N94-22353

UNSTRUCTURED GRID RESEARCH AND USE AT NASA LEWIS RESEARCH CENTER

MARK G. POTAPCZUK NASA LEWIS RESEARCH CENTER

PRECEDING PAGE BLANK NOT FILMED

CFD Applications at Lewis Research Center

19 Å

- Inlets, Nozzles, and Ducts
- Turbomachinery
- Propellors Ducted and Unducted
- Aircraft loing

Grid Generation Development and Use

· -

at Lewis Research Center

- Inlets and Nozzles
 - GRIDGEN
 - TURBO-I/SG

- Turbomachinery and Propellors
 - TIGER
 - TCGRID
 - TIGMIC
 - IGB

44

- TIGGERC
- HGRID
- TRBGRD

- General
 - GENIE
 - RAMPANT

- ICEM
- Aircraft loing
 - HYPGRID
 - GRAPE
 - MINMESH

Some Issues related to Internal Flow Grid Generation

- Resolution requirements on several boundaries
- Shock resolution vs. grid periodicity
- Grid spacing at blade/shroud gap
- Grid generation in turbine blade passages
- Grid generation for Inlet/Nozzle geometries

Resolution Requirements on Several Boundaries

- Internal flow problems may have many intersecting surfaces
- Resolution requirements along surfaces may vary
- Structured grid generators can have great difficulty in meeting both requirements simultaneously

Shock Resolution vs. Grid Periodicity

 Shock locations on upper and lower blade surfaces of cascade occurr at different chordwise locations

-

Ξ

- Geometry of shock does not correspond to direction of grid lines
- These two requirements result in highly skewed grids and in an excessive number of grid points

_

Grid Spacing at Blade/Shroud Gap

- Small gap (<.2% of blade span) exists between rotor blades and surrounding shroud
- Attempts at modeling gap result in high grid skewing and large number of grid points
- Many structured grid solutions neglect the gap region

Grid Generation in Turbine Blade Passages

- Complex geometry and viscous flow modeling results in:
 - Multi-block grid
 - Large number of grid points
 - Labor-intensive grid generation effort
- Automatic generation of internal grid points is required

Grid Generation in Turbine Blade Passages

Grid Generation for Inlet/Nozzle Geometries

- Rapidly varying flow passage geometries can result in difficult blocking schemes
- Interfacing of blocks at regions of rapid geometry change can be difficult to achieve
- Geometry and flow phenomena resolution requirements can be conflicting and result in excessively large grids
- Grid development time can be extensive

AXIAL CUTS THROUGH 3-D GRID

Aircraft Icing Grid Generation Issues

- · Small structures relative to airfoil chord must be resolved
- Excessive number of grid points in far-field using structured grid
- · Grid must be re-created as ice shape grows

NACA 0012 Airfoil with Simulated Glaze Ice $M_{\infty} = 0.12, \alpha = 4^{\circ}$

LEWICE/UE Ice Shape Prediction for Iced NACA 0012 Airfoil Example 2, Clean Airfoil Calculation

Mach = 0.4, α = 4°

LEWICE/UE Ice Shape Prediction for Iced NACA 0012 Airfoil

Example 2, Time = 60 sec.

Mach = 0.4, α = 4°

54

Concluding Remarks

- LeRC has several general-purpose and many application-specific grid generators for internal flow CFD analysis
- LeRC has some unstructured grid generation development activities inhouse targeted at internal flow problems
- Unstructured grids can simplify and in some cases enable CFD analysis
 of internal flow geometries
- Unstructured grids are ideally suited for complex, changing geometries such as ice growth on aircraft surfaces

