
3-D UNSTRUCTURED MESH GENERATION USING LOCAL TRANSFORMATIONS

TIMOTHY J. BARTH NASA AMES RESEARCH CENTER

3-D Combinatorial Edge Swapping

Convex sets of n+2 sites in Rⁿ can be configured in at most 2 ways

 This local transformation based on a Boolean decision serves as mechanism for local optimization

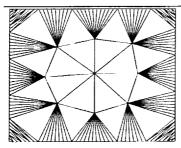
3-D Incremental Triangulation via Local Transformations

Joe (1989) and Rajan (1991) showed that 3–D
 Delaunay triangulations can be constructed using local transformations based on the Boolean circumsphere test

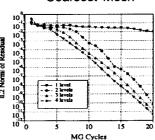
2-D Example of Incremental Insertion and Optimization

 We have constructed triangulation algorithms in 3-D which locally optimize other mesh qualities: max-min dihedral angles, min-max dihedral angles, etc.

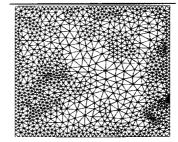
Motivations


- Develop a mesh generation capability suitable for generating highly stretched meshes required for viscous flow computations at high Reynolds numbers
 - Experience has shown that existing triangulation methods such as Delaunay triangulation are not suitable for the generation of highly stretched meshes
- Investigate triangulation algorithms which accommodate mesh generation and adaptation while maintaining high robustness

Randomized \triangle Algorithms Based on Local Transformations

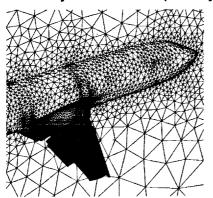

- Worst case optimal complexity can be achieved by randomizing the order in which sites are introduced into the triangulation (Guibas, Knuth, Sharir, 1992)
 - n log (n) expected performance in 2-D
 - n² expected worst case performance in 3-D
- Suggests a new "continuous" data structure which encodes a family of triangulations (coarsest to finest)
 - 2-D randomized theory predicts O(n) size of this structure
 - We have exploited this construction to produce a novel multigrid scheme and theory for solving differential eqns

A New Approach to Multigrid for Unstructured Meshes


Solution of Burgers' equation using continuous data structure

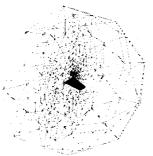
Coarsest Mesh

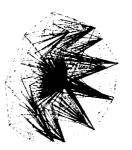
Convergence History


Finest Mesh

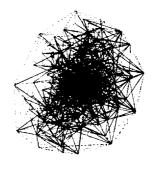
Solution Contours

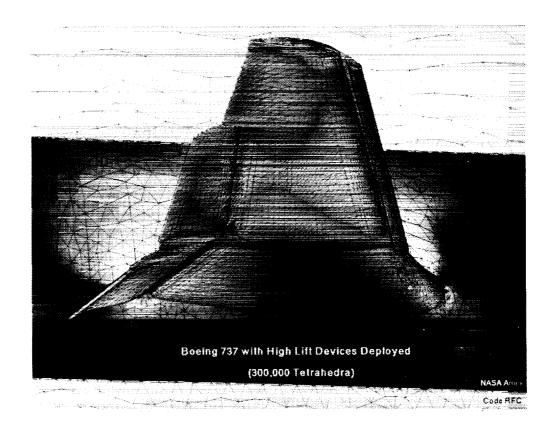
Surface Mesh Generation Using Local Transforms


- Exploring new techniques capable of generation isotropic or stretched elements on tensor product spline patches
- Method supports adaptation based on geometrical or soln error
- Extension to manifold B-rep objects is being carried out by Code RFG (Maksymiuk, Chou)

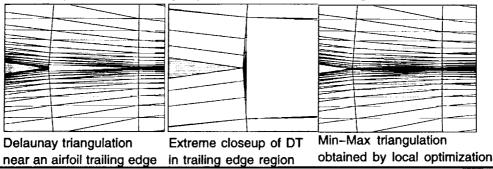

Mesh with isotropic and stretched elements

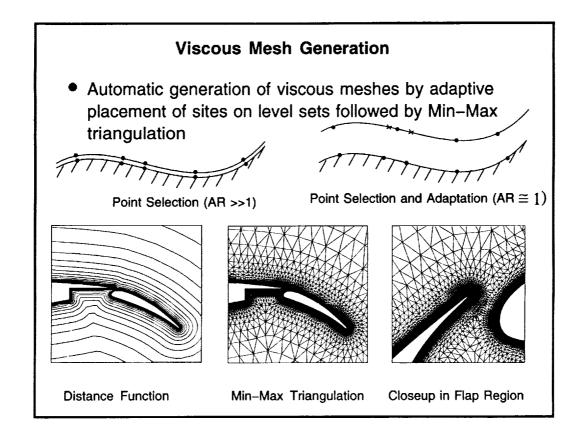
Volume Triangulations


- (1) Initial Triangulation of Surface Data
- (2) Constrained/Conforming Triangulation to Preserve Body Integrity
- (3) Incremental Insertion and Optimization of Specified Sites



Constrained/Conforming
Triangulation of Boundary




Final Volume Triangulation

Why Some Standard Triangulation Methods Fail

- Delaunay triangulation has a well known characterization that it maximizes the minimum angle for triangle pairs
- Theoretical and practical considerations indicate that it may be more beneficial to minimize the maximum angle for triangle pairs
- Incremental insertion and local optimization can be used to produce locally optimal Min–Max triangulations

Future Directions

- Continue investigating optimization criteria for tetrahedral meshes
- Develop new strategies for site placement
 - Level set strategies
 - Steiner point strategies
- Solution adaptation based on a priori error estimates

·		
-		