" boundary at r = R0 is to be regarded as the base of the 

corona (just above the transition region), since we do not attempt to resolve 

the photospheric scale height; this assumption is appropriate because we are 

interested in modeling the large-scale (- R0) behavior of the corona. The 

following boundary values (at r = R0) were used: magnetic field strength at 

the equator B0 = 2.2 G; mass density Po = 1.67 x 10_16 g cm-3 (corresponding to 

an ion and electron number density no = 10 8 cm-3); temp.rature 

T0 = 1.4 x 106 K (defined by the ideal gas law Po = 2n0kT0). The ratio of specific 
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heats is chosen as y = 1.05 to produce a temperature which has little variation 

in the corona (Parker 1963). This hydrostatic atmosphere has plasma 

properties similar to the large scale corona, but does not include the solar 

wind. [The solar wind creates a helmet streamer configuration (Pneuman & 

Kopp 1971); the effects of shear motions on helmet streamer configurations 

(e.g., Linker, Van Hoven, & Schnack 1990; Linker, Van Hoven, & McComas 

1992) are discussed briefly in Section 6, and will be studied in detail in a future 

paper.] Figure 1 shows the variation of the thermodynamic variables in the 

hydrostatic equilibrium. At the equator, at r = R 0, these parameters give a 

sound speed c = 157 km s 1 , an Alfvén speed VA = 470 km s- , and 13=0.2. At 

the poles, V A = 940 km s-1 and f3 = 0.05. The Alfvén time is rA = 1,449 sec (24.2 

minutes). 

The Lundquist number S is defined as the ratio of the resistive 

diffusion time rR = 41rR02 / 
77c2, to the Alfvén time r. For the Spitzer value of 

the plasma resistivity at a temperature of 1.4 x 106 K, we find that S = 5 x 1014. 

This large value of S in the corona makes the ideal (i.e., zero resistivity) MHD 

behavior of coronal fields a topic of interest. As will be shown by the results, 

our simulations with ii = 0 approximate ideal behavior very closely. During 

the resistive computations, such a small value of the plasma resistivity 

cannot be treated accurately in a numerical simulation. For the mesh 

resolutions used in this paper we have been able to accurately simulate the 

resistive plasma evolution at the (much-enhanced) uniform resistivity 

corresponding to S = 104 . The Appendix contains a discussion of the 

numerical diffusion in the algorithm and the extent to which ideal MHD 

behavior can be modeled by a numerical solution of the MHD equations. For

Ii 



a uniform plasma viscosity, the viscous diffusion time is defined by 

TV = R/ v. Typically, we use a viscosity corresponding to ry = 102rA, although 

we have used viscosities as small as T. = 

4. GEOMETRY AND BOUNDARY CONDITIONS 

In spherical geometry, two boundaries appear in the simulation: the 

physical inner radial boundary at r = R0 and an artificial outer radial boundary 

at r = R 1 , which we usually place in the range 50-200R0. In order to maintain 

high spatial resolution in particular regions while minimizing the effect of 

the artificial computational boundary we employ a nonuniform mesh in 

which the computational cells vary in size. The cell size varies very 

gradually, so that neighboring cell dimensions are stretched by only a few 

percent per cell. A typical computational mesh is shown in Figure 2. This 

mesh has 200 x 200 r-6 grid points; the outer radial boundary is at r = 50R0; t9 

varies from 0.27° at the equator to 2.7° at the poles; tr = 0.01R0 at the solar 

surface, increasing gradually to ir - 0.03R0 at r - 2R 0, and to Lr - 3R 0 at 

r = 50RØ. (This mesh was used for the calculations described in Section 5.1.) 

As will be apparent from the results, a mesh with very small cells in certain 

regions is required to adequately resolve the steep gradients that form. While 

such high-resolution grids are desirable for accuracy, they result in stringent 

time step limitations if a traditional explicit time-integration technique is 

used. To overcome this difficulty we employ a semi-implicit time-integration 

scheme in which the time step is limited by accuracy, rather than by 

numerical stability considerations (see the Appendix). 

We now discuss the boundary conditions at the radial boundaries.
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Physically, the MHD equations (with finite viscosity) require boundary 

conditions on all components of the flow velocity, the tangential electric field, 

and the normal magnetic field. The build-up of magnetic energy in the 

corona is believed to be driven by flows in the photosphere. Because of the 

high photospheric mass density and conductivity, convective motions of the 

plasma in the photosphere tend to move the footpoints of the coronal 

magnetic field. This situation has been modeled with a "line-tied" boundary 

condition (Raadu 1972; Einaudi & Van Hoven 1981; Priest 1982). This line-

tied boundary condition is implemented at the lower radial boundary by 

using the "frozen-in" condition given by the ideal Ohm's law, 

Vp X B 
E+	 =0, 

where Vp is the specified photospheric boundary velocity. Only the tangential 

components of E are advanced using this ideal Ohm's law at the boundary, 

since the normal component, Er, is advanced self-consistently by the normal 

component of Ohm's law, equation (3), at the boundary (Mikic et al. 1988). 

Since we do not presently include the solar wind, the normal velocity Vr is set 

to zero, we set v = 0, v0 = v° is a specified shear profile, and p and p evolve 

self-consistently. Equation (7) implies that the tangential electric field at the 

boundary is given by E9 = -v00B/c and E0 = 0, guaranteeing that the normal 

magnetic field (and hence the photospheric flux) is fixed, aB/at = 0. Note that 

it is not necessary (nor is it appropriate) to specify boundary conditions on the 

tangential magnetic fields; they evolve self-consistently according to the 

specified flow. This implementation of boundary conditions is facilitated by 

the use of staggered grids. When the resistivity is zero, this boundary 
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condition causes the magnetic field footpoints to move with the applied flow 

velocity (as verified in Section 5.1); with finite resistivity, there is a small 

relative slip between the applied flow velocity and the motion of the 

magnetic field footpoints that is proportional to i (Nfikit et al. 1988). 

The upper radial boundary conditions are implemented to minimize 

the effect of the boundary on the solution. When solving the full MHD 

equations, we specify boundary conditions based on the gas characteristics 

(e.g., Courant & Friedrichs 1948) with a non-reflecting condi )fl for outgoing 

waves (Hea.trom 1979). NegleLting the magnetic field in . - characteristic 

boundary conditions is permissible since fi is very high there (for the initial 

dipole field, fi - 105 at r = 50R0). The gas characteristics give boundary values 

for the pressure, density, and the normal (radial) velocity. The tangential 

electric field is determined using equation (7), and the tangential velocity is 

advected using the normal velocity. This boundary condition has been found 

to work well under both subsonic and supersonic outflow conditions—in 

simulations of helmet streamers an ejected plasmoid propagates out C; f the 

upper radial boundary without reflection. In the case of the zero-beta £AHD 

equations, we use a simple outward advection scheme, in which all quantities 

are advected at the local radial velocity when the flow is directed outward. 

This ad-hoc condition is an improvement over a solid perfectly conducting 

wall which allows plasma to leave the domain. Since the upper radial 

boundary is placed far from the Sun (r = 200R0 is almost at the position of the 

Earth!), we find that the evolution is not sensitive to the exact boundary 

conditions used (see Section 5.3 for a discussion of the quantitative effect of 

the upper radial boundary). In general, it ought to be possible to implement
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boundary conditions based on the full MI-ID characteristics (Hu & Wu 1984). 

The internal boundaries at 9= 0 and 180° are treated using appropriate 

geometrical conditions required of analytic functions. Even though all the 

results presented in this paper have been found to be symmetric with respect 

to the equator 9 = 900, all the calculations employed a full domain in the 

region 0:5 0:5 1800, so that anti-symmetric modes were not explicitly excluded. 

A shearing motion is introduced by specifying the following 

longitudinal flow profile v0° at the photosphere: 

= vo(t)Oexp[(1 - 9)14] ,	 (8) 

where 0 = (8— 9O)/iOm, and v0 (t) is a function which is used to specify the 

time profile; typically we turn the flow on and off smoothly using a linear 

ramp over 2050A• The width of the profile is controlled by AO the flow is 

anti-symmetric about the equator 8 = 90°, with a minimum v ° = at 

9 = 90 - 9m and a maximum VØ = vo at 9 = 90 + A 9m' We have used 

= 20°, which concentrates the flow near the neutral line (at the equator), 

and localizes the shear within the region - 50°-130°. This flow profile is 

shown in Figure 3, and is practically identical to that used by Steinolfson 

(1991), except that it has continuous derivatives for all 8. For v0 > 0, the field 

lines near the equator in the Northern hemisphere are moved in the 

- 0 direction, while those in the Southern hemisphere are moved in the 

+0 direction. Figure 4 shows a three-dimensional view of the sheared field 

lines. This flow is not intended to represent observed large-scale flows; it is 

merely an idealized flow which produces shear near the neutral line. It is 

convenient to quantify the applied shear using the distance
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ASniax = fvo(t') dt' ,	 (9) 
o 

which is seen to be the maximum distance that a field line footpoint moves 

in the longitudinal direction. For the shear profile given by equation (8), the 

field line with footpoints at 8 = 90 ± A 9m therefore has a total displacement 

between its footpoints equal to 2ASmax along the Sun's surface in the 

0 direction.

5. RESULTS 

In this section we describe the evolution of coronal arcades. In 

Section 5.1 we contrast the ideal and resistive MH.D evolution, and we show 

that resistive evolution can lead to the disruption of an arcade. In Section 5.2 

we use the zero-beta MHD equations to identify the cause of the disruption, 

and in Section 5.3 we analyze the results using the virial theorem. 

5.1. Arcade Evolution and Disruption 

We first discuss the evolution of an arcade for a typical calculation. 

The photospheric flow velocity v0(t) was increased from zero (linearly in 

time) to 1.9 km s 1 from t = 0 to t = 20rA; it was kept constant until t = 500'VA, 

when it was decreased to zero (linearly in time) at t = 520r ; the flow 

remained zero for t ^t 520A• The full MHD equations (1)—(6) were solved, 

starting from the initial conditions described in Section 3. The outer radial 

boundary was placed at r = 50R0. We describe two calculations which contrast 

the difference between the ideal and resistive evolution. Case 1 is an ideal 

MHD run (with i' = 0), which was run until t = 900A• Case 2 is identical to 

case 1 until t = 520r, but a uniform resistivity corresponding to S = 10 is



introduced at t = 520rA (when the photospheric flow has been turned off). 

Figure 5 shows contours of the flux function y = rsinOA 0 during the 

ideal evolution (case 1). Contours of iv correspond to projections of the 

magnetic field lines in the r-8 plane. The field lines rise in response to the 

applied photospheric shear (Figs. 5a-0 as electric current is induced in the 

corona and a longitudinal field B 0 develops. As the shear approaches 

LSmax = 1 .8R 0 (Fig. 5d), the field lines begin to rise dramatically when 

additional shear is applied. This expansion of the upper field lines is 

accompanied by a squeezing of the lower field lines near the equator in the 

region r = 2-3R0, as seen in Figure 5, and a corresponding concentration of the 

azimuthal current density J . It will be shown in Section 5.2 that this 

sensitivity is indicative of a fundamental change in the properties of the 

equilibrium magnetic field. The state at t = 5 20rA and beyond has 

LSmax = 2.0R0. Once the shear is tuned off, the configuration does not change 

significantly in the strong-field regions (Figs. 5€-f). 

When a finite resistivity is introduced at t = 520A (case 2), the 

subsequent resistive evolution is markedly different from the ideal 

evolution. Figure 6 shows the flux contours during the resistive evolution, 

demonstrating that the state with Asmax = 2.0R 0 is susceptible to rapid 

magnetic reconnection. The reconnection causes an X-point to form, creating 

an island (0-point) in the flux. The field lines in this "plasmoid" lose their 

connection to the photosphere, causing the plasmoid to travel upward 

(Figs. 6e-1). (In our two-dimensional model this plasmoid is an axisymmetric 

torus of helical field lines.) The reconnection is accompanied by a current 

sheet and fast flows, resulting in the dissipation of a substantial fraction of the
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magnetic energy. Contours of the current density JO are plotted in Figure 7 at 

= 5493A (corresponding to the flux plot shown in Fig. 6d), showing the 

equatorial current sheet at the reconnection site. Figure 8 shows the poloidal 

(r- 0) component of the flow in the vicinity of the reconnection site, 

superimposed on the flux contours, at the same instant. The flow is seen to 

jet out of the reconnection region in the familiar manner, with a maximum 

speed that approaches 600 km s 1 . Figure 9 shows the magnetic energy W for 

cases I and 2, normalized by the potential field energy, Wp0t = B02R03 /3. Note 

the stark difference between the ideal and resistive results: whereas the ideal 

MHD evolution shows that the magnetic energy remains approximately 

constant after the shear is turned off, the resistive MI-ID evolution shows that 

a significant fraction of the free magnetic energy is dissipated. Figure 10 

shows the large increase in kinetic energy K during the reconnection. 

We have computed the energy conservation as a check on the accuracy 

of the numerical method. For the ideal MHD run, the total energy (magnetic, 

thermal, and kinetic) is conserved to within -0.2% (when account is taken of 

energy that leaves or enters the domain, dissipation, and work done against 

gravity). There is a large reservoir of thermal energy that does not change 

substantially during the arcade evolution; when measured in terms of W0t1 

the energy error is -2.7%. This demonstrates the good energy conservation 

properties of the code, since the magnetic energy increases by 64% of Wpot 

during the ideal evolution. Energy conservation deteriorates during the 

resistive run, as expected, since the resolution is not as good during the 

impulsive phase of the run when fast flows and a current sheet appear; the 

total energy error is -0.7% (i.e., -9% of W0t). These negative energy errors

18 



indicate that there is additional (numerical) diffusion in the algorithm, as 

expected from the upwind treatment of advective terms (see the Appendix). 

This numerical diffusion indicates that the effective Lundquist number 

during the impulsive phase is closer to S = 7 x 10, rather than the assumed 

value S = 104. During the resistive run, the magnetic energy that is lost (34% 

of Wt) and the thermal energy that is lost or flows out of the domain (7%) is 

distributed as follows: 18% is dissipated resistively, 4% is dissipated viscously, 

0.5% goes into kinetic energy, 9.5% does work against gravity, and 9% is 

presumably dissipated by numerical diffusion. [In this run we neglected the 

heating due to resistive and viscous dissipation by setting H = 0 in 

equation (6). Therefore, the dissipated energy does not appear as heat, but is 

lost from the system, though it is accounted for in the energy conservation 

check.]

As one test of how closely the simulation approximates ideal behavior 

with q =0, and to check the accuracy with which the line-tied boundary 

conditions have been implemented, we have explicitly traced the field lines at 

the end of the ideal MHD evolution at t = 900A• Figure 11 shows a 

comparison between the actual longitudinal field line footpoint positions and 

the positions expected due to the applied flow. The applied shear is 

LSmax = 2.0R0, which implies that the maximum longitudinal displacement 

between field line footpoints ought to equal 4.0R 0 (for the field line with 

footpoints at 0 = 700 and 1100), as shown in Figure 11. Note the excellent 

agreement between the expected and actual footpoint positions (maximum 

error 0.05R0), indicating that the line-tied boundary conditions have been 

implemented accurately. When we perform a simulation in which a
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nonzero 77 is present during the shearing phase, some slippage of the field 

lines does occur Ovfikit et al. 1988), and the magnetic energy build-up is 

slightly smaller. When 11 is nonzero, there is some slippage which is 

proportional to 71. (The slippage velocity is on the order of 10-4 VA at S = 10, 

which is small compared to the maximum drive velocity.) However, the 

qualitative evolution of the arcade (and, in particular, the disruption) is 

similar to t'e case shown. 

Whe :e applied shear is smaller than the critical shear (wlih we 

estimate as a1proximately :. ;R0), the :olution of the arcade is quasi-

static; i.e., if at any point we turn off the shear velocity and allow the system 

to relax to an equilibrium, the configuration changes very little. When vo is 

well below VA, the magnitude of the shear velocity determines only how 

quickly a particular state is reached, but does not affect the nature of the 

equilibrium for a given applied shear. We have verified that when 

LSmax :5 1.6R0, the configuration settles to an equilibrium when ii =0. In the 

presence of finite resistivity, the currents in the configuration diffuse at a rate 

that is directly proportional to 17. There is no impulsive dynamical behavior. 

At larger values of the shear, the solutions undergo a dramatic 

transition. The configuration becomes very sensitive to additional shear, and 

the higher field lines rise significantly. At this point the configuration is 

susceptible to magnetic reconnection when resistivity is present, as described 

above. When the applied shear is close to the critical shear the resistive 

disruption proceeds slowly; however, when the critical shear is exceeded 

significantly, the onset of reconnection is more rapid, and the reconnection 

itself becomes increasingly more vigorous. A detailed study of this 
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reconnection (in particular, its rate as a function of S) will be deferred to a 

future investigation. 

These results indicate that, in the presence of resistivity, an isolated 

arcade disrupts when sufficient shear is applied, with significant liberation of 

magnetic energy, resulting in fast flows and ejection of a plasmoid. In the 

next section we investigate the underlying cause of the disruption within the 

context of the ideal, zero-beta MHD model, and we explore its relation to 

previous work on force-free equilibria. 

5.2. Zero-Beta Model 

Solution of the zero-beta resistive MHD equations shows that the 

evolution of the magnetic field is qualitatively similar to that found using the 

full MHD equations, as described in the previous section, indicating that the 

phenomenon leading to the disruption of the arcade is magnetic in nature. 

The evolution for small shear is quasi-static, and the field disrupts beyond a 

critical shear threshold. 

We have generated a sequence of ideal MHD force-free equilibria by 

applying a velocity v0 = 0.94 km s' for different durations to achieve shears 

Of Asmax = 1.2, 1.4, 1.6, 1.8, 2.0, and 2.2R0. After the flow velocity was turned 

off, the simulations were run until the field approached a steady state. The 

outer radial boundary was placed at r = 200R0. Since our primary intention in 

this section is to determine force-free equilibria, we chose a (fixed) density 

profile p = p0 (R0 /r)4, which produces an Alfvén speed that is approximately 

uniform for an open field. This density profile is similar in the lower corona 

to that for hydrostatic equilibrium, but falls off more rapidly at larger r, so that 

the equilibration rate of the weak magnetic fields in the outer corona is
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enhanced. (By using different density profiles we found that the qualitative 

behavior to be described does not depend on the detad rorm the densty 

profile, although the time scales may be affected by the Alfvén speeci.) 

Figure 12 shows contours of v' for these equilibria. A transition in the nature 

of the equilibria is evident: when ESmax :5 1.8R0, all the field lines are dced, 

but at higher shears "open" field lines appear. [Although these field lines 

may not be strictly open, i.e., they may close at infinity or at a large distance 

from the Sun, they can be considered to be open for all intents and purposes 

(Sturrock 1991).] The corresponding contours of J (Fig. 13) show that this 

transition is accompanied by the formation of a current sheet, i.e., a tangential 

discontinuity in the magnetic field; Figure 14 shows that Br approaches a 

function which has a discontinuity on the equator. Note that the magnitude 

of the maximum current density shown in Fig. 13 increases dramatically as 

the field opens; the current density would be infinite at a true discontinuity in 

B. It is not usually possible to find ideal MHD numerical solutions with 

discontinuities unless special care is taken. In the absence of resistivity, a 

current sheet usually collapses to the mesh size and generates unphysical 

oscillations, terminating the simulation. Fortunately, we have been able to 

exploit the symmetry in the present configuration (the current sheet appears 

exactly on the equator) to carefully formulate the solution across the equator, 

allowing Br to approach a discontinuous solution (see the Appendix). 

It is important to note that we have not proved conclusively that the 

magnetic field becomes discontinuous. In our numerical scheme we cannot 

rule out the possibility that the magnetic field changes over a narrow layer (of 

finite, rather than zero, width), although it is not readily apparent what



physical process would set the width of this layer. The fact that the field 

approaches the open field (which has a true discontinuity in the magnetic 

field) leads us to adopt the hypothesis that the field approaches a true 

discontinuity. 

The "open-field" configuration has been introduced as the asymptotic 

state of highly sheared force-free equilibria (Barnes & Sturrock 1972; Aly 1984, 

1991; Yang et al. 1986; Sturrock 1991). For a given force-free field, the 

corresponding open field is defined as the field with the same photospheric 

flux, but in which the ends of all field lines that intersect the photosphere 

extend to infinity [see Barnes & Sturrock (1972) for a specific example]. The 

magnetic field in the open configuration is potential everywhere except in 

isolated regions in which current sheets (tangential discontinuities in the 

magnetic field) separate oppositely directed field lines. The energy in an 

open-field configuration is an upper limit to the magnetic energy for all force-

free equilibria (Aly 1984, 1991; Sturrock 1991). For the particular case of a 

dipole flux distribution, we have computed the open field using the 

expedient (involving a monopole field) suggested by Barnes & Sturrock 

(1972). This open field has a discontinuity in Br at the equator, and has a 

magnetic energy Wopen = 1 .662W 0t. The field lines in the open field are 

compared to those in the equilibrium with Asmax = 2.2R0 in Figure 15. 

Figure 16 shows the height of several field lines in the force-free 

equilibria as a function of applied shear. The field line height increases 

steadily with shear, but becomes very sensitive to shear when a critical shear 

is approached, corresponding to the transition described above. Several 

aspects of this transition should be noted. First, although a fundamental



change occurs in the magnetic configurations for the higher shear cases, there 

is no impulsive release of magnetic energy when resistivity is absent. Beyond 

a critical shear, in the ideal MHD model the field lines slowly expand 

outward, opening the field and creating a current sheet (Figs. 12 and 13). 

Second, the reconnection which occurs during the resistive MHD evolution 

is directly related to the transition in the ideal equilibria. There is no 

disruption below the critical shear, whether or not resistivity is present. 

Third, although a current sheet forms in the cases with ASmax = 2.0 and 2.2R0, 

the magnetic energy remains below the open-field energy throughout the 

evolution. Figure 17 shows the magnetic energy in the force-free equilibria as 

a function of applied shear. Note that magnetic energy approaches the open-

field energy for large shear, and that the field begins to open (at ASmax = 2.0 

and 2.2R0) while W is still below Wopen, so that these fields represent partially 

open magnetic configurations. The case with Asmax = 2.2R0 has dosed field 

lines corresponding to —3% of the flux (these are the low-lying field lines 

near the equator in Fig. 15a). We have made conservative error estimates of 

W for the cases with iSmax = 2.0 and 2.2R 0 (indicated by the error bars in 

Fig. 17), since the fields have not reached a complete steady state by the end of 

the runs. Our results for the magnetic energies of force-free equilibria are 

therefore in agreement with those of Aly (1984, 1991) and Sturrock (1991). 

It is illuminating to examine the evolution of the toroidal (130) and 

poloidal (Br, Be) components of the magnetic field in response to the applied 

shear. Figure 18 shows the evolution of the "partial magnetic energies" Wr, 

W9, and W0, where we have defined Wr = f Br 2 dV18x, and similarly for Wo 

and W0, for the case ASmax = 2.0R0. Initially, as the field is sheared, poloidal
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field is converted into toroidal field (i.e., W9 decreases and W0 increases); 

however, as additional shear is applied, the expansion of the arcade causes 

Wo to decrease (Aly 1990), and Wr to increase, as the field becomes more 

radial. The partially open field has a small residual toroidal field (in the 

closed-field region). For comparison, note that the fully open field has 

Wr = 1.597Wpo t1 W9 = 0.065W 0t, and W = 0. 

The presence of gravity in the full MHD equations would be expected 

to impede the opening of the field. This is evident from Figures 5 and 12, 

which show that whereas a shear of iSmax = 2.0R0 is sufficient to open the 

field in the zero-beta model, the corresponding full MI-ID configuration (with 

gravity) has closed field lines. When the shear is large, the full (ideal) MHD 

model shows that the configuration also approaches an open field. (This is of 

purely theoretical interest, since it is the resistive evolution that is relevant to 

the Sun, and we have already shown in Section 5.1 that the arcade disrupts 

within the full MHD model.) 

5.3. Application of the Virial Theorem 

The transition in behavior past the critical shear can be analyzed using 

the scalar virial theorem (e.g., Aly 1984). A force-free field in equilibrium 

must satisfy the following equality: 

r B2 
I -1dV = - f (B.l)(B.r)_c(r.1))dS , 	 (10) 
iv	 ( 

where V is the volume of the domain, S is the surface bounding the volume, 

and n is the unit outward normal. We refer to the right-hand-side of 

equation (10) as the surface term. In our spherical domain with boundaries at 

r = R0 and r = R 1 we can thus write:



26 

f

B
W 	 dv = S(R0) - S(R1)

v 8ir 

where

S(r) = çj'1t (Br 2 - B82 - B02)sin9d9 .	 (12) 

How closely W and the surface term match each other is a measure of how 

close a configuration is to equilibrium at a given time. Figure 19 shows the 

evolution of W and the surface term for the case With Asmax OR0. During 

the early part f t1: evolution, W and the surface term match closey, 

verifying that the evolution is quasi-static, but at t — 925VA (when 1Sn X begins 

to exceed 1.8R0), the two curves start to diverge, indicating that the system is 

no longer in equilibrium. This has been identified as the onset of magnetic 

nonequilibrium (Section 5.2). The two curves approach each other as the 

system equilibrates, although the equilibration time is long. Figure 20, which 

shows the evolution of the height of selected field lines at the equator, 

indicates that the upper field lines rise slowly as the field opens. The long 

equilibration time can be attributed to the slow expansion of the weak upper 

magnetic fields in a region with small Alfvén speed. 

The expansion which occurs during the opening of the field in the full 

MHD model is also characterized by a long equilibration time, as a result of 

the small Alfvén speed in the outer corona. It takes thousands of Alfvén 

times for the field to equilibrate 1000A corresponds to 16.8 days), implying 

that the quasi-static approximation is no longer valid once the critical shear is 

reached, even for small photospheric flow speeds. (The field equilibrates on 

the local Alfvén time scale, which can be much longer in the weak-field 

regions in the outer corona than the "characteristic Alfvén time scale" A•) 
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An accurate estimate of the equilibration time depends on the 

thermodynamic model of the outer corona. In particular, a solar wind 

solution has a smaller density in the outer corona than that predicted by the 

hydrostatic model. An important consequence of this slow equilibration is 

that nonequilibrium magnetic fields with energies exceeding Wopen may 

form in the corona. We have verified that Wopen can be exceeded in the full 

MHD model when the arcade is driven continuously with a photospheric 

shear velocity v0 = 0.94 km s1. 

In order to illustrate the approach to equilibrium when the critical 

shear is not exceeded, Figure 21 shows W and the surface term for the case 

Smax = 1.8R0. The evolution is seen to be quasi-static at all times, with the 

field settling to equilibrium relatively quickly when the shear flow is turned 

off at t = 950A' as shown by the evolution of the field line height (Fig. 22). 

The residual difference (-5 x 10Wpot) that remains between the W and 

surface term curves in Figures 19 and 21 is a measure of the differencing error 

involved in the computation of the various terms. 

The quantitative influence of the upper radial boundary on the 

solution can be measured by comparing the relative sizes of the three terms 

in equation (11). For the case LSmax = 2.0R0, we find that S(R 1) remains 

negligibly small during the quasi-static evolution, increasing as the field 

begins to open. Even then, its maximum value (at f - 1700rA) is only 
10 3 w (i.e., W and S(R0) balance to within I part in 10), indicating that it 

plays a minimal role in the energetics of the field. This demonstrates that the 

upper radial boundary is sufficiently far away so as to have a negligible effect 

on the computed solution.
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6. DISCUSSION 

The results presented in detail in the preceding section can be 

summarized as follows. A sheared arcade responds to slow photospheric 

flows quasi-statically, evolving through sequences of equilibria with 

increasing magnetic energy. With increasing shear, the field lines rise 

dramatically. When a critical shear is exceeded the arcade suffers magnetic 

nonequilibrium: the arcade expands outward from the Sun in a process that 

opens magnetic field lines and forms a current sheet. The current sheet 

results from a tangential discontinuity in the magnetic field which separates 

the two regions of opposite polarity. In the ideal MI-ID model this opening of 

the field is not very impulsive, and does not produce a large change in 

magnetic energy. It is characterized by a long equilibration time, since it 

involves expansion of weak outer magnetic fields. In marked contrast, when 

finite resistivity is present there is a violent disruption of the configuration 

resulting from magnetic reconnection at the current sheet, leading to 

Alfvénic flows, considerable dissipation of magnetic energy, and the ejection 

of a plasmoid. This disruption occurs in both the full MHD model and the 

zero-beta model; therefore, it is a property of the magnetic configuration of 

the arcade. 

For the force-free equilibria found in the zero-beta model, the magnetic 

energy remains below the open-field energy (Aly 1984, 1991; Sturrock 1991). 

The critical shear at which magnetic nonequilibrium occurs corresponds to a 

magnetic energy Wcrit 1.62 W 0t, which is slightly (but definitely) below the 

open-field energy, W open = 1.662Wpot . Thus, following magnetic 

nonequilibrium, the field reaches a partially open configuration in which the



majority of the field lines open, with a small fraction of the low-lying field 

lines remaining closed. When the critical shear is exceeded the arcade 

evolution is not quasi-static, indicating that a sequence of equilibria may not 

model coronal evolution accurately during this phase. 

In a study of ideal MHD force-free equilibria of an axisymmetric model 

of a sunspot, Barnes & Sturrock (1972) and Yang et al. (1986) did not identify 

the critical behavior described here. As we have noted, within the ideal MHD 

model the consequences of magnetic nonequilibrium are not very dramatic—

the field expands slowly toward an open configuration, with the eventual 

formation of a current sheet The equilibration time for this expansion can be 

long compared to the characteristic Alfvén time at the base of the arcade. [The 

critical behavior may be even less apparent in a numerical calculation of the 

equilibrium field: the current sheet may be artificially broadened by the finite 

resolution of the grid; the expansion of the field may be inhibited by the 

proximity of computational boundaries; and the long equilibration time may 

result in slow convergence toward the open field. These complications were 

recognized by Porter et al. (1992): the large uncertainties in the magnetic 

energy estimates of computed force-free equilibria were attributed to limited 

spatial resolution and the proximity of computational boundaries.] It is 

entirely possible that this sunspot field may also experience magnetic 

nonequilibrium when the magnetic field energy approaches W01,. It may 

prove worthwhile to revisit the study of the ideal and especially the resistive 

MHD properties of this configuration in light of the present results. 

The disruptive behavior exhibited by a sheared arcade is not unlike 

that seen in previous computations of arcade evolution in Cartesian
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coordinates. In a very idealized model (which had an artificial array of 

periodic arcades), it was found that arcades disrupted when a critical shear was 

exceeded (Nfikk et al. 1988). In that case the mechanism which initiated the 

disruption was ideal MHD instability in a highly symmetric equilibrium, 

although a similar effect was also observed in nonsymmetric arcades 

(Biskamp & Welter 1989). Finn et al. (1992) have discussed the effect of 

symmetry on the relationship between instability and loss of equilibrium in 

coronal arcades. These studies have shown that coronal arcades can disrupt 

through resistive reconnection of magnetic field lines in the presence of 

plasma resistivity. Biskarnp & Welter (1989) concluded that "single" arcades 

did not experience disruptive behavior in Cartesian geometry (i.e., with 

translational symmetry), in contrast with the disruption observed in groups 

of adjacent arcades, although this conclusion was not based on an exhaustive 

parameter study. In contrast, we have shown that a "single" arcade can 

indeed disrupt. In the (infinitely periodic) configuration studied by Mikie e t 

al. (1988), the corresponding open-field energy is infinite (even when 

measured per arcade, per unit length in the ignorable direction); this is a 

direct consequence of the assumption of translational symmetry. It is thus 

not possible to interpret that disruption as the approach of the magnetic 

energy towards the open-field limit. 

A significant disagreement between our results and those of 

Steinolfson (1991) should be noted. Since our dynamical model is similar to 

that used by Steinolfson, our results ought to give a comparable description of 

arcade evolution. The differences in the results must be attributed to 

differences in the numerical solution of the same physical equations.
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Steinolfson notes that the evolution of an arcade is very different depending 

on which particular scheme is used to advance the tangential field B 0 at the 

photospheric boundary (in one case the field disrupts and in another it does 

not). As noted in Section 4, a boundary condition on B 0 is not allowed in a 

proper formulation; when line-tying is specified properly, B 0 must be 

evolved self-consistently at the boundary. We have verified that our line-

tied boundary condition has been implemented accurately (see Figure 11). 

The nature of the eruptive behavior reported by Steinolfson is different from 

the disruption we have described: Steinolfson (1991, Figs. 3, 8, and 9) shows 

that the magnetic energy increases by many orders of magnitude when the 

field disrupts, whereas we have shown that the magnetic field is the source of 

energy for the disruption, so that the magnetic energy decreases (as shown in 

Fig. 9). Steinolfson does not identify the nature of his disruption, nor does he 

explain the source of energy; in contrast, we have explicitly traced the cause of 

the disruption to magnetic nonequilibrium (Section 5.2), and we have 

checked that energy is conserved (Section 5.1). Therefore, the physical 

relevance of Steinolfson's result must be questioned. 

The analytic MHD properties of an idealized model of a coronal arcade 

with an embedded filament have been studied previously (Priest & Forbes 

1990; Forbes & Isenberg 1991). Forbes and Isenberg (1991) found that a 

filament can experience loss of equilibrium in ideal MHD when the flux in 

the filament is varied, although the energy release associated with this event 

is small (less than - 1% change in magnetic energy). Forbes & Isenberg (1991) 

and Forbes (1991) have recognized that it is not necessarily the ideal MHD 

energy release associated with loss of equilibrium that drives a coronal mass 
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ejection; it is the subsequent reconnection that releases a substantial amount 

of magnetic energy. As we have demonstrated, once a current sheet forms 

even a small plasma resistivity is effective in dissipating magnetic energy and 

causing plasmoid ejection. Finn & Guzdar (1993) have examined the 

relationship between loss of equilibrium and reconnection in laboratory and 

solar plasmas. 

Although the present model is highly idealized, it is just this type of 

magnet energy conversion and plasmoid ejection that is required tc (plain 

coronal mass ejections. In order to make a detailed comparis. .k with 

observations of coronal mass ejections it will be necessary to further refine 

this model. In particular, we will add the important effect of the solar wind 

(Parker 1963). The solar wind opens some of the outer field lines, creating a 

helmet streamer configuration (Pneuman & Kopp 1971; Linker et al. 1990, 

1992). Our preliminary results indicate that a similar disruption also occurs 

in a sheared helmet streamer configuration. In this regard, we conjecture that 

coronal :ass ejections are most frequently observed to occur in helmet 

streame: 3nfigurations because the field is alrc iy partially open in such 

configuration (by the effect of the solar wind), so that a smaller amount of 

shear may be required to disrupt the field. In future work we will study in 

detail the effect of shear on helmet streamers. 

It does not appear to be necessary for the coronal arcade to have 

dimensions comparable to the solar radius for this disruption to occur (as is 

the case in the model problem described here). We therefore speculate that 

active-region-sized arcades ought to exhibit similar behavior. 

In closing, we note that this example offers a good illustration of the 
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mechanism of topological dissipation through magnetic nonequilibrium 

(Parker 1972). It shows that continuous long-wavelength displacements of 

field line footpoints of a magnetic field configuration (which initially has no 

neutral points) eventually lead to the formation of a tangential discontinuity, 

as a consequence of constraints imposed by ideal MHD equilibrium. In the 

presence of finite resistivity the resulting current sheet is seen to be the site of 

rapid reconnection, and leads to dissipation of magnetic energy.
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APPENDIX 

In this appendix we describe some details of the numerical simulation 

code. The MHD equations (1)—(6) are integrated using finite differences in 

space and time. A leapfrog time integration scheme is used, combined with a 

semi-implicit method. The semi-implicit method allows the time step to 

exceed the Courant limit, which can make the computation more efficient 

than one employing an explicit method. In the semi-implicit method 

(Harned and Kerner 1985; Schnack et al. 1987; MikM et al. 1988) the time step is 

chosen according to accuracy constraints, rather than by numerical stability 

limitations. Unconditional stability (to wave-like modes) is achieved by 

introducing an implicit linear operator in the momentum equation which 

modifies the dispersion properties of high-k modes (where k is the spatial 

wave vector). These are the modes which are not represented accurately by 

the spatial differencing. This scheme is particularly efficient when the slow 

evolution involves long wavelengths (which are treated accurately), but a 

high-resolution mesh is present to capture the strong gradients that form 

during a subsequent impulsive phase. This is precisely the situation that 

occurs in the arcade evolution. The field evolves quasi-statically in response 

to slow, long-wavelength photospheric flows, but eventually a current sheet 

forms, and, in the resistive case, reconnection produces large flows. A 

relatively large time step can thus be used during the quasi-static phase, with 

a corresponding reduction during the impulsive phase. The (explicit) 

advection time step limit provides a natural control of the time step, since it 

automatically reduces the time step when flows become large. The size of the
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semi-implicit term depends on the size of the time step; it vanishes when the 

time step satisfies the Courant condition. In addition, since the semi-implicit 

term involves a time derivative, it does not affect the steady-state solutions of 

the equations. The matrices arising from the semi-implicit and fully implicit 

viscosity operators are inverted using a preconditioned conjugate gradient 

method (Mikk and Morse 1985). 

As a particular example, for the mesh used in Section 5.1 (shown in 

Fig. 2), the explicit Cour-nt limit for Alfvén waves is At < °°°A• Thus, to 

integrate the .quations .: 2000,rA (as was necessary) would require 500,000 

time steps. Clearly, the evolution does not suggest that this level of accuracy 

is required. With the semi-implicit method we were able to use a time step in 

the range At = 0•0°1A during the quasi-static evolution, with sufficient 

accuracy and a substantial savings of computer time. We did not find 

significant differences in selected computations when we varied the time 

step.

Staggered spatial meshes, in which the various fields are defined at 

different (staggered) locations with : espect to each other, were employed. 

Such meshes facilitate the implementation of boundary conditions, since it is 

not necessary to specify quantities that do not require a boundary condition, 

and preserve the vector identities V•V x A =0 and V x Vçb =0 in discretized 

form, leading to strict separation of longitudinal and transverse components 

of a vector. In particular, this implies that VB =0 is maintained to within 

roundoff error during the entire computation. 

We now discuss how numerical diffusion is controlled in the code. 

When numerical solutions of the ideal MHD equations are attempted, the 
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following question inevitably arises: how accurately is it possible to maintain 

the constraints imposed by T7 = 0? The answer depends to a large extent on the 

design of the simulation code and the physics of the problem being studied. 

In general, if the evolution generates gradients that are steeper than can be 

resolved on the mesh, the numerical solution will cease to be valid: typically, 

oscillations will develop, causing the simulation to terminate. Sometimes it 

is preferable to avoid this termination by introducing numerical diffusion to 

prevent the gradients from steepening beyond that allowed by the mesh 

resolution, in which case the solution does not represent the ideal evolution, 

but one with small, but finite, resistivity. 

Numerical diffusion in our code can be introduced by using upwind 

(rather than centered) differences of advective terms. Typically we use 

upwind differences when advecting velocity, pressure, and mass, which 

introduces numerical diffusion that has the effect of diffusing steep gradients 

in momentum, mass, and energy. When studying ideal MHD we use 

centered differences to advect the vector potential, to prevent the 

introduction of numerical diffusion in Ohm's law. As a consequence, the 

ideal MHD constraints prohibiting reconnection are preserved. However, if 

the ideal evolution causes a current sheet to form, the simulation will 

terminate unless a specialized treatment is used in the regions where the 

magnetic field becomes discontinuous. When we use the resistive model, we 

find that it is sometimes beneficial to use upwind differencing when 

advecting the vector potential, which introduces a small amount of 

additional diffusion in Ohm's law. This is the source of most of the energy 

error discussed in Section 5.1.
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In the present arcade evolution, the current sheet that forms with the 

onset of magnetic nonequilibrium occurs exactly on the equator, and is 

characterized by a discontinuity in B; however, the symmetry of the situation 

can be exploited. The field approaches an open field, in which this 

discontinuity is in force balance: although Br changes sign discontinuously 

across the equator (i.e., Br jumps from -Be to +Be), the magnetic pressure Be  

remains continuous across the equator. This implies that the part of the 

0-component of the J x B force which equals -(B,.' r)aB/ae ought to be 

differenced in the form -(1 12r)aB 2 /a0, with a choi of staggering in which 

the Br mesh-points straddle (but do not fall on) the equator. When the 

equations are differenced in this form, the approach to a discontinuous 

solution can be accommodated in the ideal MHD model without introducing 

numerical diffusion in Ohm's law. 

That this technique can successfully handle a current sheet on the 

equator is illustrated by the stark difference between the ideal and resistive 

evolution (see Fig. 9), which indicates that the reconnection is controlled by 

the physical resistivity. We have found that in the ideal model, numerically 

induced reconnection is absent when this technique (and sufficient 

resolution) is used. 

The code has been designed to run on supercomputers (we used Cray-

YMP and Cray-YMP/C90 machines), and takes anywhere from a few minutes 

to many hours of CPU time, depending on the parameters.
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FIGURE CAPTIONS 

Fig. 1.—Radially symmetric profiles of pressure p, mass density p, and 

temperature T, in the initial hydrostatic equilibrium. The base values at 

r = R0 are given in the text. 

Fig. 2.—The mesh cells for a typical calculation. The upper radial 

boundary i., at r = 50R0. The i: t shows the detail of the mesh - the solar 

surface. 

Fig. 3.—The normalized longitudinal shear velocity profile Vol that is 

applied at the photosphere. 

Fig. 4.—A three-dimensional view of the sheared magnetic field lines for 

ASmax = I .6R0. At f = 0, in the dipole field, the selected field lines lie in the 

(r-9) plane. 

Fig. 5.—Evolution of the projected field lines (contours of constant flux 

) in the ideal MHD case. The applied shear at .he times indicated in the 

sequence (a)-(f) is iSmax = 0, 1.0, 1.4, 1.8, 2.0, and 2.0R0. (The shear flow is 

turned off at t = 520 rA . ) The field lines in the initial dipole field are shown 

in (a). Note the sensitivity of the field line height to shear as Asmax 

approaches 1.8R 0. The contour values in this and all subsequent yi-plots 

correspond to 19 uniformly spaced values between 0.05yfo and 0.95', 

inclusive, where Ipr = BØR02 is the maximum flux. 

Fig. 6.—Evolution of the projected field lines during the resistive MHD 

case. The reconnection of field lines creates an 0-point in the flux and ejects a
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plasmoid. 

Fig. 7.—Contours of the longitudinal component of the electric current 

density 10 at t = 549•3A' corresponding to the flux contours shown in Fig. 6d 

for the resistive case. A current sheet appears at the equator, with a 

maximum current density equal to 31.2(cB0/4,rR0). 

Fig. 8.—Detail of the reconnection region at t = 549.3tA, showing the 

poloidal projection of the flow vectors, with the field lines superimposed. 

The maximum flow speed approaches 600 km s* 

Fig. 9.—Evolution of the magnetic energy W for the ideal and resistive 

MHD cases. The shear flow is turned off at t = 520rA. In the resistive case, 

reconnection dissipates a large fraction of the free magnetic energy. In 

contrast, in the ideal case the magnetic energy changes little after the shear is 

turned off. The solid symbols and open circles indicate the values of time at 

which the flux is shown in Figs. 5 and 6, respectively. 

Fig. 10.—Evolution of the kinetic energy K for the ideal and resistive 

MHD cases. The shear flow is turned off at t = 520tA. The kinetic energy 

increases considerably during the reconnection. The solid symbols and open 

circles indicate the values of time at which the flux is shown in Figs. 5 and 6, 

respectively. 

Fig. 11.—Comparison of the computed and exact longitudinal field line 

footpoint displacements at the end of the ideal MI-ID run at t = 9001A. The 

solid line shows the exact footpoint displacements expected from the applied 

flow profile; the symbols denote the displacements computed by tracing
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individual field lines. The agreement shows that the line-tied boundary 

conditions have been implemented accurately. 

Fig. 12.—Contours of the flux yr for ideal force-free MHD equilibria as a 

function of applied shear. The outer field lines open when LSs, 2.0R0. 

Fig. 13.—Contours of the longitudinal component of the electric current 

density 10 corresponding to the flux contours shown in Fig. 12 for ideal force-

free MHD equilibria. The maximum is expressed in units of the normalizing 

current density, cB014irR0. A current sheet appears when is 	 2.0R0. 

Fig. 14.—Radial magnetic field B, in the force-free field with 

ASmax = 2.2R0 (corresponding to Figs. 12f and 13)) at r = 3R0, showing that B, 

approaches a function which has a discontinuity at the equator 8=900. This 

is the location of the current sheet in the open field. The symbols show the 

locations of the 8 mesh points. 

Fig. 15.—Comparison of the projected field lines (contours of the flux v) 

for (a) the force-free field with shear Asmax = 2.2R0, and (b) the open field 

configuration. The force-free field corresponds to a partially open field, with a 

small fraction of dosed low-lying field lines near the equator. The contour 

values are the same in both plots, and correspond to the usual 19 uniformly 

spaced values of i' a contour at Vr = 0.98 'Vo has been added in both plots to 

emphasize the dosed field lines in (a). 

Fig. 16.—Height of selected field lines in the ideal MHD eouilibria as a 

function of the applied shear. The field lines are labeled by the corresponding 

flux value iy, in terms of the maximum flux V0. The field line height rises
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sharply as the critical shear - 1 .8R0) is approached. For As 2.0R4, 

as the field opens, the higher field lines (with i, = 0.95, 0.9, and 0.8v) are 

characterized by h - oo. 

Fig. 17.—Magnetic energy W of force-free equilibria as a function of 

applied shear Asmax. Note that W approaches the open-field energy for large 

shear, but that the field opens while W is still below W 0 (at Asmax = 2.0 and 

2.2R0). The error bars indicate uncertainties in W since the indicated states 

are not in a complete steady state. 

Fig. 18.—Evolution of the "partial magnetic energies" W, W& and W, 

which are defined as the energies in the r, 9, and 0 components of the 

magnetic field, for the case 'max = 2.0R0. The shear flow is turned off at 

= 1050r. 

Fig. 19.—Evolution of the magnetic energy W and the surface term in 

the virial theorem comparison for the case ASmax = 2.0R0. The two curves 

match closely during the quasi-static evolution. The magnified view in the 

inset shows that the curves depart when magnetic nonequiibrium occurs. 

The subsequent equilibration occurs over a long time scale. The "bump" in 

the surface term at t - 1600r occurs when the expanding upper field lines 

reach the upper radial boundary. 

Fig. 20.—Evolution of the height of selected field lines at the equator 

(9 = 90°) for the case zsmax = 2.0R 0. The field lines are labeled by the 

corresponding flux value ,y, in terms of the maximum flux i. The shear 

flow is ramped down to zero starting at t = 1000r and ending at t = 1050A'



with zero flow thereafter. When the critical shear is exceeded the upper field 

lines rise to large heights as the field begins to open. The siow isymptotic rise 

of the upper field lines indicates a long equilibration time. The evolution of 

the low field lines indicates that there is a closed-field region in the resulting 

partially open field. 

Fig. 21.—Evolution of the magnetic energy W and the surface term in 

the virial theorem comparison for the case Asmax = 1.8R0. The magnified 

view in the inset shows that the curves remain close at all times, indicating 

quasi-static evolution, in contrast with the case when the critical shear is 

exceeded (Fig. 19). 

Fig. 22.—Evolution of field line height for the case Asmax = 1.8R0. When 

the shear flow is ramped down to zero, starting at t = 900A and ending at 

= 950	 the field lines equilibrate quickly, in contrast to the behavior 

observed when the critical shear is exceeded (Fig. 20).
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